메뉴 건너뛰기




Volumn 1833, Issue 11, 2013, Pages 2392-2402

Co-translational targeting and translocation of proteins to the endoplasmic reticulum

Author keywords

Protein biogenesis; Protein targeting; Protein translocation; Ribosome; Signal recognition particle; Translocon

Indexed keywords

GUANOSINE TRIPHOSPHATASE; SECRETORY PROTEIN; SIGNAL PEPTIDE; SIGNAL RECOGNITION PARTICLE; TRANSLOCON;

EID: 84880641715     PISSN: 01674889     EISSN: 18792596     Source Type: Journal    
DOI: 10.1016/j.bbamcr.2013.02.021     Document Type: Review
Times cited : (152)

References (137)
  • 1
    • 79953752538 scopus 로고    scopus 로고
    • Molecular mechanism of co-translational protein targeting by the signal recognition particle
    • Saraogi I., Shan S.O. Molecular mechanism of co-translational protein targeting by the signal recognition particle. Traffic 2011, 12:535-542.
    • (2011) Traffic , vol.12 , pp. 535-542
    • Saraogi, I.1    Shan, S.O.2
  • 2
    • 18844387083 scopus 로고    scopus 로고
    • Signal recognition particles in chloroplasts, bacteria, yeast and mammals (review)
    • Pool M.R. Signal recognition particles in chloroplasts, bacteria, yeast and mammals (review). Mol. Membr. Biol. 2005, 22:3-15.
    • (2005) Mol. Membr. Biol. , vol.22 , pp. 3-15
    • Pool, M.R.1
  • 3
    • 79851516418 scopus 로고    scopus 로고
    • Early targeting events during membrane protein biogenesis in Escherichia coli
    • Bibi E. Early targeting events during membrane protein biogenesis in Escherichia coli. Biochim. Biophys. Acta 2011, 1808:841-850.
    • (2011) Biochim. Biophys. Acta , vol.1808 , pp. 841-850
    • Bibi, E.1
  • 4
    • 0035283319 scopus 로고    scopus 로고
    • The signal recognition particle of Archaea
    • Eichler J., Moll R. The signal recognition particle of Archaea. Trends Microbiol. 2001, 9:130-136.
    • (2001) Trends Microbiol. , vol.9 , pp. 130-136
    • Eichler, J.1    Moll, R.2
  • 5
    • 0020825185 scopus 로고
    • Disassembly and reconstitution of signal recognition particle
    • Walter P., Blobel G. Disassembly and reconstitution of signal recognition particle. Cell 1983, 34:525-533.
    • (1983) Cell , vol.34 , pp. 525-533
    • Walter, P.1    Blobel, G.2
  • 7
    • 0034254190 scopus 로고    scopus 로고
    • Elongation arrest is a physiologically important function of the signal recognition particle
    • Mason N., Ciufo L.F., Brown J.D. Elongation arrest is a physiologically important function of the signal recognition particle. EMBO J. 2000, 19:4164-4174.
    • (2000) EMBO J. , vol.19 , pp. 4164-4174
    • Mason, N.1    Ciufo, L.F.2    Brown, J.D.3
  • 8
    • 0032859702 scopus 로고    scopus 로고
    • The Alu domain homolog of the yeast signal recognition particle consists of an Srp14p homodimer and a yeast-specific RNA structure
    • Strub K., Fornallaz M., Bui N. The Alu domain homolog of the yeast signal recognition particle consists of an Srp14p homodimer and a yeast-specific RNA structure. RNA 1999, 5:1333-1347.
    • (1999) RNA , vol.5 , pp. 1333-1347
    • Strub, K.1    Fornallaz, M.2    Bui, N.3
  • 9
    • 0025949923 scopus 로고
    • The signal recognition particle in S. cerevisiae
    • Hann B.C., Walter P. The signal recognition particle in S. cerevisiae. Cell 1991, 67:131-144.
    • (1991) Cell , vol.67 , pp. 131-144
    • Hann, B.C.1    Walter, P.2
  • 11
    • 0030832397 scopus 로고    scopus 로고
    • Co-translational protein targeting catalyzed by the Escherichia coli signal recognition particle and its receptor
    • Powers T., Walter P. Co-translational protein targeting catalyzed by the Escherichia coli signal recognition particle and its receptor. EMBO J. 1997, 16:4880-4886.
    • (1997) EMBO J. , vol.16 , pp. 4880-4886
    • Powers, T.1    Walter, P.2
  • 12
    • 0022527444 scopus 로고
    • The signal sequence of nascent preprolactin interacts with the 54K polypeptide of signal recognition particle
    • Kurzchalia T.V., Wiedmann M., Girshovich A.S., Bochkareva E.S., Bielka H., Rapoport T.A. The signal sequence of nascent preprolactin interacts with the 54K polypeptide of signal recognition particle. Nature 1986, 320:634-636.
    • (1986) Nature , vol.320 , pp. 634-636
    • Kurzchalia, T.V.1    Wiedmann, M.2    Girshovich, A.S.3    Bochkareva, E.S.4    Bielka, H.5    Rapoport, T.A.6
  • 13
    • 0005614190 scopus 로고
    • Photocrosslinking of the signal sequence of nascent preprolactin to the 54-kilodalton polypeptide of the signal recognition particle
    • Krieg U.C., Walter P., Johnson A.E. Photocrosslinking of the signal sequence of nascent preprolactin to the 54-kilodalton polypeptide of the signal recognition particle. Proc. Natl. Acad. Sci. U. S. A. 1986, 83:8604-8608.
    • (1986) Proc. Natl. Acad. Sci. U. S. A. , vol.83 , pp. 8604-8608
    • Krieg, U.C.1    Walter, P.2    Johnson, A.E.3
  • 14
    • 0024973846 scopus 로고
    • The signal recognition particle receptor mediates the GTP-dependent displacement of SRP from the signal sequence of the nascent polypeptide
    • Connolly T., Gilmore R. The signal recognition particle receptor mediates the GTP-dependent displacement of SRP from the signal sequence of the nascent polypeptide. Cell 1989, 57:599-610.
    • (1989) Cell , vol.57 , pp. 599-610
    • Connolly, T.1    Gilmore, R.2
  • 15
    • 0031017523 scopus 로고    scopus 로고
    • Structure of the conserved GTPase domain of the signal recognition particle
    • Freymann D.M., Keenan R.J., Stroud R.N., Walter P. Structure of the conserved GTPase domain of the signal recognition particle. Nature 1997, 385:361-364.
    • (1997) Nature , vol.385 , pp. 361-364
    • Freymann, D.M.1    Keenan, R.J.2    Stroud, R.N.3    Walter, P.4
  • 16
    • 0031030085 scopus 로고    scopus 로고
    • Crystal structure of the NG domain from the signal recognition particle receptor FtsY
    • Montoya G., Svensson C., Luirink J., Sinning I. Crystal structure of the NG domain from the signal recognition particle receptor FtsY. Nature 1997, 385:365-368.
