메뉴 건너뛰기




Volumn 110, Issue , 2013, Pages 18-28

Data driven modeling based on dynamic parsimonious fuzzy neural network

Author keywords

Dynamic parsimonious fuzzy neural network (DPFNN); Radial basis function (RBF); Rule growing; Rule pruning; Self organizing map (SOM)

Indexed keywords

COMPUTATIONAL BURDEN; ELLIPSOIDAL BASIS FUNCTIONS; LEAST SQUARES METHODS; NONSTATIONARY PROCESS; RADIAL BASIS FUNCTION(RBF); RULE PRUNING; SELF-ORGANIZING MAP (SOM); STATE-OF-THE-ART APPROACH;

EID: 84876111017     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.11.013     Document Type: Article
Times cited : (71)

References (68)
  • 1
    • 0026928374 scopus 로고
    • Fuzzy basis functions, universal approximation, and orthogonal least-squares learning
    • Wang L.X., Mendel J.M. Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Trans. Neural Networks 1992, 3:807-814.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 807-814
    • Wang, L.X.1    Mendel, J.M.2
  • 2
    • 0001071040 scopus 로고
    • A resource allocating network for function interpolation
    • Platt J. A resource allocating network for function interpolation. Neural Comput. 1991, 3:213-225.
    • (1991) Neural Comput. , vol.3 , pp. 213-225
    • Platt, J.1
  • 3
    • 0035666428 scopus 로고    scopus 로고
    • Improved RAN sequential prediction using orthogonal techniques
    • Salmerón M., Ortega J., Puntonet C.G., Prieto A. Improved RAN sequential prediction using orthogonal techniques. Neurocomputing 2001, 41:153-172.
    • (2001) Neurocomputing , vol.41 , pp. 153-172
    • Salmerón, M.1    Ortega, J.2    Puntonet, C.G.3    Prieto, A.4
  • 4
    • 0032022388 scopus 로고    scopus 로고
    • Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm
    • Yingwei L., Sundararajan N., Saratchandran P. Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm. IEEE Trans. Neural Networks 1998, 9:308-318.
    • (1998) IEEE Trans. Neural Networks , vol.9 , pp. 308-318
    • Yingwei, L.1    Sundararajan, N.2    Saratchandran, P.3
  • 5
    • 0031272102 scopus 로고    scopus 로고
    • Self evolving neural network for rule base data processing
    • Saman H.K. Self evolving neural network for rule base data processing. IEEE Trans. Signal Process. 1997, 45:2766-2773.
    • (1997) IEEE Trans. Signal Process. , vol.45 , pp. 2766-2773
    • Saman, H.K.1
  • 7
    • 13844256702 scopus 로고    scopus 로고
    • A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation
    • Huang G.-B., Saratchandran P., Sundararajan N. A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation. IEEE Trans. Neural Networks 2005, 16:57-67.
    • (2005) IEEE Trans. Neural Networks , vol.16 , pp. 57-67
    • Huang, G.-B.1    Saratchandran, P.2    Sundararajan, N.3
  • 8
    • 0028534525 scopus 로고
    • Soft computing and fuzzy logic
    • Zadeh L.A. Soft computing and fuzzy logic. IEEE Softw. 1994, 11:48-56.
    • (1994) IEEE Softw. , vol.11 , pp. 48-56
    • Zadeh, L.A.1
  • 10
    • 0033692531 scopus 로고    scopus 로고
    • Dynamic fuzzy neural networks-a novel approach to function approximation
    • Wu S., Er M.J. Dynamic fuzzy neural networks-a novel approach to function approximation. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2000, 30:358-364.
    • (2000) IEEE Trans. Syst. Man Cybern. Part B Cybern. , vol.30 , pp. 358-364
    • Wu, S.1    Er, M.J.2
  • 11
    • 0037117202 scopus 로고    scopus 로고
    • Learning algorithm for parsimonious fuzzy neural network
    • Er M.J., Fast S. Learning algorithm for parsimonious fuzzy neural network. Fuzzy Sets Syst. 2002, 126:337-351.
    • (2002) Fuzzy Sets Syst. , vol.126 , pp. 337-351
    • Er, M.J.1    Fast, S.2
  • 12
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function network
    • Chen S., Cowan C.F.N., Grant P.M. Orthogonal least squares learning algorithm for radial basis function network. IEEE Trans. Neural Networks 1991, 2:302-309.
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 13
    • 0035415951 scopus 로고    scopus 로고
    • A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks
    • Wu S.-Q., Er M.J., Gao Y. A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks. IEEE Trans. Fuzzy Syst. 2001, 9:578-594.
    • (2001) IEEE Trans. Fuzzy Syst. , vol.9 , pp. 578-594
    • Wu, S.-Q.1    Er, M.J.2    Gao, Y.3
  • 14
    • 11244305511 scopus 로고    scopus 로고
    • NARMAX time series model prediction: feedforward and recurrent fuzzy neural network approaches
    • Gao Y., Er M.J. NARMAX time series model prediction: feedforward and recurrent fuzzy neural network approaches. Fuzzy Sets Syst. 2005, 150:331-350.
    • (2005) Fuzzy Sets Syst. , vol.150 , pp. 331-350
    • Gao, Y.1    Er, M.J.2
  • 15
    • 0031999146 scopus 로고    scopus 로고
    • An on-line self-constructing neural fuzzy inference network and its applications
    • Juang C.F., Lin C.T. An on-line self-constructing neural fuzzy inference network and its applications. IEEE Trans. Fuzzy Syst. 1998, 6:12-32.
    • (1998) IEEE Trans. Fuzzy Syst. , vol.6 , pp. 12-32
    • Juang, C.F.1    Lin, C.T.2
  • 16
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: dynamic evolving neural-fuzzy inference system and its application for time series prediction
    • Kasabov N., Song Q. DENFIS: dynamic evolving neural-fuzzy inference system and its application for time series prediction. IEEE Trans. Fuzzy Syst. 2002, 10:144-154.
    • (2002) IEEE Trans. Fuzzy Syst. , vol.10 , pp. 144-154
    • Kasabov, N.1    Song, Q.2
  • 17
    • 11244351634 scopus 로고    scopus 로고
    • An approach for on-line extraction of fuzzy rules using a self-organising fuzzy neural network
    • Leng G., McGinnity T.M., Prasad G. An approach for on-line extraction of fuzzy rules using a self-organising fuzzy neural network. Fuzzy Sets Syst. 2005, 150:211-243.
    • (2005) Fuzzy Sets Syst. , vol.150 , pp. 211-243
    • Leng, G.1    McGinnity, T.M.2    Prasad, G.3
  • 18
    • 8444234276 scopus 로고    scopus 로고
    • An on-line algorithm for creating self-organizing fuzzy neural networks
    • Leng G., Prasad G., McGinnity T.M. An on-line algorithm for creating self-organizing fuzzy neural networks. Neural Networks 2004, 170:1477-1493.
    • (2004) Neural Networks , vol.170 , pp. 1477-1493
    • Leng, G.1    Prasad, G.2    McGinnity, T.M.3
  • 19
    • 33947282595 scopus 로고    scopus 로고
    • Design for self organizing fuzzy neural network based on genetic algorithm
    • Leng G., McGinnity T.M., Prasad G. Design for self organizing fuzzy neural network based on genetic algorithm. IEEE Trans. Fuzzy Syst. 2006, 14:755-766.
    • (2006) IEEE Trans. Fuzzy Syst. , vol.14 , pp. 755-766
    • Leng, G.1    McGinnity, T.M.2    Prasad, G.3
  • 20
    • 69249220427 scopus 로고    scopus 로고
    • Accurate self organizing scheme for parsimonious fuzzy neural network
    • Wang N., Er M.J., Fast M.X. Accurate self organizing scheme for parsimonious fuzzy neural network. Neurocomputing 2009, 72:3818-3829.
    • (2009) Neurocomputing , vol.72 , pp. 3818-3829
    • Wang, N.1    Er, M.J.2    Fast, M.X.3
  • 21
    • 33645070541 scopus 로고    scopus 로고
    • Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and time series prediction
    • Rong H.J., Sundararajan N., Huang G.B., Saratchandran P. Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and time series prediction. Fuzzy Sets Syst. 2006, 157:1260-1275.
    • (2006) Fuzzy Sets Syst. , vol.157 , pp. 1260-1275
    • Rong, H.J.1    Sundararajan, N.2    Huang, G.B.3    Saratchandran, P.4
  • 22
    • 34248142288 scopus 로고    scopus 로고
    • A novel approach for generation of fuzzy neural networks
    • Zhou.Y., Er M.J. A novel approach for generation of fuzzy neural networks. Int. J. Fuzzy Syst. 2007, 7:8-13.
    • (2007) Int. J. Fuzzy Syst. , vol.7 , pp. 8-13
    • Zhou, Y.1    Er, M.J.2
  • 23
    • 56949090674 scopus 로고    scopus 로고
    • Automatic generation of fuzzy inference systems via unsupervised learning
    • Er M.J., Zhou Y. Automatic generation of fuzzy inference systems via unsupervised learning. Neural Networks 2008, 21:1556-1566.
    • (2008) Neural Networks , vol.21 , pp. 1556-1566
    • Er, M.J.1    Zhou, Y.2
  • 25
    • 0026994365 scopus 로고
    • Fuzzy systems are universal approximators
    • in: Proc. International Conference on Fuzzy Systems
    • L. Wang, Fuzzy systems are universal approximators, in: Proc. International Conference on Fuzzy Systems, (1992), pp. 1163-1169.
    • (1992) , pp. 1163-1169
    • Wang, L.1
  • 26
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • Kohonen T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 1982, 43(1982):59-69.
    • (1982) Biol. Cybern. , vol.43 , Issue.1982 , pp. 59-69
    • Kohonen, T.1
  • 27
    • 21444447796 scopus 로고    scopus 로고
    • Adaptive noise cancellation using enhanced dynamic fuzzy neural networks
    • Er M.J., et al. Adaptive noise cancellation using enhanced dynamic fuzzy neural networks. IEEE Trans. Fuzzy Syst. 2005, 13:331-342.
    • (2005) IEEE Trans. Fuzzy Syst. , vol.13 , pp. 331-342
    • Er, M.J.1
  • 28
    • 73949115619 scopus 로고    scopus 로고
    • EFSM-A novel online neural-fuzzy semantic memory model
    • Tung W.L., Quek C. eFSM-A novel online neural-fuzzy semantic memory model. IEEE Trans. Neural Networks 2010, 21:136-157.
    • (2010) IEEE Trans. Neural Networks , vol.21 , pp. 136-157
    • Tung, W.L.1    Quek, C.2
  • 29
    • 84876106414 scopus 로고    scopus 로고
    • Tool wear estimation using SVM in ball nose end milling
    • IEEE Annual Conference of The Prognostic and Health Society
    • S. Huang, X. Li, O.P. Gan, Tool wear estimation using SVM in ball nose end milling, IEEE Annual Conference of The Prognostic and Health Society, 2010.
    • (2010)
    • Huang, S.1    Li, X.2    Gan, O.P.3
  • 30
    • 45449126257 scopus 로고
    • Structure identification of fuzzy model
    • Sugeno M., Kang G.T. Structure identification of fuzzy model. Fuzzy Sets Syst. 1988, 28:15-33.
    • (1988) Fuzzy Sets Syst. , vol.28 , pp. 15-33
    • Sugeno, M.1    Kang, G.T.2
  • 31
    • 0035131889 scopus 로고    scopus 로고
    • A pruning method for the recursive least squared algorithm
    • Leung C.S., Wong K.W., Sum P.F., Chan L.W. A pruning method for the recursive least squared algorithm. Neural Networks 2001, 14:147-174.
    • (2001) Neural Networks , vol.14 , pp. 147-174
    • Leung, C.S.1    Wong, K.W.2    Sum, P.F.3    Chan, L.W.4
  • 32
    • 70449517374 scopus 로고    scopus 로고
    • Intelligent diagnosis and prognosis of tool wear using dominant feature identification
    • Zhou J.H., Pang C.K., Lewis F.L., Zhong Z.W. Intelligent diagnosis and prognosis of tool wear using dominant feature identification. IEEE Trans. Ind. Inf. 2009, 5:454-464.
    • (2009) IEEE Trans. Ind. Inf. , vol.5 , pp. 454-464
    • Zhou, J.H.1    Pang, C.K.2    Lewis, F.L.3    Zhong, Z.W.4
  • 33
    • 26844518850 scopus 로고    scopus 로고
    • State-of-the-art methods and results in tool condition monitoring: a review
    • Rehorn A.G., Jiang J., Orban P.E. State-of-the-art methods and results in tool condition monitoring: a review. Int. J. Adv. Manuf. Technol. 2005, 26:693-710.
