메뉴 건너뛰기




Volumn 9, Issue 4, 2009, Pages 1354-1366

A hybrid learning algorithm with a similarity-based pruning strategy for self-adaptive neuro-fuzzy systems

Author keywords

Self adaptive neuro fuzzy systems; Similarity analysis; Triangular function; TS model

Indexed keywords

FUZZY RULE SET; GEOMETRIC GROWTH; HYBRID LEARNING ALGORITHM; INITIAL STRUCTURES; LEARNING PROCESS; MODEL ACCURACY; NEUROFUZZY SYSTEM; PRUNING STRATEGY; SELF-ADAPTIVE; SELF-ADAPTIVE NEURO-FUZZY SYSTEMS; SIMILARITY ANALYSIS; SYSTEM ERRORS; TRIANGULAR FUNCTION; TS MODEL; TWO STAGE;

EID: 68849097314     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2009.05.006     Document Type: Article
Times cited : (29)

References (39)
  • 4
    • 33947257114 scopus 로고    scopus 로고
    • Constructive learning techniques for designing neural network systems
    • Campbell C. Constructive learning techniques for designing neural network systems. Implementation Techniques (1998) 91-145
    • (1998) Implementation Techniques , pp. 91-145
    • Campbell, C.1
  • 6
    • 0034482649 scopus 로고    scopus 로고
    • Fuzzy perception neural networks for classifiers with numerical data and linguistic rules as inputs
    • Chen J.L., and Chang J.Y. Fuzzy perception neural networks for classifiers with numerical data and linguistic rules as inputs. IEEE Transactions on Fuzzy Systems 8 (2000) 730-745
    • (2000) IEEE Transactions on Fuzzy Systems , vol.8 , pp. 730-745
    • Chen, J.L.1    Chang, J.Y.2
  • 7
    • 0742320762 scopus 로고    scopus 로고
    • Rule-base self-generation and simplification for data-driven fuzzy models
    • Chen M.Y., and Linkens D.A. Rule-base self-generation and simplification for data-driven fuzzy models. Fuzzy Sets and Systems 142 (2004) 243-265
    • (2004) Fuzzy Sets and Systems , vol.142 , pp. 243-265
    • Chen, M.Y.1    Linkens, D.A.2
  • 8
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • Chen S., Cowan C.F.N., and Grant P.M. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Transactions on Neural Networks 2 (1991) 302-309
    • (1991) IEEE Transactions on Neural Networks , vol.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 9
    • 0030283350 scopus 로고    scopus 로고
    • Radial basis function based adaptive fuzzy systems and their applications to identification and prediction
    • Cho K.B., and Wang B.H. Radial basis function based adaptive fuzzy systems and their applications to identification and prediction. Fuzzy Sets and Systems 83 (1996) 325-339
    • (1996) Fuzzy Sets and Systems , vol.83 , pp. 325-339
    • Cho, K.B.1    Wang, B.H.2
  • 12
    • 0001234705 scopus 로고
    • Second order derivatives for network pruning: optimal brain surgeon
    • Morgan Kaufman, San Mateo, CA pp. 164-171
    • Hassibi B., and Stork D.G. Second order derivatives for network pruning: optimal brain surgeon. Advances in Neural Information Processing Systems (1993), Morgan Kaufman, San Mateo, CA pp. 164-171
    • (1993) Advances in Neural Information Processing Systems
    • Hassibi, B.1    Stork, D.G.2
  • 17
    • 0001553560 scopus 로고
    • A function estimation approach to sequential learning with neural networks
    • Kadirkamanathan V., and Niranjan M. A function estimation approach to sequential learning with neural networks. Neural Computation 5 (1993) 954-975
    • (1993) Neural Computation , vol.5 , pp. 954-975
    • Kadirkamanathan, V.1    Niranjan, M.2
  • 19
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction
    • Kasabov N.K., and Song Q. DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE Transactions on Fuzzy Systems 10 (2002) 144-154
    • (2002) IEEE Transactions on Fuzzy Systems , vol.10 , pp. 144-154
    • Kasabov, N.K.1    Song, Q.2
  • 21
    • 0025404409 scopus 로고
    • Fuzzy logic in control systems: fuzzy logic controller. Part I and II
    • Lee C.C. Fuzzy logic in control systems: fuzzy logic controller. Part I and II. IEEE Transactions on Systems, Man, and Cybernetics 20 (1990) 404-435
    • (1990) IEEE Transactions on Systems, Man, and Cybernetics , vol.20 , pp. 404-435