    • (1997) Nature , vol.385 , pp. 365-368
    • Montoya, G.1    Svensson, C.2    Luirink, J.3    Sinning, I.4
  • 19
    • 0032563163 scopus 로고    scopus 로고
    • Crystal structure of the signal sequence binding protein of the signal recognition particle
    • Keenan R.J., Freymann D.M., Walter P., Stroud R.M. Crystal structure of the signal sequence binding protein of the signal recognition particle. Cell 1998, 94:181-191.
    • (1998) Cell , vol.94 , pp. 181-191
    • Keenan, R.J.1    Freymann, D.M.2    Walter, P.3    Stroud, R.M.4
  • 20
    • 0034681490 scopus 로고    scopus 로고
    • Crystal structure of the ribonucleoprotein core of the signal recognition particle
    • Batey R.T., Rambo R.P., Lucast L., Rha B., Doudna J.A. Crystal structure of the ribonucleoprotein core of the signal recognition particle. Science 2000, 287:1232-1239.
    • (2000) Science , vol.287 , pp. 1232-1239
    • Batey, R.T.1    Rambo, R.P.2    Lucast, L.3    Rha, B.4    Doudna, J.A.5
  • 22
    • 0024400708 scopus 로고
    • Homology of 54K protein of signal-recognition particle, docking protein and two E. coli proteins with putative GTP-binding domains
    • Römisch K., Webb J., Herz J., Prehn S., Frank R., Vingron M., Dobberstein B. Homology of 54K protein of signal-recognition particle, docking protein and two E. coli proteins with putative GTP-binding domains. Nature 1989, 340:478-482.
    • (1989) Nature , vol.340 , pp. 478-482
    • Römisch, K.1    Webb, J.2    Herz, J.3    Prehn, S.4    Frank, R.5    Vingron, M.6    Dobberstein, B.7
  • 23
    • 0026533588 scopus 로고
    • The methionine-rich domain of the 54kDa subunit of signal recognition particle is sufficient for the interaction with signal sequences
    • Lütcke H., High S., Römisch K., Ashford A.J., Dobberstein B. The methionine-rich domain of the 54kDa subunit of signal recognition particle is sufficient for the interaction with signal sequences. EMBO J. 1992, 11:1543-1551.
    • (1992) EMBO J. , vol.11 , pp. 1543-1551
    • Lütcke, H.1    High, S.2    Römisch, K.3    Ashford, A.J.4    Dobberstein, B.5
  • 24
    • 0024963567 scopus 로고
    • Signal sequences
    • Gierasch L.M. Signal sequences. Biochemistry 1989, 28:923-930.
    • (1989) Biochemistry , vol.28 , pp. 923-930
    • Gierasch, L.M.1
  • 25
    • 0021856417 scopus 로고
    • Signal sequences. The limits of variation
    • von Heijne G. Signal sequences. The limits of variation. J. Mol. Biol. 1985, 184:99-105.
    • (1985) J. Mol. Biol. , vol.184 , pp. 99-105
    • von Heijne, G.1
  • 26
    • 0030595327 scopus 로고    scopus 로고
    • Signal sequences: the same yet different
    • Zheng N., Gierasch L.M. Signal sequences: the same yet different. Cell 1996, 86:849-852.
    • (1996) Cell , vol.86 , pp. 849-852
    • Zheng, N.1    Gierasch, L.M.2
  • 27
    • 0031045695 scopus 로고    scopus 로고
    • The hydrophobic region of signal peptides is a determinant for SRP recognition and protein translocation across the ER membrane
    • Hatsuzawa K., Tagaya M., Mizushima S. The hydrophobic region of signal peptides is a determinant for SRP recognition and protein translocation across the ER membrane. J. Biochem. 1997, 121:270-277.
    • (1997) J. Biochem. , vol.121 , pp. 270-277
    • Hatsuzawa, K.1    Tagaya, M.2    Mizushima, S.3
  • 28
    • 0029952547 scopus 로고    scopus 로고
    • Signal sequences specify the targeting route to the endoplasmic reticulum membrane
    • Ng D.T., Brown J.D., Walter P. Signal sequences specify the targeting route to the endoplasmic reticulum membrane. J. Cell Biol. 1996, 134:269-278.
    • (1996) J. Cell Biol. , vol.134 , pp. 269-278
    • Ng, D.T.1    Brown, J.D.2    Walter, P.3
  • 29
    • 17644386832 scopus 로고    scopus 로고
    • Use of thioredoxin as a reporter to identify a subset of Escherichia coli signal sequences that promote signal recognition particle-dependent translocation
    • Huber D., Boyd D., Xia Y., Olma M.H., Gerstein M., Beckwith J. Use of thioredoxin as a reporter to identify a subset of Escherichia coli signal sequences that promote signal recognition particle-dependent translocation. J. Bacteriol. 2005, 187:2983-2991.
    • (2005) J. Bacteriol. , vol.187 , pp. 2983-2991
    • Huber, D.1    Boyd, D.2    Xia, Y.3    Olma, M.H.4    Gerstein, M.5    Beckwith, J.6
  • 30
    • 0030774264 scopus 로고    scopus 로고
    • Dipeptidyl aminopeptidase processing and biosynthesis of alkaline extracellular protease from Yarrowia lipolytica
    • Matoba S., Morano K.A., Klionsky D.J., Kim K., Ogrydziak D.M. Dipeptidyl aminopeptidase processing and biosynthesis of alkaline extracellular protease from Yarrowia lipolytica. Microbiology 1997, 143(Pt 10):3263-3272.
    • (1997) Microbiology , vol.143 , Issue.PART 10 , pp. 3263-3272
    • Matoba, S.1    Morano, K.A.2    Klionsky, D.J.3    Kim, K.4    Ogrydziak, D.M.5
  • 31
    • 0242412456 scopus 로고    scopus 로고
    • Basic amino acids in a distinct subset of signal peptides promote interaction with the signal recognition particle
    • Peterson J.H., Woolhead C.A., Bernstein H.D. Basic amino acids in a distinct subset of signal peptides promote interaction with the signal recognition particle. J. Biol. Chem. 2003, 278:46155-46162.
    • (2003) J. Biol. Chem. , vol.278 , pp. 46155-46162
    • Peterson, J.H.1    Woolhead, C.A.2    Bernstein, H.D.3
  • 32
    • 84863934536 scopus 로고    scopus 로고
    • Efficient secretion of small proteins in mammalian cells relies on Sec62-dependent posttranslational translocation
    • Lakkaraju A.K., Thankappan R., Mary C., Garrison J.L., Taunton J., Strub K. Efficient secretion of small proteins in mammalian cells relies on Sec62-dependent posttranslational translocation. Mol. Biol. Cell 2012, 23:2712-2722.
    • (2012) Mol. Biol. Cell , vol.23 , pp. 2712-2722
    • Lakkaraju, A.K.1    Thankappan, R.2    Mary, C.3    Garrison, J.L.4    Taunton, J.5    Strub, K.6
  • 33
    • 33646918973 scopus 로고    scopus 로고
    • An unusual signal peptide extension inhibits the binding of bacterial presecretory proteins to the signal recognition particle, trigger factor, and the SecYEG complex
    • Peterson J.H., Szabady R.L., Bernstein H.D. An unusual signal peptide extension inhibits the binding of bacterial presecretory proteins to the signal recognition particle, trigger factor, and the SecYEG complex. J. Biol. Chem. 2006, 281:9038-9048.
