-
1
-
-
79953752538
-
Molecular mechanism of co-translational protein targeting by the signal recognition particle
-
Saraogi I., Shan S.O. Molecular mechanism of co-translational protein targeting by the signal recognition particle. Traffic 2011, 12:535-542.
-
(2011)
Traffic
, vol.12
, pp. 535-542
-
-
Saraogi, I.1
Shan, S.O.2
-
2
-
-
18844387083
-
Signal recognition particles in chloroplasts, bacteria, yeast and mammals (review)
-
Pool M.R. Signal recognition particles in chloroplasts, bacteria, yeast and mammals (review). Mol. Membr. Biol. 2005, 22:3-15.
-
(2005)
Mol. Membr. Biol.
, vol.22
, pp. 3-15
-
-
Pool, M.R.1
-
3
-
-
79851516418
-
Early targeting events during membrane protein biogenesis in Escherichia coli
-
Bibi E. Early targeting events during membrane protein biogenesis in Escherichia coli. Biochim. Biophys. Acta 2011, 1808:841-850.
-
(2011)
Biochim. Biophys. Acta
, vol.1808
, pp. 841-850
-
-
Bibi, E.1
-
4
-
-
0035283319
-
The signal recognition particle of Archaea
-
Eichler J., Moll R. The signal recognition particle of Archaea. Trends Microbiol. 2001, 9:130-136.
-
(2001)
Trends Microbiol.
, vol.9
, pp. 130-136
-
-
Eichler, J.1
Moll, R.2
-
5
-
-
0020825185
-
Disassembly and reconstitution of signal recognition particle
-
Walter P., Blobel G. Disassembly and reconstitution of signal recognition particle. Cell 1983, 34:525-533.
-
(1983)
Cell
, vol.34
, pp. 525-533
-
-
Walter, P.1
Blobel, G.2
-
6
-
-
0021101293
-
The organization of the 7SL RNA in the signal recognition particle
-
Gundelfinger E.D., Krause E., Melli M., Dobberstein B. The organization of the 7SL RNA in the signal recognition particle. Nucleic Acids Res. 1983, 11:7363-7374.
-
(1983)
Nucleic Acids Res.
, vol.11
, pp. 7363-7374
-
-
Gundelfinger, E.D.1
Krause, E.2
Melli, M.3
Dobberstein, B.4
-
7
-
-
0034254190
-
Elongation arrest is a physiologically important function of the signal recognition particle
-
Mason N., Ciufo L.F., Brown J.D. Elongation arrest is a physiologically important function of the signal recognition particle. EMBO J. 2000, 19:4164-4174.
-
(2000)
EMBO J.
, vol.19
, pp. 4164-4174
-
-
Mason, N.1
Ciufo, L.F.2
Brown, J.D.3
-
8
-
-
0032859702
-
The Alu domain homolog of the yeast signal recognition particle consists of an Srp14p homodimer and a yeast-specific RNA structure
-
Strub K., Fornallaz M., Bui N. The Alu domain homolog of the yeast signal recognition particle consists of an Srp14p homodimer and a yeast-specific RNA structure. RNA 1999, 5:1333-1347.
-
(1999)
RNA
, vol.5
, pp. 1333-1347
-
-
Strub, K.1
Fornallaz, M.2
Bui, N.3
-
9
-
-
0025949923
-
The signal recognition particle in S. cerevisiae
-
Hann B.C., Walter P. The signal recognition particle in S. cerevisiae. Cell 1991, 67:131-144.
-
(1991)
Cell
, vol.67
, pp. 131-144
-
-
Hann, B.C.1
Walter, P.2
-
10
-
-
0034923677
-
The signal recognition particle
-
Keenan R.J., Freymann D.M., Stroud R.M., Walter P. The signal recognition particle. Ann. Rev. Biochem. 2001, 70:755-775.
-
(2001)
Ann. Rev. Biochem.
, vol.70
, pp. 755-775
-
-
Keenan, R.J.1
Freymann, D.M.2
Stroud, R.M.3
Walter, P.4
-
11
-
-
0030832397
-
Co-translational protein targeting catalyzed by the Escherichia coli signal recognition particle and its receptor
-
Powers T., Walter P. Co-translational protein targeting catalyzed by the Escherichia coli signal recognition particle and its receptor. EMBO J. 1997, 16:4880-4886.