    • Lee, C.C.1
  • 22
    • 11244351634 scopus 로고    scopus 로고
    • An approach for on-line extraction of fuzzy rules using a self-organising fuzzy neural network
    • Leng G., McGinnity T.M., and Prasad G. An approach for on-line extraction of fuzzy rules using a self-organising fuzzy neural network. Fuzzy Sets and Systems 150 (2005) 211-243
    • (2005) Fuzzy Sets and Systems , vol.150 , pp. 211-243
    • Leng, G.1    McGinnity, T.M.2    Prasad, G.3
  • 23
    • 8444234276 scopus 로고    scopus 로고
    • An on-line algorithm for creating self-organizing fuzzy neural networks
    • Leng G., Prasad G., and McGinnity T.M. An on-line algorithm for creating self-organizing fuzzy neural networks. Neural Network 17 (2004) 1477-1493
    • (2004) Neural Network , vol.17 , pp. 1477-1493
    • Leng, G.1    Prasad, G.2    McGinnity, T.M.3
  • 24
    • 0031568361 scopus 로고    scopus 로고
    • A sequential learning scheme for function approximation using minimal radial basis function neural networks
    • Lu Y., Sundararajan N., and Saratchandran P. A sequential learning scheme for function approximation using minimal radial basis function neural networks. Neural Computation 9 (1997) 461-478
    • (1997) Neural Computation , vol.9 , pp. 461-478
    • Lu, Y.1    Sundararajan, N.2    Saratchandran, P.3
  • 26
    • 0034187785 scopus 로고    scopus 로고
    • Neuro-fuzzy rule generation: survey in soft computing framework
    • Mitra S., and Hayashi Y. Neuro-fuzzy rule generation: survey in soft computing framework. IEEE Transactions on Neural Networks 11 (2000) 748-768
    • (2000) IEEE Transactions on Neural Networks , vol.11 , pp. 748-768
    • Mitra, S.1    Hayashi, Y.2
  • 28
    • 0001623515 scopus 로고    scopus 로고
    • Neuro-fuzzy systems for function approximation
    • Nauck D., and Kruse R. Neuro-fuzzy systems for function approximation. Fuzzy Sets and Systems 101 (1999) 261-271
    • (1999) Fuzzy Sets and Systems , vol.101 , pp. 261-271
    • Nauck, D.1    Kruse, R.2
  • 30
    • 4344685199 scopus 로고    scopus 로고
    • Interpretability and learning in neuro-fuzzy systems
    • Paiva R.P., and Dourado A. Interpretability and learning in neuro-fuzzy systems. Fuzzy Sets and Systems 147 (2004) 17-38
    • (2004) Fuzzy Sets and Systems , vol.147 , pp. 17-38
    • Paiva, R.P.1    Dourado, A.2
  • 33
    • 45449126257 scopus 로고
    • Structure identification of fuzzy model
    • Sugeno M., and Kang G.T. Structure identification of fuzzy model. Fuzzy Sets and Systems 28 (1988) 15-33
    • (1988) Fuzzy Sets and Systems , vol.28 , pp. 15-33
    • Sugeno, M.1    Kang, G.T.2
  • 34
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Takagi T., and Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics 15 (1985) 116-132
    • (1985) IEEE Transactions on Systems, Man, and Cybernetics , vol.15 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 36
    • 0001371650 scopus 로고    scopus 로고
    • New similarity measures on fuzzy sets and on elements
    • Wang W.J. New similarity measures on fuzzy sets and on elements. Fuzzy Sets and Systems 85 (1997) 305-309
    • (1997) Fuzzy Sets and Systems , vol.85 , pp. 305-309
    • Wang, W.J.1
  • 37
    • 0035330624 scopus 로고    scopus 로고
    • A neural learning approach for adaptive image restoration using a fuzzy model-based network architecture
    • Wong H.S., and Guan L. A neural learning approach for adaptive image restoration using a fuzzy model-based network architecture. IEEE Transactions on Neural Networks 12 (2001) 516-531
    • (2001) IEEE Transactions on Neural Networks , vol.12 , pp. 516-531
    • Wong, H.S.1    Guan, L.2
  • 39
    • 0035415951 scopus 로고    scopus 로고
    • A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks
    • Wu S., Er M.J., and Gao Y. A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks. IEEE Transactions on Fuzzy Systems 9 (2001) 578-594
    • (2001) IEEE Transactions on Fuzzy Systems , vol.9 , pp. 578-594
    • Wu, S.1    Er, M.J.2    Gao, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.