    • (2006) J. Biol. Chem. , vol.281 , pp. 9038-9048
    • Peterson, J.H.1    Szabady, R.L.2    Bernstein, H.D.3
  • 34
    • 0038719738 scopus 로고    scopus 로고
    • SRP binds to ribosome-bound signal sequences with fluorescence-detected subnanomolar affinity that does not diminish as the nascent chain lengthens
    • Flanagan J.J., Chen J.C., Miao Y., Shao Y., Lin J., Bock P.E., Johnson A.E. SRP binds to ribosome-bound signal sequences with fluorescence-detected subnanomolar affinity that does not diminish as the nascent chain lengthens. J. Biol. Chem. 2003, 278:18628-18637.
    • (2003) J. Biol. Chem. , vol.278 , pp. 18628-18637
    • Flanagan, J.J.1    Chen, J.C.2    Miao, Y.3    Shao, Y.4    Lin, J.5    Bock, P.E.6    Johnson, A.E.7
  • 35
    • 43249083239 scopus 로고    scopus 로고
    • Signal sequence-independent membrane targeting of ribosomes containing short nascent peptides within the exit tunnel
    • Bornemann T., Jockel J., Rodnina M.V., Wintermeyer W. Signal sequence-independent membrane targeting of ribosomes containing short nascent peptides within the exit tunnel. Nat. Struct. Mol. Biol. 2008, 15:494-499.
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 494-499
    • Bornemann, T.1    Jockel, J.2    Rodnina, M.V.3    Wintermeyer, W.4
  • 37
    • 0029068214 scopus 로고
    • SRP samples nascent chains for the presence of signal sequences by interacting with the ribosome at a discrete step during translation elongation
    • Ogg S.C., Walter P. SRP samples nascent chains for the presence of signal sequences by interacting with the ribosome at a discrete step during translation elongation. Cell 1995, 81:1075-1084.
    • (1995) Cell , vol.81 , pp. 1075-1084
    • Ogg, S.C.1    Walter, P.2
  • 38
    • 0037162838 scopus 로고    scopus 로고
    • Distinct modes of signal recognition particle interaction with the ribosome
    • Pool M.R., Stumm J., Fulga T.A., Sinning I., Dobberstein B. Distinct modes of signal recognition particle interaction with the ribosome. Science 2002, 297:1345-1348.
    • (2002) Science , vol.297 , pp. 1345-1348
    • Pool, M.R.1    Stumm, J.2    Fulga, T.A.3    Sinning, I.4    Dobberstein, B.5
  • 39
    • 1542319100 scopus 로고    scopus 로고
    • Structure of the signal recognition particle interacting with the elongation-arrested ribosome
    • Halic M., Becker T., Pool M.R., Spahn C.M., Grassucci R.A., Frank J., Beckmann R. Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature 2004, 427:808-814.
    • (2004) Nature , vol.427 , pp. 808-814
    • Halic, M.1    Becker, T.2    Pool, M.R.3    Spahn, C.M.4    Grassucci, R.A.5    Frank, J.6    Beckmann, R.7
  • 40
    • 33751325296 scopus 로고    scopus 로고
    • Following the signal sequence from ribosomal tunnel exit to signal recognition particle
    • Halic M., Blau M., Becker T., Mielke T., Pool M.R., Wild K., Sinning I., Beckmann R. Following the signal sequence from ribosomal tunnel exit to signal recognition particle. Nature 2006, 444:507-511.
    • (2006) Nature , vol.444 , pp. 507-511
    • Halic, M.1    Blau, M.2    Becker, T.3    Mielke, T.4    Pool, M.R.5    Wild, K.6    Sinning, I.7    Beckmann, R.8
  • 41
    • 0037406142 scopus 로고    scopus 로고
    • The signal recognition particle binds to protein L23 at the peptide exit of the Escherichia coli ribosome
    • Gu S.Q., Peske F., Wieden H.J., Rodnina M.V., Wintermeyer W. The signal recognition particle binds to protein L23 at the peptide exit of the Escherichia coli ribosome. RNA 2003, 9:566-573.
    • (2003) RNA , vol.9 , pp. 566-573
    • Gu, S.Q.1    Peske, F.2    Wieden, H.J.3    Rodnina, M.V.4    Wintermeyer, W.5
  • 42
    • 66849109240 scopus 로고    scopus 로고
    • The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins
    • Kramer G., Boehringer D., Ban N., Bukau B. The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat. Struct. Mol. Biol. 2009, 16:589-597.
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 589-597
    • Kramer, G.1    Boehringer, D.2    Ban, N.3    Bukau, B.4
  • 43
    • 58149264965 scopus 로고    scopus 로고
    • Signal sequences activate the catalytic switch of SRP RNA
    • Bradshaw N., Neher S.B., Booth D.S., Walter P. Signal sequences activate the catalytic switch of SRP RNA. Science 2009, 323:127-130.
    • (2009) Science , vol.323 , pp. 127-130
    • Bradshaw, N.1    Neher, S.B.2    Booth, D.S.3    Walter, P.4
  • 45
    • 60849096653 scopus 로고    scopus 로고
    • A signal-anchor sequence stimulates signal recognition particle binding to ribosomes from inside the exit tunnel
    • Berndt U., Oellerer S., Zhang Y., Johnson A.E., Rospert S. A signal-anchor sequence stimulates signal recognition particle binding to ribosomes from inside the exit tunnel. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:1398-1403.
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , pp. 1398-1403
    • Berndt, U.1    Oellerer, S.2    Zhang, Y.3    Johnson, A.E.4    Rospert, S.5
  • 46
    • 84862689308 scopus 로고    scopus 로고
    • Cotranslational protein folding within the ribosome tunnel influences trigger-factor recruitment
    • Lin K.F., Sun C.S., Huang Y.C., Chan S.I., Koubek J., Wu T.H., Huang J.J. Cotranslational protein folding within the ribosome tunnel influences trigger-factor recruitment. Biophys. J. 2012, 102:2818-2827.
    • (2012) Biophys. J. , vol.102 , pp. 2818-2827
    • Lin, K.F.1    Sun, C.S.2    Huang, Y.C.3    Chan, S.I.4    Koubek, J.5    Wu, T.H.6    Huang, J.J.7
  • 47
    • 66349109602 scopus 로고    scopus 로고
    • A trans-membrane domain segment inside the ribosome exit tunnel triggers RAMP4 recruitment to the Sec61p translocase
    • Pool M.R. A trans-membrane domain segment inside the ribosome exit tunnel triggers RAMP4 recruitment to the Sec61p translocase. J. Cell Biol. 2009, 185:889-902.
    • (2009) J. Cell Biol. , vol.185 , pp. 889-902
    • Pool, M.R.1
  • 48
    • 0031471055 scopus 로고    scopus 로고
    • Both lumenal and cytosolic gating of the aqueous ER translocon pore is regulated from within the ribosome during membrane protein integration
    • Liao S., Lin J., Do H., Johnson A.E. Both lumenal and cytosolic gating of the aqueous ER translocon pore is regulated from within the ribosome during membrane protein integration. Cell 1997, 90:31-41.