-
(1997)
EMBO J.
, vol.16
, pp. 4880-4886
-
-
Powers, T.1
Walter, P.2
-
12
-
-
0022527444
-
The signal sequence of nascent preprolactin interacts with the 54K polypeptide of signal recognition particle
-
Kurzchalia T.V., Wiedmann M., Girshovich A.S., Bochkareva E.S., Bielka H., Rapoport T.A. The signal sequence of nascent preprolactin interacts with the 54K polypeptide of signal recognition particle. Nature 1986, 320:634-636.
-
(1986)
Nature
, vol.320
, pp. 634-636
-
-
Kurzchalia, T.V.1
Wiedmann, M.2
Girshovich, A.S.3
Bochkareva, E.S.4
Bielka, H.5
Rapoport, T.A.6
-
13
-
-
0005614190
-
Photocrosslinking of the signal sequence of nascent preprolactin to the 54-kilodalton polypeptide of the signal recognition particle
-
Krieg U.C., Walter P., Johnson A.E. Photocrosslinking of the signal sequence of nascent preprolactin to the 54-kilodalton polypeptide of the signal recognition particle. Proc. Natl. Acad. Sci. U. S. A. 1986, 83:8604-8608.
-
(1986)
Proc. Natl. Acad. Sci. U. S. A.
, vol.83
, pp. 8604-8608
-
-
Krieg, U.C.1
Walter, P.2
Johnson, A.E.3
-
14
-
-
0024973846
-
The signal recognition particle receptor mediates the GTP-dependent displacement of SRP from the signal sequence of the nascent polypeptide
-
Connolly T., Gilmore R. The signal recognition particle receptor mediates the GTP-dependent displacement of SRP from the signal sequence of the nascent polypeptide. Cell 1989, 57:599-610.
-
(1989)
Cell
, vol.57
, pp. 599-610
-
-
Connolly, T.1
Gilmore, R.2
-
15
-
-
0031017523
-
Structure of the conserved GTPase domain of the signal recognition particle
-
Freymann D.M., Keenan R.J., Stroud R.N., Walter P. Structure of the conserved GTPase domain of the signal recognition particle. Nature 1997, 385:361-364.
-
(1997)
Nature
, vol.385
, pp. 361-364
-
-
Freymann, D.M.1
Keenan, R.J.2
Stroud, R.N.3
Walter, P.4
-
16
-
-
0031030085
-
Crystal structure of the NG domain from the signal recognition particle receptor FtsY
-
Montoya G., Svensson C., Luirink J., Sinning I. Crystal structure of the NG domain from the signal recognition particle receptor FtsY. Nature 1997, 385:365-368.
-
(1997)
Nature
, vol.385
, pp. 365-368
-
-
Montoya, G.1
Svensson, C.2
Luirink, J.3
Sinning, I.4
-
17
-
-
77953025666
-
Recognition of a signal peptide by the signal recognition particle
-
Janda C.Y., Li J., Oubridge C., Hernandez H., Robinson C.V., Nagai K. Recognition of a signal peptide by the signal recognition particle. Nature 2010, 465:507-510.
-
(2010)
Nature
, vol.465
, pp. 507-510
-
-
Janda, C.Y.1
Li, J.2
Oubridge, C.3
Hernandez, H.4
Robinson, C.V.5
Nagai, K.6
-
18
-
-
79952363483
-
Structural basis of signal-sequence recognition by the signal recognition particle
-
Hainzl T., Huang S., Merilainen G., Brannstrom K., Sauer-Eriksson A.E. Structural basis of signal-sequence recognition by the signal recognition particle. Nat. Struct. Mol. Biol. 2011, 18:389-391.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 389-391
-
-
Hainzl, T.1
Huang, S.2
Merilainen, G.3
Brannstrom, K.4
Sauer-Eriksson, A.E.5
-
19
-
-
0032563163
-
Crystal structure of the signal sequence binding protein of the signal recognition particle
-
Keenan R.J., Freymann D.M., Walter P., Stroud R.M. Crystal structure of the signal sequence binding protein of the signal recognition particle. Cell 1998, 94:181-191.
