메뉴 건너뛰기




Volumn 220, Issue , 2013, Pages 64-85

Adaptive fault detection and diagnosis using an evolving fuzzy classifier

Author keywords

Adaptive fault detection and diagnosis; Evolving fuzzy systems; Participatory learning

Indexed keywords

ADAPTIVE FAULT DETECTION AND DIAGNOSIS; DATA STREAM; DIAGNOSIS SYSTEMS; EVOLVING FUZZY CLASSIFIERS; EVOLVING FUZZY SYSTEMS; FAULT DETECTION AND DIAGNOSIS; INCREMENTAL CLUSTERING; INCREMENTAL LEARNING; NEW OPERATION MODES; OPERATION MODE; OPERATION POINT; OPERATIONAL STATE; PARTICIPATORY LEARNING; PRIORI INFORMATION;

EID: 84864839130     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2011.08.030     Document Type: Conference Paper
Times cited : (142)

References (52)
  • 4
    • 58149524918 scopus 로고    scopus 로고
    • Evolving fuzzy-rule-based classifiers from data streams
    • P.P. Angelov, and X. Zhou Evolving fuzzy-rule-based classifiers from data streams IEEE Transactions on Fuzzy Systems 16 2008 1462 1475
    • (2008) IEEE Transactions on Fuzzy Systems , vol.16 , pp. 1462-1475
    • Angelov, P.P.1    Zhou, X.2
  • 6
    • 33644622316 scopus 로고    scopus 로고
    • Application of a novel fuzzy classifier to fault detection and isolation of the damadics benchmark problem
    • (A benchmark study of fault diagnosis for an industrial actuator)
    • C.D. Bocaniala, and J.S. da Costa Application of a novel fuzzy classifier to fault detection and isolation of the damadics benchmark problem Control Engineering Practice 14 2006 653 669 (A benchmark study of fault diagnosis for an industrial actuator)
    • (2006) Control Engineering Practice , vol.14 , pp. 653-669
    • Bocaniala, C.D.1    Da Costa, J.S.2
  • 7
    • 6344223429 scopus 로고    scopus 로고
    • Artificial neural networks to classify mean shifts from multivariate chi(2) chart signals
    • L. Chen, and T. Wang Artificial neural networks to classify mean shifts from multivariate chi(2) chart signals Computers & Industrial Engineering 47 2004 195 205
    • (2004) Computers & Industrial Engineering , vol.47 , pp. 195-205
    • Chen, L.1    Wang, T.2
  • 8
    • 0031076833 scopus 로고    scopus 로고
    • An expert system for fault section diagnosis of power systems using fuzzy relations
    • H.J. Cho, and J.K. Park An expert system for fault section diagnosis of power systems using fuzzy relations IEEE Transactions on Power Systems 12 1997 342 347
    • (1997) IEEE Transactions on Power Systems , vol.12 , pp. 342-347
    • Cho, H.J.1    Park, J.K.2
  • 11
    • 33646098941 scopus 로고    scopus 로고
    • A cosine similarity-based negative selection algorithm for time series novelty detection
    • Y. Dong, Z. Sun, and H. Ha A cosine similarity-based negative selection algorithm for time series novelty detection Mechanical Systems and Signal Processing 20 2006 1461 1472
    • (2006) Mechanical Systems and Signal Processing , vol.20 , pp. 1461-1472
    • Dong, Y.1    Sun, Z.2    Ha, H.3
  • 12
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to roc analysis
    • (ROC analysis in pattern recognition)
    • T. Fawcett An introduction to roc analysis Pattern Recognition Letters 27 2006 861 874 (ROC analysis in pattern recognition)
    • (2006) Pattern Recognition Letters , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 14
    • 79952316981 scopus 로고    scopus 로고
    • Incremental linear discriminant analysis for evolving feature spaces in multitask pattern recognition problems
    • M. Hisada, S. Ozawa, K. Zhang, and N. Kasabov Incremental linear discriminant analysis for evolving feature spaces in multitask pattern recognition problems Evolving Systems 1 2010 17 27
    • (2010) Evolving Systems , vol.1 , pp. 17-27
    • Hisada, M.1    Ozawa, S.2    Zhang, K.3    Kasabov, N.4
  • 16
    • 0021468997 scopus 로고
    • Process fault detection based on modeling and estimation methods - A survey
    • R. Isermann Process fault detection based on modeling and estimation methods - A survey Automatica 20 1984 387 404
    • (1984) Automatica , vol.20 , pp. 387-404
    • Isermann, R.1
  • 20
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction
    • N. Kasabov, and Q. Song DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction IEEE Transactions on Fuzzy Systems 10 2002 144 154
    • (2002) IEEE Transactions on Fuzzy Systems , vol.10 , pp. 144-154
    • Kasabov, N.1    Song, Q.2
  • 22
    • 77950296242 scopus 로고    scopus 로고
    • Design of an artificial immune system based on danger model for fault detection
    • C.A. Laurentys, R.M. Palhares, and W.M. Caminhas Design of an artificial immune system based on danger model for fault detection Expert Systems with Applications 37 2010 5145 5152
    • (2010) Expert Systems with Applications , vol.37 , pp. 5145-5152
    • Laurentys, C.A.1    Palhares, R.M.2    Caminhas, W.M.3
  • 25
    • 77954877922 scopus 로고    scopus 로고
    • Fuzzy multivariable gaussian evolving approach for fault detection and diagnosis
    • E. Hullermeier, R. Kruse, F. Hoffmann, Lecture Notes in Computer Science Springer/ Heidelberg Berlin
    • A. Lemos, W. Caminhas, and F. Gomide Fuzzy multivariable gaussian evolving approach for fault detection and diagnosis E. Hullermeier, R. Kruse, F. Hoffmann, Computational Intelligence for Knowledge-Based Systems Design Lecture Notes in Computer Science vol. 6178 2010 Springer/ Heidelberg Berlin 360 369
    • (2010) Computational Intelligence for Knowledge-Based Systems Design , vol.6178 , pp. 360-369
    • Lemos, A.1    Caminhas, W.2    Gomide, F.3
  • 28
    • 35448950018 scopus 로고    scopus 로고
    • Extensions of vector quantization for incremental clustering
    • (Part Special issue: Feature Generation and Machine Learning for Robust Multimodal Biometrics)
    • E. Lughofer Extensions of vector quantization for incremental clustering Pattern Recognition 41 2008 995 1011 (Part Special issue: Feature Generation and Machine Learning for Robust Multimodal Biometrics)
    • (2008) Pattern Recognition , vol.41 , pp. 995-1011
    • Lughofer, E.1
  • 29
    • 77954874430 scopus 로고    scopus 로고
    • On dynamic soft dimension reduction in evolving fuzzy classifiers
    • E. Hullermeier, R. Kruse, F. Hoffmann, Springer
    • E. Lughofer On dynamic soft dimension reduction in evolving fuzzy classifiers E. Hullermeier, R. Kruse, F. Hoffmann, Computational Intelligence for Knowledge-Based Systems Design 2010 Springer 79 88
    • (2010) Computational Intelligence for Knowledge-Based Systems Design , pp. 79-88
    • Lughofer, E.1
  • 30
    • 78249273286 scopus 로고    scopus 로고
    • On-line incremental feature weighting in evolving fuzzy classifiers
    • E. Lughofer On-line incremental feature weighting in evolving fuzzy classifiers Fuzzy Sets and Systems 163 2011 1 23
    • (2011) Fuzzy Sets and Systems , vol.163 , pp. 1-23
    • Lughofer, E.1
  • 32
    • 57149083711 scopus 로고    scopus 로고
    • On-line fault detection with data-driven evolving fuzzy models
    • E.C.G. Lughofer On-line fault detection with data-driven evolving fuzzy models Control and Intelligent Systems 36 2008 307 317
    • (2008) Control and Intelligent Systems , vol.36 , pp. 307-317
    • Lughofer, E.C.G.1
  • 33
    • 55249122198 scopus 로고    scopus 로고
    • FLEXFIS: A robust incremental learning approach for evolving takagi-sugeno fuzzy models
    • E.D. Lughofer FLEXFIS: a robust incremental learning approach for evolving takagi-sugeno fuzzy models IEEE Transactions on Fuzzy Systems 16 2008 1393 1410
    • (2008) IEEE Transactions on Fuzzy Systems , vol.16 , pp. 1393-1410
    • Lughofer, E.D.1
  • 34
    • 0142063407 scopus 로고    scopus 로고
    • Novelty detection: A review part 1: Statistical approaches
    • M. Markou, and S. Singh Novelty detection: a review part 1: statistical approaches Signal Processing 83 2003 2499 2521
    • (2003) Signal Processing , vol.83 , pp. 2499-2521
    • Markou, M.1    Singh, S.2
  • 35
    • 0142126712 scopus 로고    scopus 로고
    • Novelty detection: A review part 2: Neural networks based approaches