    • (1997) Cell , vol.90 , pp. 31-41
    • Liao, S.1    Lin, J.2    Do, H.3    Johnson, A.E.4
  • 49
    • 0025853753 scopus 로고
    • The signal sequence interacts with the methionine-rich domain of the 54-kD protein of signal recognition particle
    • High S., Dobberstein B. The signal sequence interacts with the methionine-rich domain of the 54-kD protein of signal recognition particle. J. Cell Biol. 1991, 113:229-233.
    • (1991) J. Cell Biol. , vol.113 , pp. 229-233
    • High, S.1    Dobberstein, B.2
  • 50
    • 0025601549 scopus 로고
    • The methionine-rich domain of the 54kD protein subunit of the signal recognition particle contains an RNA binding site and can be crosslinked to a signal sequence
    • Zopf D., Bernstein H.D., Johnson A.E., Walter P. The methionine-rich domain of the 54kD protein subunit of the signal recognition particle contains an RNA binding site and can be crosslinked to a signal sequence. EMBO J. 1990, 9:4511-4517.
    • (1990) EMBO J. , vol.9 , pp. 4511-4517
    • Zopf, D.1    Bernstein, H.D.2    Johnson, A.E.3    Walter, P.4
  • 51
    • 0024966540 scopus 로고
    • Model for signal sequence recognition from amino-acid sequence of 54K subunit of signal recognition particle
    • Bernstein H.D., Poritz M.A., Strub K., Hoben P.J., Brenner S., Walter P. Model for signal sequence recognition from amino-acid sequence of 54K subunit of signal recognition particle. Nature 1989, 340:482-486.
    • (1989) Nature , vol.340 , pp. 482-486
    • Bernstein, H.D.1    Poritz, M.A.2    Strub, K.3    Hoben, P.J.4    Brenner, S.5    Walter, P.6
  • 52
    • 0037459447 scopus 로고    scopus 로고
    • Structural basis for the function of the beta subunit of the eukaryotic signal recognition particle receptor
    • Schwartz T., Blobel G. Structural basis for the function of the beta subunit of the eukaryotic signal recognition particle receptor. Cell 2003, 112:793-803.
    • (2003) Cell , vol.112 , pp. 793-803
    • Schwartz, T.1    Blobel, G.2
  • 53
    • 33646461205 scopus 로고    scopus 로고
    • The structure of the mammalian signal recognition particle (SRP) receptor as prototype for the interaction of small GTPases with Longin domains
    • Schlenker O., Hendricks A., Sinning I., Wild K. The structure of the mammalian signal recognition particle (SRP) receptor as prototype for the interaction of small GTPases with Longin domains. J. Biol. Chem. 2006, 281:8898-8906.
    • (2006) J. Biol. Chem. , vol.281 , pp. 8898-8906
    • Schlenker, O.1    Hendricks, A.2    Sinning, I.3    Wild, K.4
  • 54
    • 0028930545 scopus 로고
    • The b subunit of the signal recognition particle receptor is a transmembrane GTPase that anchors the a subunit, a peripheral membrane GTPase, to the endoplasmic reticulum membrane
    • Miller J.D., Tajima S., Lauffer L., Walter P. The b subunit of the signal recognition particle receptor is a transmembrane GTPase that anchors the a subunit, a peripheral membrane GTPase, to the endoplasmic reticulum membrane. J. Cell Biol. 1995, 128:273-282.
    • (1995) J. Cell Biol. , vol.128 , pp. 273-282
    • Miller, J.D.1    Tajima, S.2    Lauffer, L.3    Walter, P.4
  • 55
    • 0034282447 scopus 로고    scopus 로고
    • Nucleotide-dependent binding of the GTPase domain of the signal recognition particle receptor b-subunit to the a-subunit
    • Legate K., Falcone D., Andrews D. Nucleotide-dependent binding of the GTPase domain of the signal recognition particle receptor b-subunit to the a-subunit. J. Biol. Chem. 2000, 275:27439-27446.
    • (2000) J. Biol. Chem. , vol.275 , pp. 27439-27446
    • Legate, K.1    Falcone, D.2    Andrews, D.3
  • 56
    • 0347584006 scopus 로고    scopus 로고
    • Substrate twinning activates the signal recognition particle and its receptor
    • Egea P.F., Shan S.O., Napetschnig J., Savage D.F., Walter P., Stroud R.M. Substrate twinning activates the signal recognition particle and its receptor. Nature 2004, 427:215-221.
    • (2004) Nature , vol.427 , pp. 215-221
    • Egea, P.F.1    Shan, S.O.2    Napetschnig, J.3    Savage, D.F.4    Walter, P.5    Stroud, R.M.6
  • 58
    • 0030845258 scopus 로고    scopus 로고
    • The signal recognition particle receptor of Escherichia coli (FtsY) has a nucleotide exchange factor built into the GTPase domain
    • Moser C., Mol O., Goody R.S., Sinning I. The signal recognition particle receptor of Escherichia coli (FtsY) has a nucleotide exchange factor built into the GTPase domain. Proc. Natl. Acad. Sci. U. S. A. 1997, 94:11339-11344.
    • (1997) Proc. Natl. Acad. Sci. U. S. A. , vol.94 , pp. 11339-11344
    • Moser, C.1    Mol, O.2    Goody, R.S.3    Sinning, I.4
  • 59
    • 0030678106 scopus 로고    scopus 로고
    • Empty site forms of SRP54 and SRalpha GTPases mediate targeting of ribosome-nascent chain complexes to the endoplasmic reticulum
    • Rapiejko P.J., Gilmore R. Empty site forms of SRP54 and SRalpha GTPases mediate targeting of ribosome-nascent chain complexes to the endoplasmic reticulum. Cell 1997, 89:703-713.
    • (1997) Cell , vol.89 , pp. 703-713
    • Rapiejko, P.J.1    Gilmore, R.2
  • 60
    • 0029097359 scopus 로고
    • Reciprocal stimulation of GTP hydrolysis by two directly interacting GTPases
    • Powers T., Walter P. Reciprocal stimulation of GTP hydrolysis by two directly interacting GTPases. Science 1995, 269:1422-1424.
    • (1995) Science , vol.269 , pp. 1422-1424
    • Powers, T.1    Walter, P.2
  • 61
    • 47849117948 scopus 로고    scopus 로고
    • Demonstration of a multistep mechanism for assembly of the SRP x SRP receptor complex: implications for the catalytic role of SRP RNA
    • Zhang X., Kung S., Shan S.O. Demonstration of a multistep mechanism for assembly of the SRP x SRP receptor complex: implications for the catalytic role of SRP RNA. J. Mol. Biol. 2008, 381:581-593.
    • (2008) J. Mol. Biol. , vol.381 , pp. 581-593
    • Zhang, X.1    Kung, S.2    Shan, S.O.3
  • 62
    • 79955005771 scopus 로고    scopus 로고
    • Synergistic actions between the SRP RNA and translating ribosome allow efficient delivery of the correct cargos during cotranslational protein targeting
    • Shen K., Zhang X., Shan S.O. Synergistic actions between the SRP RNA and translating ribosome allow efficient delivery of the correct cargos during cotranslational protein targeting. RNA 2011, 17:892-902.
    • (2011) RNA , vol.17 , pp. 892-902
    • Shen, K.1    Zhang, X.2    Shan, S.O.3
  • 63
    • 8844253060 scopus 로고    scopus 로고
    • Mechanism of association and reciprocal activation of two GTPases
    • Shan S.O., Stroud R.M., Walter P. Mechanism of association and reciprocal activation of two GTPases. PLoS Biol. 2004, 2:e320.
    • (2004) PLoS Biol. , vol.2
    • Shan, S.O.1    Stroud, R.M.2    Walter, P.3
  • 64
    • 60549083291 scopus 로고    scopus 로고
    • Multiple conformational switches in a GTPase complex control co-translational protein targeting
    • Zhang X., Schaffitzel C., Ban N., Shan S.O. Multiple conformational switches in a GTPase complex control co-translational protein targeting. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:1754-1759.
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , pp. 1754-1759
    • Zhang, X.1    Schaffitzel, C.2    Ban, N.3    Shan, S.O.4
  • 65
    • 77952127782 scopus 로고    scopus 로고
    • Sequential checkpoints govern substrate selection during cotranslational protein targeting
    • Zhang X., Rashid R., Wang K., Shan S.O. Sequential checkpoints govern substrate selection during cotranslational protein targeting. Science 2010, 328:757-760.
    • (2010) Science , vol.328 , pp. 757-760
    • Zhang, X.1    Rashid, R.2    Wang, K.3    Shan, S.O.4
  • 66
    • 0034596007 scopus 로고    scopus 로고
    • Role of the 4.5S RNA in assembly of the bacterial signal recognition particle with its receptor
    • Peluso P., Herschlag D., Nock S., Freymann D., Johnson A.E., Walter P. Role of the 4.5S RNA in assembly of the bacterial signal recognition particle with its receptor. Science 2000, 288.
    • (2000) Science , pp. 288
    • Peluso, P.1    Herschlag, D.2    Nock, S.3    Freymann, D.4    Johnson, A.E.5    Walter, P.6
  • 67
    • 77955881180 scopus 로고    scopus 로고
    • Lipid activation of the signal recognition particle receptor provides spatial coordination of protein targeting
    • Lam V.Q., Akopian D., Rome M., Henningsen D., Shan S.O. Lipid activation of the signal recognition particle receptor provides spatial coordination of protein targeting. J. Cell Biol. 2010, 190:623-635.
    • (2010) J. Cell Biol. , vol.190 , pp. 623-635
    • Lam, V.Q.1    Akopian, D.2    Rome, M.3    Henningsen, D.4    Shan, S.O.5
  • 68
    • 34547929138 scopus 로고    scopus 로고
    • Conformational changes in the GTPase modules of the signal reception particle and its receptor drive initiation of protein translocation
    • Shan S.O., Chandrasekar S., Walter P. Conformational changes in the GTPase modules of the signal reception particle and its receptor drive initiation of protein translocation. J. Cell Biol. 2007, 178:611-620.
    • (2007) J. Cell Biol. , vol.178 , pp. 611-620
    • Shan, S.O.1    Chandrasekar, S.2    Walter, P.3
  • 69
    • 0026557511 scopus 로고
    • Protein translocation across the ER requires a functional GTP binding site in the a subunit of the signal recognition particle receptor
    • Rapiejko P.J., Gilmore R. Protein translocation across the ER requires a functional GTP binding site in the a subunit of the signal recognition particle receptor. J. Cell Biol. 1992, 117:493-503.
    • (1992) J. Cell Biol. , vol.117 , pp. 493-503
    • Rapiejko, P.J.1    Gilmore, R.2
  • 70
    • 0026326816 scopus 로고
    • Requirement of GTP hydrolysis for release of signal recognition particle from its receptor
    • Connolly T., Rapiejko P.J., Gilmore R. Requirement of GTP hydrolysis for release of signal recognition particle from its receptor. Science 1991, 252:1171-1173.
    • (1991) Science , vol.252 , pp. 1171-1173
    • Connolly, T.1    Rapiejko, P.J.2    Gilmore, R.3
  • 71
    • 79951826865 scopus 로고    scopus 로고
    • The crystal structure of the signal recognition particle in complex with its receptor
    • Ataide S.F., Schmitz N., Shen K., Ke A., Shan S.O., Doudna J.A., Ban N. The crystal structure of the signal recognition particle in complex with its receptor. Science 2011, 331:881-886.
    • (2011) Science , vol.331 , pp. 881-886
    • Ataide, S.F.1    Schmitz, N.2    Shen, K.3    Ke, A.4    Shan, S.O.5    Doudna, J.A.6    Ban, N.7
  • 72
    • 84870979537 scopus 로고    scopus 로고
    • Activated GTPase movement on an RNA scaffold drives co-translational protein targeting
    • Shen K., Arslan S., Akopian D., Ha T., Shan S.O. Activated GTPase movement on an RNA scaffold drives co-translational protein targeting. Nature 2012, 492:271-275.
    • (2012) Nature , vol.492 , pp. 271-275
    • Shen, K.1    Arslan, S.2    Akopian, D.3    Ha, T.4    Shan, S.O.5
  • 73
    • 0035252889 scopus 로고    scopus 로고
    • Ribosome fidelity: tRNA discrimination, proofreading and induced fit
    • Rodnina M.V., Wintermeyer W. Ribosome fidelity: tRNA discrimination, proofreading and induced fit. Trends Biochem. Sci. 2001, 26:124-130.
    • (2001) Trends Biochem. Sci. , vol.26 , pp. 124-130
    • Rodnina, M.V.1    Wintermeyer, W.2
  • 74
    • 77951199870 scopus 로고    scopus 로고
    • Residues in SRP9/14 essential for elongation arrest activity of the signal recognition particle define a positively charged functional domain on one side of the protein
    • Mary C., Scherrer A., Huck L., Lakkaraju A.K., Thomas Y., Johnson A.E., Strub K. Residues in SRP9/14 essential for elongation arrest activity of the signal recognition particle define a positively charged functional domain on one side of the protein. RNA 2010, 16:969-979.
    • (2010) RNA , vol.16 , pp. 969-979
    • Mary, C.1    Scherrer, A.2    Huck, L.3    Lakkaraju, A.K.4    Thomas, Y.5    Johnson, A.E.6    Strub, K.7
  • 75
    • 0019822645 scopus 로고
    • Translocation of proteins across the endoplasmic reticulum III. Signal recognition protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes
    • Walter P., Blobel G. Translocation of proteins across the endoplasmic reticulum III. Signal recognition protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes. J. Cell Biol. 1981, 91:557-561.
    • (1981) J. Cell Biol. , vol.91 , pp. 557-561
    • Walter, P.1    Blobel, G.2
  • 76
    • 0021814751 scopus 로고
    • Elongation arrest is not a prerequisite for secretory protein translocation across the microsomal membrane
    • Siegel V., Walter P. Elongation arrest is not a prerequisite for secretory protein translocation across the microsomal membrane. J. Cell Biol. 1985, 100:1913-1921.
    • (1985) J. Cell Biol. , vol.100 , pp. 1913-1921
    • Siegel, V.1    Walter, P.2
  • 77
    • 0030785575 scopus 로고    scopus 로고
    • A truncation in the 14kDa protein of the signal recognition particle leads to tertiary structure changes in the RNA and abolishes the elongation arrest activity of the particle
    • Thomas Y., Bui N., Strub K. A truncation in the 14kDa protein of the signal recognition particle leads to tertiary structure changes in the RNA and abolishes the elongation arrest activity of the particle. Nucleic Acids Res. 1997, 25:1920-1929.
    • (1997) Nucleic Acids Res. , vol.25 , pp. 1920-1929
    • Thomas, Y.1    Bui, N.2    Strub, K.3
  • 78
    • 42949161206 scopus 로고    scopus 로고
    • SRP keeps polypeptides translocation-competent by slowing translation to match limiting ER-targeting sites
    • Lakkaraju A.K., Mary C., Scherrer A., Johnson A.E., Strub K. SRP keeps polypeptides translocation-competent by slowing translation to match limiting ER-targeting sites. Cell 2008, 133:440-451.
    • (2008) Cell , vol.133 , pp. 440-451
    • Lakkaraju, A.K.1    Mary, C.2    Scherrer, A.3    Johnson, A.E.4    Strub, K.5
  • 79
    • 0346096862 scopus 로고    scopus 로고
    • Signal recognition particle Alu domain occupies a defined site at the ribosomal subunit interface upon signal sequence recognition
    • Terzi L., Pool M.R., Dobberstein B., Strub K. Signal recognition particle Alu domain occupies a defined site at the ribosomal subunit interface upon signal sequence recognition. Biochemistry 2004, 43:107-117.
    • (2004) Biochemistry , vol.43 , pp. 107-117
    • Terzi, L.1    Pool, M.R.2    Dobberstein, B.3    Strub, K.4
  • 80
    • 0023872049 scopus 로고
    • Each of the activities of signal recognition particle (SRP) is contained within a distinct domain: analysis of biochemical mutants of SRP
    • Siegel V., Walter P. Each of the activities of signal recognition particle (SRP) is contained within a distinct domain: analysis of biochemical mutants of SRP. Cell 1988, 52:39-49.
    • (1988) Cell , vol.52 , pp. 39-49
    • Siegel, V.1    Walter, P.2
  • 81
    • 36749001066 scopus 로고    scopus 로고
    • Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes
    • Rapoport T.A. Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 2007, 450:663-669.
    • (2007) Nature , vol.450 , pp. 663-669
    • Rapoport, T.A.1
  • 82
    • 0027936633 scopus 로고
    • Systematic probing of the environment of a translocating secretory protein during translocation through the ER membrane
    • Mothes W., Prehn S., Rapoport T.A. Systematic probing of the environment of a translocating secretory protein during translocation through the ER membrane. EMBO J. 1994, 13:3973-3982.
    • (1994) EMBO J. , vol.13 , pp. 3973-3982
    • Mothes, W.1    Prehn, S.2    Rapoport, T.A.3
  • 83
    • 0002744720 scopus 로고
    • Labelling the hydrophobic core of membranes
    • Brunner J. Labelling the hydrophobic core of membranes. Trends Biochem. Sci. 1981, 6:44-46.
    • (1981) Trends Biochem. Sci. , vol.6 , pp. 44-46
    • Brunner, J.1
  • 84
    • 0027424601 scopus 로고
    • Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane
    • Görlich D., Rapoport T.A. Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell 1993, 75:615-630.
    • (1993) Cell , vol.75 , pp. 615-630
    • Görlich, D.1    Rapoport, T.A.2
  • 85
    • 0026684458 scopus 로고
    • Signal peptides open protein-conducting channels in E. coli
    • Simon S.M., Blobel G. Signal peptides open protein-conducting channels in E. coli. Cell 1992, 69:677-684.
    • (1992) Cell , vol.69 , pp. 677-684
    • Simon, S.M.1    Blobel, G.2
  • 86
    • 0027162564 scopus 로고
    • The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation
    • Crowley K.S., Reinhart G.D., Johnson A.E. The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation. Cell 1993, 73:1101-1115.
    • (1993) Cell , vol.73 , pp. 1101-1115
    • Crowley, K.S.1    Reinhart, G.D.2    Johnson, A.E.3
  • 89
    • 54049111011 scopus 로고    scopus 로고
    • Structure of a complex of the ATPase SecA and the protein-translocation channel
    • Zimmer J., Nam Y., Rapoport T.A. Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature 2008, 455:936-943.
    • (2008) Nature , vol.455 , pp. 936-943
    • Zimmer, J.1    Nam, Y.2    Rapoport, T.A.3
  • 92
    • 18544380083 scopus 로고    scopus 로고
    • Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY
    • Cannon K.S., Or E., Clemons W.M., Shibata Y., Rapoport T.A. Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY. J. Cell Biol. 2005, 169:219-225.
    • (2005) J. Cell Biol. , vol.169 , pp. 219-225
    • Cannon, K.S.1    Or, E.2    Clemons, W.M.3    Shibata, Y.4    Rapoport, T.A.5
  • 93
    • 33646271115 scopus 로고    scopus 로고
    • Molecular dynamics studies of the archaeal translocon
    • Gumbart J., Schulten K. Molecular dynamics studies of the archaeal translocon. Biophys. J. 2006, 90:2356-2367.
    • (2006) Biophys. J. , vol.90 , pp. 2356-2367
    • Gumbart, J.1    Schulten, K.2
  • 95
    • 0023737896 scopus 로고
    • Evidence for the loop model of signal sequence insertion into the endoplasmic reticulum
    • Shaw A.E., Rottier P.J.M., Rose J.K. Evidence for the loop model of signal sequence insertion into the endoplasmic reticulum. Proc. Natl. Acad. Sci. U. S. A. 1988, 85:7592-7596.
    • (1988) Proc. Natl. Acad. Sci. U. S. A. , vol.85 , pp. 7592-7596
    • Shaw, A.E.1    Rottier, P.J.M.2    Rose, J.K.3
  • 96
    • 0032544614 scopus 로고    scopus 로고
    • Signal sequence recognition in posttranslational protein transport across the yeast ER membrane
    • Plath K., Mothes W., Wilkinson B.M., Stirling C.J., Rapoport T.A. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 1998, 94:795-807.
    • (1998) Cell , vol.94 , pp. 795-807
    • Plath, K.1    Mothes, W.2    Wilkinson, B.M.3    Stirling, C.J.4    Rapoport, T.A.5
  • 98
    • 33847698213 scopus 로고    scopus 로고
    • Deregulation of the SecYEG translocation channel upon removal of the plug domain
    • Maillard A.P., Lalani S., Silva F., Belin D., Duong F. Deregulation of the SecYEG translocation channel upon removal of the plug domain. J. Biol. Chem. 2007, 282:1281-1287.
    • (2007) J. Biol. Chem. , vol.282 , pp. 1281-1287
    • Maillard, A.P.1    Lalani, S.2    Silva, F.3    Belin, D.4    Duong, F.5
  • 99
    • 77952378779 scopus 로고    scopus 로고
    • The hydrophobic core of the Sec61 translocon defines the hydrophobicity threshold for membrane integration
    • Junne T., Kocik L., Spiess M. The hydrophobic core of the Sec61 translocon defines the hydrophobicity threshold for membrane integration. Mol. Biol. Cell 2010, 21:1662-1670.
    • (2010) Mol. Biol. Cell , vol.21 , pp. 1662-1670
    • Junne, T.1    Kocik, L.2    Spiess, M.3
  • 100
    • 24944465005 scopus 로고    scopus 로고
    • Modeling the effects of prl mutations on the Escherichia coli SecY complex
    • Smith M.A., Clemons W.M., DeMars C.J., Flower A.M. Modeling the effects of prl mutations on the Escherichia coli SecY complex. J. Bacteriol. 2005, 187:6454-6465.
    • (2005) J. Bacteriol. , vol.187 , pp. 6454-6465
    • Smith, M.A.1    Clemons, W.M.2    DeMars, C.J.3    Flower, A.M.4
  • 101
    • 27144525002 scopus 로고    scopus 로고
    • Investigating the SecY plug movement at the SecYEG translocation channel
    • Tam P.C., Maillard A.P., Chan K.K., Duong F. Investigating the SecY plug movement at the SecYEG translocation channel. EMBO J. 2005, 24:3380-3388.
    • (2005) EMBO J. , vol.24 , pp. 3380-3388
    • Tam, P.C.1    Maillard, A.P.2    Chan, K.K.3    Duong, F.4
  • 102
    • 80052237952 scopus 로고    scopus 로고
    • Translocation channel gating kinetics balances protein translocation efficiency with signal sequence recognition fidelity
    • Trueman S.F., Mandon E.C., Gilmore R. Translocation channel gating kinetics balances protein translocation efficiency with signal sequence recognition fidelity. Mol. Biol. Cell 2011, 22:2983-2993.
    • (2011) Mol. Biol. Cell , vol.22 , pp. 2983-2993
    • Trueman, S.F.1    Mandon, E.C.2    Gilmore, R.3
  • 103
    • 0037150672 scopus 로고    scopus 로고
    • Identification of signal peptide peptidase, a presenilin-type aspartic protease
    • Weihofen A., Binns K., Lemberg M.K., Ashman K., Martoglio B. Identification of signal peptide peptidase, a presenilin-type aspartic protease. Science 2002, 296:2215-2218.
    • (2002) Science , vol.296 , pp. 2215-2218
    • Weihofen, A.1    Binns, K.2    Lemberg, M.K.3    Ashman, K.4    Martoglio, B.5
  • 104
    • 79959961077 scopus 로고    scopus 로고
    • Stepwise insertion and inversion of a type II signal anchor sequence in the ribosome-Sec61 translocon complex
    • Devaraneni P.K., Conti B., Matsumura Y., Yang Z., Johnson A.E., Skach W.R. Stepwise insertion and inversion of a type II signal anchor sequence in the ribosome-Sec61 translocon complex. Cell 2011, 146:134-147.
    • (2011) Cell , vol.146 , pp. 134-147
    • Devaraneni, P.K.1    Conti, B.2    Matsumura, Y.3    Yang, Z.4    Johnson, A.E.5    Skach, W.R.6
  • 105
    • 13444271726 scopus 로고    scopus 로고
    • The molecular mechanisms underlying BiP-mediated gating of the Sec61 translocon of the endoplasmic reticulum
    • Alder N.N., Shen Y., Brodsky J.L., Hendershot L.M., Johnson A.E. The molecular mechanisms underlying BiP-mediated gating of the Sec61 translocon of the endoplasmic reticulum. J. Cell Biol. 2005, 168:389-399.
    • (2005) J. Cell Biol. , vol.168 , pp. 389-399
    • Alder, N.N.1    Shen, Y.2    Brodsky, J.L.3    Hendershot, L.M.4    Johnson, A.E.5
  • 107
    • 0028997459 scopus 로고
    • Posttranslational protein translocation in yeast reconstituted with a purified complex of Sec proteins and Kar2p
    • Panzner S., Dreier L., Hartmann E., Kostka S., Rapoport T.A. Posttranslational protein translocation in yeast reconstituted with a purified complex of Sec proteins and Kar2p. Cell 1995, 81:561-570.
    • (1995) Cell , vol.81 , pp. 561-570
    • Panzner, S.1    Dreier, L.2    Hartmann, E.3    Kostka, S.4    Rapoport, T.A.5
  • 110
    • 0035862963 scopus 로고    scopus 로고
    • Sec63p and Kar2p are required for the translocation of SRP-dependent precursors into the yeast endoplasmic reticulum in vivo
    • Young B.P., Craven R., Reid P.J., Willer M., Stirling C.J. Sec63p and Kar2p are required for the translocation of SRP-dependent precursors into the yeast endoplasmic reticulum in vivo. EMBO J. 2001, 20:262-271.
    • (2001) EMBO J. , vol.20 , pp. 262-271
    • Young, B.P.1    Craven, R.2    Reid, P.J.3    Willer, M.4    Stirling, C.J.5
  • 116
    • 80455155003 scopus 로고    scopus 로고
    • A single copy of SecYEG is sufficient for preprotein translocation
    • Kedrov A., Kusters I., Krasnikov V.V., Driessen A.J. A single copy of SecYEG is sufficient for preprotein translocation. EMBO J. 2011, 30:4387-4397.
    • (2011) EMBO J. , vol.30 , pp. 4387-4397
    • Kedrov, A.1    Kusters, I.2    Krasnikov, V.V.3    Driessen, A.J.4
  • 117
    • 84866388574 scopus 로고    scopus 로고
    • Bacterial protein translocation requires only one copy of the SecY complex in vivo
    • Park E., Rapoport T.A. Bacterial protein translocation requires only one copy of the SecY complex in vivo. J. Cell Biol. 2012, 198:881-893.
    • (2012) J. Cell Biol. , vol.198 , pp. 881-893
    • Park, E.1    Rapoport, T.A.2
  • 119
    • 1842561598 scopus 로고    scopus 로고
    • The organization of engaged and quiescent translocons in the endoplasmic reticulum of mammalian cells
    • Snapp E.L., Reinhart G.A., Bogert B.A., Lippincott-Schwartz J., Hegde R.S. The organization of engaged and quiescent translocons in the endoplasmic reticulum of mammalian cells. J. Cell Biol. 2004, 164:997-1007.
    • (2004) J. Cell Biol. , vol.164 , pp. 997-1007
    • Snapp, E.L.1    Reinhart, G.A.2    Bogert, B.A.3    Lippincott-Schwartz, J.4    Hegde, R.S.5
  • 121
    • 33646361833 scopus 로고    scopus 로고
    • The Brl domain in Sec63p is required for assembly of functional endoplasmic reticulum translocons
    • Jermy A.J., Willer M., Davis E., Wilkinson B.M., Stirling C.J. The Brl domain in Sec63p is required for assembly of functional endoplasmic reticulum translocons. J. Biol. Chem. 2006, 281:7899-7906.
    • (2006) J. Biol. Chem. , vol.281 , pp. 7899-7906
    • Jermy, A.J.1    Willer, M.2    Davis, E.3    Wilkinson, B.M.4    Stirling, C.J.5
  • 122
    • 84858238365 scopus 로고    scopus 로고
    • Two copies of the SecY channel and acidic lipids are necessary to activate the SecA translocation ATPase
    • Dalal K., Chan C.S., Sligar S.G., Duong F. Two copies of the SecY channel and acidic lipids are necessary to activate the SecA translocation ATPase. Proc. Natl. Acad. Sci. U. S. A. 2012, 109:4104-4109.
    • (2012) Proc. Natl. Acad. Sci. U. S. A. , vol.109 , pp. 4104-4109
    • Dalal, K.1    Chan, C.S.2    Sligar, S.G.3    Duong, F.4
  • 123
    • 33947717366 scopus 로고    scopus 로고
    • Protein translocation is mediated by oligomers of the SecY complex with one SecY copy forming the channel
    • Osborne A.R., Rapoport T.A. Protein translocation is mediated by oligomers of the SecY complex with one SecY copy forming the channel. Cell 2007, 129:97-110.
    • (2007) Cell , vol.129 , pp. 97-110
    • Osborne, A.R.1    Rapoport, T.A.2
  • 124
    • 0029951178 scopus 로고    scopus 로고
    • Signal sequence-dependent function of the TRAM protein during early phases of translocation across the endoplasmic reticulum membrane
    • Voigt S., Jungnickel B., Hartmann E., Rapoport T.A. Signal sequence-dependent function of the TRAM protein during early phases of translocation across the endoplasmic reticulum membrane. EMBO J. 1996, 134:25-35.
    • (1996) EMBO J. , vol.134 , pp. 25-35
    • Voigt, S.1    Jungnickel, B.2    Hartmann, E.3    Rapoport, T.A.4
  • 125
    • 0037450802 scopus 로고    scopus 로고
    • Substrate-specific function of the translocon-associated protein complex during translocation across the ER membrane
    • Fons R.D., Bogert B.A., Hegde R.S. Substrate-specific function of the translocon-associated protein complex during translocation across the ER membrane. J. Cell Biol. 2003, 160:529-539.
    • (2003) J. Cell Biol. , vol.160 , pp. 529-539
    • Fons, R.D.1    Bogert, B.A.2    Hegde, R.S.3
  • 126
    • 80054041334 scopus 로고    scopus 로고
    • Membrane protein insertion at the endoplasmic reticulum
    • Shao S., Hegde R.S. Membrane protein insertion at the endoplasmic reticulum. Ann. Rev. Cell Dev. Biol. 2011, 27:25-56.
    • (2011) Ann. Rev. Cell Dev. Biol. , vol.27 , pp. 25-56
    • Shao, S.1    Hegde, R.S.2
  • 127
    • 1542358892 scopus 로고    scopus 로고
    • Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins
    • Woolhead C.A., McCormick P.J., Johnson A.E. Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 2004, 116:725-736.
    • (2004) Cell , vol.116 , pp. 725-736
    • Woolhead, C.A.1    McCormick, P.J.2    Johnson, A.E.3
  • 130
    • 57349168025 scopus 로고    scopus 로고
    • Molecular code for protein insertion in the endoplasmic reticulum membrane is similar for N(in)-C(out) and N(out)-C(in) transmembrane helices
    • Lundin C., Kim H., Nilsson I., White S.H., von Heijne G. Molecular code for protein insertion in the endoplasmic reticulum membrane is similar for N(in)-C(out) and N(out)-C(in) transmembrane helices. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:15702-15707.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 15702-15707
    • Lundin, C.1    Kim, H.2    Nilsson, I.3    White, S.H.4    von Heijne, G.5
  • 131
    • 84867218476 scopus 로고    scopus 로고
    • A biphasic pulling force acts on transmembrane helices during translocon-mediated membrane integration
    • Ismail N., Hedman R., Schiller N., von Heijne G. A biphasic pulling force acts on transmembrane helices during translocon-mediated membrane integration. Nat. Struct. Mol. Biol. 2012, 19:1018-1022.
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 1018-1022
    • Ismail, N.1    Hedman, R.2    Schiller, N.3    von Heijne, G.4
  • 132
    • 80053991771 scopus 로고    scopus 로고
    • Polytopic membrane protein folding at L17 in the ribosome tunnel initiates cyclical changes at the translocon
    • Lin P.J., Jongsma C.G., Pool M.R., Johnson A.E. Polytopic membrane protein folding at L17 in the ribosome tunnel initiates cyclical changes at the translocon. J. Cell Biol. 2011, 195:55-70.
    • (2011) J. Cell Biol. , vol.195 , pp. 55-70
    • Lin, P.J.1    Jongsma, C.G.2    Pool, M.R.3    Johnson, A.E.4
  • 133
    • 27144549973 scopus 로고    scopus 로고
    • Sequential triage of transmembrane segments by Sec61alpha during biogenesis of a native multispanning membrane protein
    • Sadlish H., Pitonzo D., Johnson A.E., Skach W.R. Sequential triage of transmembrane segments by Sec61alpha during biogenesis of a native multispanning membrane protein. Nat. Struct. Mol. Biol. 2005, 12:870-878.
    • (2005) Nat. Struct. Mol. Biol. , vol.12 , pp. 870-878
    • Sadlish, H.1    Pitonzo, D.2    Johnson, A.E.3    Skach, W.R.4
  • 134
    • 42449130051 scopus 로고    scopus 로고
    • Specific transmembrane segments are selectively delayed at the ER translocon during opsin biogenesis
    • Ismail N., Crawshaw S.G., Cross B.C., Haagsma A.C., High S. Specific transmembrane segments are selectively delayed at the ER translocon during opsin biogenesis. Biochem. J. 2008, 411:495-506.
    • (2008) Biochem. J. , vol.411 , pp. 495-506
    • Ismail, N.1    Crawshaw, S.G.2    Cross, B.C.3    Haagsma, A.C.4    High, S.5
  • 135
    • 84869090494 scopus 로고    scopus 로고
    • Membrane protein TM segments are retained at the translocon during integration until the nascent chain cues FRET-detected release into bulk lipid
    • Hou B., Lin P.J., Johnson A.E. Membrane protein TM segments are retained at the translocon during integration until the nascent chain cues FRET-detected release into bulk lipid. Mol. Cell 2012, 48:398-408.
    • (2012) Mol. Cell , vol.48 , pp. 398-408
    • Hou, B.1    Lin, P.J.2    Johnson, A.E.3
  • 136
    • 84857439394 scopus 로고    scopus 로고
    • Orientational preferences of neighboring helices can drive ER insertion of a marginally hydrophobic transmembrane helix
    • Ojemalm K., Halling K.K., Nilsson I., von Heijne G. Orientational preferences of neighboring helices can drive ER insertion of a marginally hydrophobic transmembrane helix. Mol. Cell 2012, 45:529-540.
    • (2012) Mol. Cell , vol.45 , pp. 529-540
    • Ojemalm, K.1    Halling, K.K.2    Nilsson, I.3    von Heijne, G.4
  • 137
    • 0025981510 scopus 로고
    • SRP-RNA sequence alignment and secondary structure
    • Larsen N., Zwieb C. SRP-RNA sequence alignment and secondary structure. Nucl. Acids Res. 1991, 19:209-215.
    • (1991) Nucl. Acids Res. , vol.19 , pp. 209-215
    • Larsen, N.1    Zwieb, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.