-
(1998)
Cell
, vol.94
, pp. 181-191
-
-
Keenan, R.J.1
Freymann, D.M.2
Walter, P.3
Stroud, R.M.4
-
20
-
-
0034681490
-
Crystal structure of the ribonucleoprotein core of the signal recognition particle
-
Batey R.T., Rambo R.P., Lucast L., Rha B., Doudna J.A. Crystal structure of the ribonucleoprotein core of the signal recognition particle. Science 2000, 287:1232-1239.
-
(2000)
Science
, vol.287
, pp. 1232-1239
-
-
Batey, R.T.1
Rambo, R.P.2
Lucast, L.3
Rha, B.4
Doudna, J.A.5
-
22
-
-
0024400708
-
Homology of 54K protein of signal-recognition particle, docking protein and two E. coli proteins with putative GTP-binding domains
-
Römisch K., Webb J., Herz J., Prehn S., Frank R., Vingron M., Dobberstein B. Homology of 54K protein of signal-recognition particle, docking protein and two E. coli proteins with putative GTP-binding domains. Nature 1989, 340:478-482.
-
(1989)
Nature
, vol.340
, pp. 478-482
-
-
Römisch, K.1
Webb, J.2
Herz, J.3
Prehn, S.4
Frank, R.5
Vingron, M.6
Dobberstein, B.7
-
23
-
-
0026533588
-
The methionine-rich domain of the 54kDa subunit of signal recognition particle is sufficient for the interaction with signal sequences
-
Lütcke H., High S., Römisch K., Ashford A.J., Dobberstein B. The methionine-rich domain of the 54kDa subunit of signal recognition particle is sufficient for the interaction with signal sequences. EMBO J. 1992, 11:1543-1551.
-
(1992)
EMBO J.
, vol.11
, pp. 1543-1551
-
-
Lütcke, H.1
High, S.2
Römisch, K.3
Ashford, A.J.4
Dobberstein, B.5
-
24
-
-
0024963567
-
Signal sequences
-
Gierasch L.M. Signal sequences. Biochemistry 1989, 28:923-930.
-
(1989)
Biochemistry
, vol.28
, pp. 923-930
-
-
Gierasch, L.M.1
-
25
-
-
0021856417
-
Signal sequences. The limits of variation
-
von Heijne G. Signal sequences. The limits of variation. J. Mol. Biol. 1985, 184:99-105.
-
(1985)
J. Mol. Biol.
, vol.184
, pp. 99-105
-
-
von Heijne, G.1
-
26
-
-
0030595327
-
Signal sequences: the same yet different
-
Zheng N., Gierasch L.M. Signal sequences: the same yet different. Cell 1996, 86:849-852.
-
(1996)
Cell
, vol.86
, pp. 849-852
-
-
Zheng, N.1
Gierasch, L.M.2
-
27
-
-
0031045695
-
The hydrophobic region of signal peptides is a determinant for SRP recognition and protein translocation across the ER membrane
-
Hatsuzawa K., Tagaya M., Mizushima S. The hydrophobic region of signal peptides is a determinant for SRP recognition and protein translocation across the ER membrane. J. Biochem. 1997, 121:270-277.
-
(1997)
J. Biochem.
, vol.121
, pp. 270-277
-
-
Hatsuzawa, K.1
Tagaya, M.2
Mizushima, S.3
-
28
-
-
0029952547
-
Signal sequences specify the targeting route to the endoplasmic reticulum membrane
-
Ng D.T., Brown J.D., Walter P. Signal sequences specify the targeting route to the endoplasmic reticulum membrane. J. Cell Biol. 1996, 134:269-278.
-
(1996)
J. Cell Biol.
, vol.134
, pp. 269-278
-
-
Ng, D.T.1
Brown, J.D.2
Walter, P.3
-
29
-
-
17644386832
-
Use of thioredoxin as a reporter to identify a subset of Escherichia coli signal sequences that promote signal recognition particle-dependent translocation
-
Huber D., Boyd D., Xia Y., Olma M.H., Gerstein M., Beckwith J. Use of thioredoxin as a reporter to identify a subset of Escherichia coli signal sequences that promote signal recognition particle-dependent translocation. J. Bacteriol. 2005, 187:2983-2991.
-
(2005)
J. