메뉴 건너뛰기




Volumn 2, Issue 3, 2011, Pages 165-187

On-line elimination of local redundancies in evolving fuzzy systems

Author keywords

Complexity reduction; Evolving fuzzy systems; Fuzzy set merging; On line rule; Redundancy elimination; Similarity

Indexed keywords

COMPLEXITY REDUCTION; EVOLVING FUZZY SYSTEMS; ON-LINE RULE; REDUNDANCY ELIMINATION; SIMILARITY;

EID: 79961039032     PISSN: 18686478     EISSN: 18686486     Source Type: Journal    
DOI: 10.1007/s12530-011-9032-3     Document Type: Article
Times cited : (103)

References (54)
  • 1
    • 13144294059 scopus 로고    scopus 로고
    • Memory retention-the synaptic stability versus plasticity dilemma
    • Abraham W, Robins A (2005) Memory retention-the synaptic stability versus plasticity dilemma. Trends Neurosci 28(2): 73-78.
    • (2005) Trends Neurosci , vol.28 , Issue.2 , pp. 73-78
    • Abraham, W.1    Robins, A.2
  • 2
    • 84886838236 scopus 로고    scopus 로고
    • Evolving takagi-sugeno fuzzy systems from streaming data, eTS+
    • In: Angelov P, Filev D, Kasabov N (eds), Wiley, New York
    • Angelov P (2010) Evolving takagi-sugeno fuzzy systems from streaming data, eTS+. In: Angelov P, Filev D, Kasabov N (eds) Evolving intelligent systems: methodology and applications. Wiley, New York, pp 21-50.
    • (2010) Evolving intelligent systems: Methodology and applications , pp. 21-50
    • Angelov, P.1
  • 3
    • 23944495345 scopus 로고    scopus 로고
    • Simpl_eTS: A simplified method for learning evolving Takagi-Sugeno fuzzy models
    • Reno, Nevada, USA
    • Angelov P, Filev D (2005) Simpl_eTS: A simplified method for learning evolving Takagi-Sugeno fuzzy models. In: Proceedings of FUZZ-IEEE 2005. Reno, Nevada, USA, pp 1068-1073.
    • (2005) Proceedings of FUZZ-IEEE 2005 , pp. 1068-1073
    • Angelov, P.1    Filev, D.2
  • 4
    • 79951925823 scopus 로고    scopus 로고
    • Evolving inferential sensors in the chemical process industry
    • In: Angelov P, Filev D, Kasabov N (eds),Wiley, New York
    • Angelov P, Kordon A (2010) Evolving inferential sensors in the chemical process industry. In: Angelov P, Filev D, Kasabov N (eds) Evolving intelligent systems: methodology and applications. Wiley, New York, pp 313-336.
    • (2010) Evolving intelligent systems: Methodology and applications , pp. 313-336
    • Angelov, P.1    Kordon, A.2
  • 11
    • 0742320762 scopus 로고    scopus 로고
    • Rule-base self-generation and simplification for data-driven fuzzy models
    • Chen M, Linkens D (2004) Rule-base self-generation and simplification for data-driven fuzzy models. Fuzzy Sets Syst 142(2): 243-265.
    • (2004) Fuzzy Sets Syst , vol.142 , Issue.2 , pp. 243-265
    • Chen, M.1    Linkens, D.2
  • 12
    • 34447298360 scopus 로고    scopus 로고
    • Building an interpretable fuzzy rule base from data using orthogonal least squares-application to a depollution problem
    • Destercke S, Guillaume S, Charnomordic B (2007) Building an interpretable fuzzy rule base from data using orthogonal least squares-application to a depollution problem. Fuzzy Sets Syst 158(18): 2078-2094.
    • (2007) Fuzzy Sets Syst , vol.158 , Issue.18 , pp. 2078-2094
    • Destercke, S.1    Guillaume, S.2    Charnomordic, B.3
  • 14
    • 0034297775 scopus 로고    scopus 로고
    • Constructing fuzzy models with linguistic intergrity from numerical data-AFRELI algorithm
    • Espinosa J, Vandewalle J (2000) Constructing fuzzy models with linguistic intergrity from numerical data-AFRELI algorithm. IEEE Trans Fuzzy Syst 8(5): 591-600.
    • (2000) IEEE Trans Fuzzy Syst , vol.8 , Issue.5 , pp. 591-600
    • Espinosa, J.1    Vandewalle, J.2
  • 15
    • 33645381264 scopus 로고    scopus 로고