    • (2005) Int. J. Adv. Manuf. Technol. , vol.26 , pp. 693-710
    • Rehorn, A.G.1    Jiang, J.2    Orban, P.E.3
  • 34
    • 0025404409 scopus 로고
    • Fuzzy logic in control systems: fuzzy logic controller
    • Lee C.C. Fuzzy logic in control systems: fuzzy logic controller. IEEE Trans. Syst. Man Cybern. Part B Cybern. 1990, 20:404-436.
    • (1990) IEEE Trans. Syst. Man Cybern. Part B Cybern. , vol.20 , pp. 404-436
    • Lee, C.C.1
  • 35
    • 0017714604 scopus 로고
    • Oscillation and chaos in physiological control systems
    • Mackey M.C., Glass L. Oscillation and chaos in physiological control systems. Science 1977, 197:287-289.
    • (1977) Science , vol.197 , pp. 287-289
    • Mackey, M.C.1    Glass, L.2
  • 36
    • 0742272554 scopus 로고    scopus 로고
    • An approach to online identification of Takagi-Sugeno fuzzy models
    • Angelov P., Filev D. An approach to online identification of Takagi-Sugeno fuzzy models. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2004, 34:484-498.
    • (2004) IEEE Trans. Syst. Man Cybern. Part B Cybern. , vol.34 , pp. 484-498
    • Angelov, P.1    Filev, D.2
  • 37
    • 23944495345 scopus 로고    scopus 로고
    • Simpl_eTS: A simplified method for learning evolving Takagi-Sugeno fuzzy models, in: IEEE International Conference on Fuzzy Systems (FUZZ)
    • P. Angelov, D. Filev, Simpl_eTS: A simplified method for learning evolving Takagi-Sugeno fuzzy models, in: IEEE International Conference on Fuzzy Systems (FUZZ), 2005, pp. 1068-1073.
    • (2005) , pp. 1068-1073
    • Angelov, P.1    Filev, D.2
  • 38
    • 55249122198 scopus 로고    scopus 로고
    • FLEXFIS: a robust incremental learning approach for evolving Takagi-Sugeno fuzzy models
    • Lughofer E. FLEXFIS: a robust incremental learning approach for evolving Takagi-Sugeno fuzzy models,. IEEE Trans. Fuzzy Syst. 2008, 16:1393-1410.
    • (2008) IEEE Trans. Fuzzy Syst. , vol.16 , pp. 1393-1410
    • Lughofer, E.1
  • 39
    • 77958042224 scopus 로고    scopus 로고
    • An online self organizing scheme for parsimonious and accurate fuzzy neural networks
    • Ning W., Er M.J., Xian-Yao M., Li X. An online self organizing scheme for parsimonious and accurate fuzzy neural networks. Int. J. Neural Syst. 2010, 10:389-403.
    • (2010) Int. J. Neural Syst. , vol.10 , pp. 389-403
    • Ning, W.1    Er, M.J.2    Xian-Yao, M.3    Li, X.4
  • 40
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone M. Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. 1974, 36:111-147.
    • (1974) J. R. Stat. Soc. , vol.36 , pp. 111-147
    • Stone, M.1
  • 41
    • 0042166469 scopus 로고    scopus 로고
    • Evolving rule-based models: a tool for design flexible adaptive systems
    • in: The Series Studies in Fuzziness and Soft Computing. Heidelberg Germany: Springer, Physics-Verlag
    • P. Angelov, Evolving rule-based models: a tool for design flexible adaptive systems, in: The Series Studies in Fuzziness and Soft Computing. Heidelberg Germany: Springer, Physics-Verlag, 2002, vol. 92.
    • (2002) , vol.92
    • Angelov, P.1
  • 42
    • 0027266182 scopus 로고
    • Functional equivalence between radial basis function networks and fuzzy inference systems
    • Jang J.S.R., Sun C.T. Functional equivalence between radial basis function networks and fuzzy inference systems. IEEE Trans. Neural Networks 1993, 4:156-159.
    • (1993) IEEE Trans. Neural Networks , vol.4 , pp. 156-159
    • Jang, J.S.R.1    Sun, C.T.2
  • 43
    • 0021455631 scopus 로고
    • An identification algorithm in fuzzy relational system
    • Pedrycs W. An identification algorithm in fuzzy relational system. Fuzzy Sets Syst. 1984, 13:153-167.
    • (1984) Fuzzy Sets Syst. , vol.13 , pp. 153-167
    • Pedrycs, W.1
  • 44
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its application to modeling and control
    • Takagi T., Sugeno M. Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Syst. Man Cybern. Part B Cybern. 1985, 15:116-132.
    • (1985) IEEE Trans. Syst. Man Cybern. Part B Cybern. , vol.15 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 45
    • 0036802284 scopus 로고    scopus 로고
    • Identification of evolving fuzzy rule based models
    • Angelov P., Buswell R. Identification of evolving fuzzy rule based models. IEEE Trans. Fuzzy Syst. 2002, 16:667-676.
    • (2002) IEEE Trans. Fuzzy Syst. , vol.16 , pp. 667-676
    • Angelov, P.1    Buswell, R.2
  • 46
    • 77958062360 scopus 로고    scopus 로고
    • Fuzzy regression modeling for tool performance prediction and degradation detection
    • Li X., Er M.J., Lim B.S., Zhou J.H., Gan O.P., Rutkowski L. Fuzzy regression modeling for tool performance prediction and degradation detection. Int. J. Neural Syst. 2010, 20:405-419.
    • (2010) Int. J. Neural Syst. , vol.20 , pp. 405-419
    • Li, X.1    Er, M.J.2    Lim, B.S.3    Zhou, J.H.4    Gan, O.P.5    Rutkowski, L.6
  • 48
    • 43949138258 scopus 로고    scopus 로고
    • Using fuzzy cognitive maps to identify multiple causes in troubleshooting systems
    • Perusich K. Using fuzzy cognitive maps to identify multiple causes in troubleshooting systems. Integr. Comput. Aided Eng. 2008, 15:197-206.
    • (2008) Integr. Comput. Aided Eng. , vol.15 , pp. 197-206
    • Perusich, K.1
  • 50
    • 67650076208 scopus 로고    scopus 로고
    • Effect of different tool edge conditions on wear detection by vibration spectrum analysis in turning operation
    • Haddadi E., Shabghard M.R., Ettefagh M.M. Effect of different tool edge conditions on wear detection by vibration spectrum analysis in turning operation. J. Appl. Sci. 2008, 8:3879-3886.
    • (2008) J. Appl. Sci. , vol.8 , pp. 3879-3886
    • Haddadi, E.1    Shabghard, M.R.2    Ettefagh, M.M.3
  • 51
    • 0003215241 scopus 로고    scopus 로고
    • Tool wear monitoring in reconfigurable machining systems through wavelet analysis
    • Wang L., Mehrabi M.G., Jr E.K. Tool wear monitoring in reconfigurable machining systems through wavelet analysis. Trans. NAMRI 2001, 3:399-406.
    • (2001) Trans. NAMRI , vol.3 , pp. 399-406
    • Wang, L.1    Mehrabi, M.G.2    Jr, E.K.3
  • 53
    • 0004128728 scopus 로고    scopus 로고
    • Kluwer Academic Publishers, Dordrecht Norwell New York London
    • Klement E.P., Mesiar R., Pap E. Triangular Norms 2000, Kluwer Academic Publishers, Dordrecht Norwell New York London.
    • (2000) Triangular Norms
    • Klement, E.P.1    Mesiar, R.2    Pap, E.3
  • 55
    • 0032597787 scopus 로고    scopus 로고
    • Fuzzy function approximators with ellipsoidal regions
    • Abe S. Fuzzy function approximators with ellipsoidal regions. IEEE Trans. Syst. Man Cybern. Part B Cybern. 1999, 29:654-661.
    • (1999) IEEE Trans. Syst. Man Cybern. Part B Cybern. , vol.29 , pp. 654-661
    • Abe, S.1
  • 56
    • 79551619179 scopus 로고    scopus 로고
    • Multivariable Gaussian evolving fuzzy modeling system
    • Lemos A., Caminhas W., Gomide F. Multivariable Gaussian evolving fuzzy modeling system. IEEE Trans. Fuzzy Syst. 2011, 19:91-104.
    • (2011) IEEE Trans. Fuzzy Syst. , vol.19 , pp. 91-104
    • Lemos, A.1    Caminhas, W.2    Gomide, F.3
  • 57
    • 0035131889 scopus 로고    scopus 로고
    • A pruning method for the recursive least squared algorithm
    • Leung C.S., Wong K.W., Sum P.F., Chan L.W A pruning method for the recursive least squared algorithm. Neural Networks 2001, 14:147-174.