    • M. Markou, and S. Singh Novelty detection: a review part 2: neural networks based approaches Signal Processing 83 2003 2481 2497
    • (2003) Signal Processing , vol.83 , pp. 2481-2497
    • Markou, M.1    Singh, S.2
  • 39
    • 84868506760 scopus 로고    scopus 로고
    • Online feature extraction for evolving intelligent systems
    • P. Angelov, D. Filev, N. Kasabov, Wiley-Interscience/IEEE Press
    • S. Ozawa, S. Pang, and N. Kasabov Online feature extraction for evolving intelligent systems P. Angelov, D. Filev, N. Kasabov, Evolving Intelligent Systems: Methodology and Applications 2010 Wiley-Interscience/IEEE Press
    • (2010) Evolving Intelligent Systems: Methodology and Applications
    • Ozawa, S.1    Pang, S.2    Kasabov, N.3
  • 41
    • 33644628220 scopus 로고    scopus 로고
    • Model-free actuator fault detection using a spectral estimation approach: The case of the damadics benchmark problem
    • F. Previdi, and T. Parisin Model-free actuator fault detection using a spectral estimation approach: the case of the damadics benchmark problem Control Engineering Practice 14 2006 635 644
    • (2006) Control Engineering Practice , vol.14 , pp. 635-644
    • Previdi, F.1    Parisin, T.2
  • 42
    • 33745496690 scopus 로고    scopus 로고
    • Symbolic time series analysis via wavelet-based partitioning
    • V. Rajagopalan, and A. Ray Symbolic time series analysis via wavelet-based partitioning Signal Processing 86 2006 3309 3320
    • (2006) Signal Processing , vol.86 , pp. 3309-3320
    • Rajagopalan, V.1    Ray, A.2
  • 43
    • 72649095852 scopus 로고    scopus 로고
    • Sofmls: Online self-organizing fuzzy modified least-squares network
    • J.d.J. Rubio Sofmls: online self-organizing fuzzy modified least-squares network IEEE Transactions on Fuzzy Systems 17 2009 1296 1309
    • (2009) IEEE Transactions on Fuzzy Systems , vol.17 , pp. 1296-1309
    • Rubio D. J, J.1
  • 44
    • 0942289503 scopus 로고    scopus 로고
    • Gear fault detection using artificial neural networks and support vector machines with genetic algorithms
    • B. Samanta Gear fault detection using artificial neural networks and support vector machines with genetic algorithms Mechanical Systems and Signal Processing 18 2004 625 644
    • (2004) Mechanical Systems and Signal Processing , vol.18 , pp. 625-644
    • Samanta, B.1
  • 47
    • 0037443771 scopus 로고    scopus 로고
    • A review of process fault detection and diagnosis Part II: Quantitative model and search strategies
    • V. Venkatasubramanian, R. Rengaswamy, S. Kavuri, and K. Yin A review of process fault detection and diagnosis Part II: Quantitative model and search strategies Computers & Chemical Engineering 27 2003 313 326
    • (2003) Computers & Chemical Engineering , vol.27 , pp. 313-326
    • Venkatasubramanian, V.1    Rengaswamy, R.2    Kavuri, S.3    Yin, K.4
  • 49
    • 58149502268 scopus 로고    scopus 로고
    • An evolving fuzzy predictor for industrial applications
    • W. Wang, and J. Vrbanek An evolving fuzzy predictor for industrial applications IEEE Transactions on Fuzzy Systems 16 2008 1439 1449
    • (2008) IEEE Transactions on Fuzzy Systems , vol.16 , pp. 1439-1449
    • Wang, W.1    Vrbanek, J.2
  • 50
    • 28844433590 scopus 로고    scopus 로고
    • Modified self-organising map for automated novelty detection applied to vibration signal monitoring
    • M. Wong, L. Jack, and A. Nandi Modified self-organising map for automated novelty detection applied to vibration signal monitoring Mechanical Systems and Signal Processing 20 2006 593 610
    • (2006) Mechanical Systems and Signal Processing , vol.20 , pp. 593-610
    • Wong, M.1    Jack, L.2    Nandi, A.3
  • 52
    • 34250747874 scopus 로고    scopus 로고
    • Extending the participatory learning paradigm to include source credibility
    • R.R. Yager Extending the participatory learning paradigm to include source credibility Fuzzy Optimization and Decision Making 6 2007 85 97
    • (2007) Fuzzy Optimization and Decision Making , vol.6 , pp. 85-97
    • Yager, R.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.