    • A comparison of variable selection methods with the main focus on orthogonalization
    • In: Lopéz-Díaz M, Gil M, Grzegorzewski P, Hryniewicz O, Lawry J (eds), Springer, Berlin
    • Groißböock W, Lughofer E, Klement E (2004) A comparison of variable selection methods with the main focus on orthogonalization. In: Lopéz-Díaz M, Gil M, Grzegorzewski P, Hryniewicz O, Lawry J (eds) Soft methodology and random information systems. Advances in soft computing. Springer, Berlin, pp 479-486.
    • (2004) Soft methodology and random information systems. Advances in soft computing , pp. 479-486
    • Groißböock, W.1    Lughofer, E.2    Klement, E.3
  • 17
    • 0027647031 scopus 로고
    • Switching regression models and fuzzy clustering
    • Hathaway R, Bezdek J (1993) Switching regression models and fuzzy clustering. IEEE Trans Fuzzy Syst 1(3): 195-204.
    • (1993) IEEE Trans Fuzzy Syst , vol.1 , Issue.3 , pp. 195-204
    • Hathaway, R.1    Bezdek, J.2
  • 20
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction
    • Kasabov NK, Song Q (2002) DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE Trans Fuzzy Syst 10(2): 144-154.
    • (2002) IEEE Trans Fuzzy Syst , vol.10 , Issue.2 , pp. 144-154
    • Kasabov, N.K.1    Song, Q.2
  • 23
    • 77950818116 scopus 로고    scopus 로고
    • UCB/EECS-2006-46, EECS Department, University of California, Berkeley
    • Kurzhanskiy AA, Varaiya P (2006) Ellipsoidal toolbox. Tech. rep. UCB/EECS-2006-46, EECS Department, University of California, Berkeley. http://code. google. com/p/ellipsoids.
    • (2006) Ellipsoidal toolbox. Tech. rep
    • Kurzhanskiy, A.A.1    Varaiya, P.2
  • 25
    • 34250746929 scopus 로고    scopus 로고
    • Process safety enhancements for data-driven evolving fuzzy models
    • Lake District, UK
    • Lughofer E (2006) Process safety enhancements for data-driven evolving fuzzy models. In: Proceedings of 2nd symposium on evolving fuzzy systems. Lake District, UK, pp 42-48.
    • (2006) Proceedings of 2nd symposium on evolving fuzzy systems , pp. 42-48
    • Lughofer, E.1
  • 26
    • 35448950018 scopus 로고    scopus 로고
    • Extensions of vector quantization for incremental clustering
    • Lughofer E (2008a) Extensions of vector quantization for incremental clustering. Pattern Recogn 41(3): 995-1011.
    • (2008) Pattern Recogn , vol.41 , Issue.3 , pp. 995-1011
    • Lughofer, E.1
  • 27
    • 55249122198 scopus 로고    scopus 로고
    • FLEXFIS: a robust incremental learning approach for evolving TS fuzzy models
    • Lughofer E (2008b) FLEXFIS: a robust incremental learning approach for evolving TS fuzzy models. IEEE Trans Fuzzy Syst 16(6): 1393-1410.
    • (2008) IEEE Trans Fuzzy Syst , vol.16 , Issue.6 , pp. 1393-1410
    • Lughofer, E.1
  • 28
    • 77950663376 scopus 로고    scopus 로고
    • Towards robust evolving fuzzy systems
    • In: Angelov P, Filev D, Kasabov N (eds), Wiley, New York
    • Lughofer E (2010) Towards robust evolving fuzzy systems. In: Angelov P, Filev D, Kasabov N (eds) Evolving intelligent systems: methodology and applications. Wiley, New York, pp 87-126.
    • (2010) Evolving intelligent systems: Methodology and applications , pp. 87-126
    • Lughofer, E.1
  • 30
    • 78751630981 scopus 로고    scopus 로고
    • Handling drifts and shifts in on-line data streams with evolving fuzzy systems
    • Lughofer E, Angelov P (2011) Handling drifts and shifts in on-line data streams with evolving fuzzy systems. Applied Soft Computing 11(2): 2057-2068.
    • (2011) Applied Soft Computing , vol.11 , Issue.2 , pp. 2057-2068
    • Lughofer, E.1    Angelov, P.2
  • 31
    • 84871941909 scopus 로고    scopus 로고
    • Improving the interpretability of data-driven evolving fuzzy systems
    • Barcelona, Spain
    • Lughofer E, Hüllermeier E, Klement E (2005) Improving the interpretability of data-driven evolving fuzzy systems. In: Proceedings of EUSFLAT 2005. Barcelona, Spain, pp 28-33.
    • (2005) Proceedings of EUSFLAT 2005 , pp. 28-33
    • Lughofer, E.1    Hüllermeier, E.2    Klement, E.3
  • 32
    • 84880496483 scopus 로고    scopus 로고
    • Data-driven design of takagi-sugeno fuzzy systems for predicting NOx emissions
    • In: Hüllermeier E, Kruse R, Hoffmann F (eds), IPMU 2010, part II (applications), CCIS, Springer, Dortmund
    • Lughofer E, Macian V, Guardiola C, Klement E (2010) Data-driven design of takagi-sugeno fuzzy systems for predicting NOx emissions. In: Hüllermeier E, Kruse R, Hoffmann F (eds) Proc. of the 13th international conference on information processing and management of uncertainty, IPMU 2010, part II (applications), CCIS, vol 81. Springer, Dortmund, pp 1-10.
    • (2010) Proc. of the 13th international conference on information processing and management of uncertainty , vol.81 , pp. 1-10
    • Lughofer, E.1    Macian, V.2    Guardiola, C.3    Klement, E.4
  • 33
    • 11244318202 scopus 로고    scopus 로고
    • Interpretability issues in data-based learning of fuzzy systems
    • Mikut R, Mäkel J, Gröll L (2005) Interpretability issues in data-based learning of fuzzy systems. Fuzzy Sets Syst 150(2): 179-197.
    • (2005) Fuzzy Sets Syst , vol.150 , Issue.2 , pp. 179-197
    • Mikut, R.1    Mäkel, J.2    Gröll, L.3
  • 34
    • 80053127660 scopus 로고    scopus 로고
    • A similarity measure for images and volumetric data based on Hermann Weyl's discrepancy
    • doi: 10. 1109/TPAMI. 2009. 50
    • Moser B A similarity measure for images and volumetric data based on Hermann Weyl's discrepancy. IEEE Trans Pattern Anal Mach Intell (2010). doi: 10. 1109/TPAMI. 2009. 50.
    • (2010) IEEE Trans Pattern Anal Mach Intell
    • Moser, B.1
  • 36
    • 0032713743 scopus 로고    scopus 로고
    • Semantic constraints for membership function optimization
    • Oliveira JVD (1999) Semantic constraints for membership function optimization. IEEE Trans Syst Man Cybern Part A Syst Hum 29(1): 128-138.
    • (1999) IEEE Trans Syst Man Cybern Part A Syst Hum , vol.29 , Issue.1 , pp. 128-138
    • Oliveira, J.V.D.1
  • 37
    • 26844499076 scopus 로고    scopus 로고
    • Incremental linear discriminant analysis for classification of data streams
    • Pang S, Ozawa S, Kasabov N (2005) Incremental linear discriminant analysis for classification of data streams. IEEE Trans Syst Man Cybern Part B Cybern 35(5): 905-914.
    • (2005) IEEE Trans Syst Man Cybern Part B Cybern , vol.35 , Issue.5 , pp. 905-914
    • Pang, S.1    Ozawa, S.2    Kasabov, N.3
  • 38
    • 0034301495 scopus 로고    scopus 로고
    • Recursive PCA for adaptive process monitoring
    • Qin S, Li W, Yue H (2000) Recursive PCA for adaptive process monitoring. J Process Control 10: 471-486.
    • (2000) J Process Control , vol.10 , pp. 471-486
    • Qin, S.1    Li, W.2    Yue, H.3
  • 41
    • 33645070541 scopus 로고    scopus 로고
    • Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction
    • Rong HJ, Sundararajan N, Huang GB, Saratchandran P (2006) Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction. Fuzzy Sets Syst 157(9): 1260-1275.
    • (2006) Fuzzy Sets Syst , vol.157 , Issue.9 , pp. 1260-1275
    • Rong, H.J.1    Sundararajan, N.2    Huang, G.B.3    Saratchandran, P.4
  • 42
    • 79955737401 scopus 로고    scopus 로고
    • Extended sequential adaptive fuzzy inference system for classification problems
    • (in press). doi: 10. 1007/s12530-010-9023-9
    • Rong HJ, Sundararajan N, Huang GB, Zhao GS (2011) Extended sequential adaptive fuzzy inference system for classification problems. Evol Syst (in press). doi: 10. 1007/s12530-010-9023-9.
