메뉴 건너뛰기




Volumn , Issue , 2009, Pages 32-39

Incremental induction of fuzzy classification rules

Author keywords

[No Author keywords available]

Indexed keywords

FUZZY CLASSIFICATION RULE; FUZZY MIN-MAX NEURAL NETWORKS; FUZZY RULE BASED SYSTEMS; INCREMENTAL INDUCTION; NON-STATIONARY DYNAMICS; SIMULATION RESULT;

EID: 67650480792     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ESDIS.2009.4938996     Document Type: Conference Paper
Times cited : (22)

References (29)
  • 1
    • 1142279663 scopus 로고    scopus 로고
    • An approach for fuzzy rule-base adaptation using online clustering
    • P. Angelov. An approach for fuzzy rule-base adaptation using online clustering. International Journal of Approximate Reasoning, 35(3):275-289, 2004.
    • (2004) International Journal of Approximate Reasoning , vol.35 , Issue.3 , pp. 275-289
    • Angelov, P.1
  • 2
    • 53149134642 scopus 로고    scopus 로고
    • Evolving fuzzy classifiers using different model architectures
    • P. Angelov, E. Lughoferb, and X. Zhou. Evolving fuzzy classifiers using different model architectures. Fuzzy Sets and Systems, 159:3160-3182, 2008.
    • (2008) Fuzzy Sets and Systems , vol.159 , pp. 3160-3182
    • Angelov, P.1    Lughoferb, E.2    Zhou, X.3
  • 8
    • 33748339019 scopus 로고    scopus 로고
    • Towards fuzzy incremental classifiers
    • A. Bouchachia and R. Mittermeir. Towards fuzzy incremental classifiers. Soft Computing, 11(2):193-207, 2006.
    • (2006) Soft Computing , vol.11 , Issue.2 , pp. 193-207
    • Bouchachia, A.1    Mittermeir, R.2
  • 9
    • 34447274800 scopus 로고    scopus 로고
    • On-line identification of computationally undemanding evolving fuzzy models
    • J. de Barros and L. Dexter. On-line identification of computationally undemanding evolving fuzzy models. Fuzzy Sets and Systems, 158(16):1997-2012, 2007.
    • (2007) Fuzzy Sets and Systems , vol.158 , Issue.16 , pp. 1997-2012
    • Barros, J.D.1    Dexter, L.2
  • 10
    • 0032923221 scopus 로고    scopus 로고
    • Catastrophic forgetting in connectionist networks: Causes, consequences and solutions
    • R. French. Catastrophic forgetting in connectionist networks: Causes, consequences and solutions. Trends in Cognitive Sciences, Trends in Cognitive Sciences, 3(4):128-135, 1999.
    • (1999) Trends in Cognitive Sciences, Trends in Cognitive Sciences , vol.3 , Issue.4 , pp. 128-135
    • French, R.1
  • 13
    • 0034187078 scopus 로고    scopus 로고
    • General fuzzy min-max neural network for clustering and classification
    • DOI 10.1109/72.846747
    • B. Gabrys and A. Bargiela. General fuzzy min-max neural network for clustering and classification. IEEE Trans. on Neural Networks, 11(3):769-783, 2000. (Pubitemid 30910799)
    • (2000) IEEE Transactions on Neural Networks , vol.11 , Issue.3 , pp. 769-783
    • Gabrys, B.1    Bargiela, A.2
  • 14
    • 40649128119 scopus 로고
    • Nonlinear neural networks: Principles, mechanism, and architectures
    • S. Grossberg. Nonlinear neural networks: principles, mechanism, and architectures. Neural Networks, 1:17-61, 1988.
    • (1988) Neural Networks , vol.1 , pp. 17-61
    • Grossberg, S.1
  • 15
    • 33947390916 scopus 로고    scopus 로고
    • An incremental adaptive life long learning approach for type-2 fuzzy embedded agents in ambient intelligent environments
    • DOI 10.1109/TFUZZ.2006.889758, Extensions of Type-1 Fuzzy Sets
    • H. Hagras, F. Doctor, A. Lopez, and V. Callaghan. An incremental adaptive life long learning approach for type-2 fuzzy embedded agents in ambient intelligent environments. IEEE Transactions on Fuzzy Systems, 15(1):41-55, 2007. (Pubitemid 46444303)
    • (2007) IEEE Transactions on Fuzzy Systems , vol.15 , Issue.1 , pp. 41-55
    • Hagras, H.1    Doctor, F.2    Callaghan, V.3    Lopez, A.4
  • 17
    • 0035659641 scopus 로고    scopus 로고
    • On-line learning, reasoning, rule extraction and aggregation in locally optimized evolving fuzzy neural networks
    • PII S0925231200003465
    • N. Kasabov. On-line learning, reasoning, rule extraction and aggregation in locally optimized evolving fuzzy neural networks. Neurocomputing, 41:25-45, 2001. (Pubitemid 33713447)
    • (2001) Neurocomputing , vol.41 , Issue.1-4 , pp. 25-45
    • Kasabov, N.K.1
  • 19
    • 84883713774 scopus 로고    scopus 로고
    • Learning drifting concepts: Example selection vs. example weighting
    • R. Klinkenberg. Learning drifting concepts: example selection vs. example weighting. Intelligent Data Analysis, 8(3):281-300, 2004.
    • (2004) Intelligent Data Analysis , vol.8 , Issue.3 , pp. 281-300
    • Klinkenberg, R.1
  • 20
    • 35048891979 scopus 로고    scopus 로고
    • Classifier Ensembles for Changing Environments
    • Multiple Classifier Systems 5th International Workshop, MCS 2004 Cagliari, Italy, June 9-11, 2004 Proceedings
    • L. Kuncheva. Classifier ensembles for changing environments. In Proc. of the 5th international workshop on multiple classifier systems, pages 1-15, 2004. (Pubitemid 38846873)
    • (2004) LECTURE NOTES IN COMPUTER SCIENCE , vol.3077 , pp. 1-15
    • Kuncheva, L.I.1
  • 21
    • 34249723182 scopus 로고    scopus 로고
    • A novel generic hebbian ordering-based fuzzy rule base reduction approach to mamdani neuro-fuzzy system
    • F. Liu, C. Quek, and G. Ng. A novel generic hebbian ordering-based fuzzy rule base reduction approach to mamdani neuro-fuzzy system. Neural Computation, 19(6):1656-1680, 2007.
    • (2007) Neural Computation , vol.19 , Issue.6 , pp. 1656-1680
    • Liu, F.1    Quek, C.2    Ng, G.3
  • 22
    • 77957064197 scopus 로고    scopus 로고
    • Catastrophic interference in connectionist networks: The sequential learning problem
    • M. McCloskey and N. Cohen. Catastrophic interference in connectionist networks: the sequential learning problem. The psychology of learning and motivation, 24:109-164, 1999.
    • (1999) The Psychology of Learning and Motivation , vol.24 , pp. 109-164
    • McCloskey, M.1    Cohen, N.2
  • 24
    • 0025407225 scopus 로고
    • Connectionist models of recognition memory: Constraints imposed by learning and forgetting functions
    • R. Ratcliff. Connectionist models of recognition memory: constraints imposed by learning and forgetting functions. Psychological Review, 97:285-308, 1990.
    • (1990) Psychological Review , vol.97 , pp. 285-308
    • Ratcliff, R.1
  • 26
    • 0026156490 scopus 로고
    • A nearest hyperrectangle learning method
    • S. Salzberg. A nearest hyperrectangle learning method. Machine learning, 6:277-309, 1991.
    • (1991) Machine Learning , pp. 277-309
    • Salzberg, S.1
  • 27
    • 84945763945 scopus 로고
    • Catastrophic forgetting in connectionist networks: Causes, consequences and solutions
    • N. Sharkey and A. Sharkey. Catastrophic forgetting in connectionist networks: Causes, consequences and solutions. An analysis of catastrophic interference, 7(3-4):301-329, 1995.
    • (1995) An Analysis of Catastrophic Interference , vol.7 , Issue.3-4 , pp. 301-329
    • Sharkey, N.1    Sharkey, A.2
  • 28
    • 26444562687 scopus 로고    scopus 로고
    • The problem of concept drift: Definitions and related work
    • Dept. of Computer Science Trinity College, Dublin
    • A. Tsymbal. The problem of concept drift: definitions and related work. Technical Report TCD-CS-2004-15, Dept. of Computer Science Trinity College, Dublin, 2004.
    • (2004) Technical Report TCD-CS-2004-15
    • Tsymbal, A.1
  • 29
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden contexts. Machine Learning, 23:69-101, 1996. (Pubitemid 126737384)
    • (1996) Machine Learning , vol.23 , Issue.1 , pp. 69-101
    • Widmer, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.