    • (2001) Neural Networks , vol.14 , pp. 147-174
    • Leung, C.S.1    Wong, K.W.2    Sum, P.F.3    Chan, L.W.4
  • 58
    • 72649095852 scopus 로고    scopus 로고
    • SOFMLS: online self-organizing fuzzy modified least squares network
    • Rubio J.D.J. SOFMLS: online self-organizing fuzzy modified least squares network. IEEE Trans. Fuzzy Syst. 2009, 17:1296-1309.
    • (2009) IEEE Trans. Fuzzy Syst. , vol.17 , pp. 1296-1309
    • Rubio, J.D.J.1
  • 60
    • 0036791593 scopus 로고    scopus 로고
    • Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models
    • Abonyi J., Babuska R., Szeifert F. Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models. IEEE Trans. Fuzzy Syst. 2002, 33:612-621.
    • (2002) IEEE Trans. Fuzzy Syst. , vol.33 , pp. 612-621
    • Abonyi, J.1    Babuska, R.2    Szeifert, F.3
  • 61
    • 35448950018 scopus 로고    scopus 로고
    • Extension of vector quantization for incremental clustering
    • Lughofer E. Extension of vector quantization for incremental clustering. Pattern Recognit. 2008, 41:995-1011.
    • (2008) Pattern Recognit. , vol.41 , pp. 995-1011
    • Lughofer, E.1
  • 62
    • 67149088596 scopus 로고    scopus 로고
    • Improving generalization of fuzzy if-then rules by maximizing fuzzy entropy
    • Chun-Ru Dong Xi-Zhao Wang, Improving generalization of fuzzy if-then rules by maximizing fuzzy entropy. IEEE Trans. Fuzzy Syst. 2009, 17:556-567.
    • (2009) IEEE Trans. Fuzzy Syst. , vol.17 , pp. 556-567
    • Chun-Ru Dong, X.Z.W.1
  • 63
    • 45649085354 scopus 로고    scopus 로고
    • Induction of multiple fuzzy decision trees based on rough set technique
    • Wang Xi-Zhao, Zhai Jun-Hai, Lu Shu-Xia Induction of multiple fuzzy decision trees based on rough set technique. Inf. Sci. 2008, 178:3188-3202.
    • (2008) Inf. Sci. , vol.178 , pp. 3188-3202
    • Wang, X.-Z.1    Zhai, J.-H.2    Lu, S.-X.3
  • 64
    • 34249696113 scopus 로고    scopus 로고
    • Tie-Gang fan training T-S norm neural networks to refine weights for fuzzy if-then rules
    • Wang Xi-Zhao, Dong Chun-Ru Tie-Gang fan training T-S norm neural networks to refine weights for fuzzy if-then rules. Neurocomputing 2007, 70:2581-2587.
    • (2007) Neurocomputing , vol.70 , pp. 2581-2587
    • Wang, X.-Z.1    Dong, C.-R.2
  • 65
    • 79551619179 scopus 로고    scopus 로고
    • Multivariable Gaussian evolving fuzzy modelling system
    • Lemos A., Caminhas W., Gomide F. Multivariable Gaussian evolving fuzzy modelling system. IEEE Trans. Fuzzy Syst. 2011, 19:91-104.
    • (2011) IEEE Trans. Fuzzy Syst. , vol.19 , pp. 91-104
    • Lemos, A.1    Caminhas, W.2    Gomide, F.3
  • 66
    • 80053645014 scopus 로고    scopus 로고
    • Bayesian ART-based fuzzy inference system: a new approach to prognosis of machining process
    • in: IEEE Annual Conference of The Prognostic and Health Society
    • R.J. Oentaryo, M.J. Er, L. San, L.-Y. Zhai, X. Li, Bayesian ART-based fuzzy inference system: a new approach to prognosis of machining process, in: IEEE Annual Conference of The Prognostic and Health Society, 2011.
    • (2011)
    • Oentaryo, R.J.1    Er, M.J.2    San, L.3    Zhai, L.-Y.4    Li, X.5
  • 67
    • 84876116243 scopus 로고    scopus 로고
    • Flexible evolving fuzzy inference systems from data streams (FLEXFIS++)
    • Springer, New York, M. Sayed-Mouchaweh, E. Lughofer (Eds.)
    • Lughofer E. Flexible evolving fuzzy inference systems from data streams (FLEXFIS++). Learning in Non-Stationary Environments: Methods and Applications 2012, 205-246. Springer, New York. M. Sayed-Mouchaweh, E. Lughofer (Eds.).
    • (2012) Learning in Non-Stationary Environments: Methods and Applications , pp. 205-246
    • Lughofer, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.