    • (2011) Evol Syst
    • Rong, H.J.1    Sundararajan, N.2    Huang, G.B.3    Zhao, G.S.4
  • 44
    • 34250751201 scopus 로고    scopus 로고
    • Simplification and reduction of fuzzy rules
    • In: Casillas J, Cordón O, Herrera F, Magdalena L (eds), Springer, Berlin
    • Setnes M (2003) Simplification and reduction of fuzzy rules. In: Casillas J, Cordón O, Herrera F, Magdalena L (eds) Interpretability issues in fuzzy modeling. Studies in fuzziness and soft computing, vol 128. Springer, Berlin, pp 278-302.
    • (2003) Interpretability issues in fuzzy modeling. Studies in fuzziness and soft computing , vol.128 , pp. 278-302
    • Setnes, M.1
  • 46
    • 0000161220 scopus 로고    scopus 로고
    • Complexity reduction in fuzzy modeling
    • Setnes M, Babuska R, Verbruggen H (1998b) Complexity reduction in fuzzy modeling. Math Comput Simul 46(5-6): 509-518.
    • (1998) Math Comput Simul , vol.46 , Issue.5-6 , pp. 509-518
    • Setnes, M.1    Babuska, R.2    Verbruggen, H.3
  • 47
    • 84870832263 scopus 로고    scopus 로고
    • Evolving fuzzy pattern trees for binary classification on data streams
    • (in press)
    • Shaker A, Senge R, Hüllermeier E (2011) Evolving fuzzy pattern trees for binary classification on data streams. Inf Sci (in press).
    • (2011) Inf Sci
    • Shaker, A.1    Senge, R.2    Hüllermeier, E.3
  • 48
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone M (1974) Cross-validatory choice and assessment of statistical predictions. J R Stat Soc 36: 111-147.
    • (1974) J R Stat Soc , vol.36 , pp. 111-147
    • Stone, M.1
  • 49
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 15(1): 116-132.
    • (1985) IEEE Trans Syst Man Cybern , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 50
    • 0026994365 scopus 로고
    • Fuzzy systems are universal approximators
    • San Diego, CA
    • Wang L (1992) Fuzzy systems are universal approximators. In: Proceedings of the 1st IEEE conf. fuzzy systems. San Diego, CA, pp 1163-1169.
    • (1992) Proceedings of the 1st IEEE conf. fuzzy systems , pp. 1163-1169
    • Wang, L.1
  • 51
    • 0026928374 scopus 로고
    • Fuzzy basis functions, universal approximation and orthogonal least-squares learning
    • Wang L, Mendel J (1992) Fuzzy basis functions, universal approximation and orthogonal least-squares learning. IEEE Trans Neural Netw 3(5): 807-814.
    • (1992) IEEE Trans Neural Netw , vol.3 , Issue.5 , pp. 807-814
    • Wang, L.1    Mendel, J.2
  • 52
    • 0025491490 scopus 로고
    • A model of participatory learning
    • Yager RR (1990) A model of participatory learning. IEEE Trans Syst Man Cybern 20: 1229-1234.
    • (1990) IEEE Trans Syst Man Cybern , vol.20 , pp. 1229-1234
    • Yager, R.R.1
  • 53
    • 0032205732 scopus 로고    scopus 로고
    • Improving the interpretability of TSK fuzzy models by combining global learning and local learning
    • Yen J, Wang L, Gillespie C (1998) Improving the interpretability of TSK fuzzy models by combining global learning and local learning. IEEE Trans Fuzzy Syst 6(4): 530-537.
    • (1998) IEEE Trans Fuzzy Syst , vol.6 , Issue.4 , pp. 530-537
    • Yen, J.1    Wang, L.2    Gillespie, C.3
  • 54
    • 52949088628 scopus 로고    scopus 로고
    • Low-level interpretability and high-level interpretability: a unified view of data-driven interpretable fuzzy systems modelling
    • Zhou S, Gan J (2008) Low-level interpretability and high-level interpretability: a unified view of data-driven interpretable fuzzy systems modelling. Fuzzy Seta Syst 159(23): 3091-3131.
    • (2008) Fuzzy Seta Syst , vol.159 , Issue.23 , pp. 3091-3131
    • Zhou, S.1    Gan, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.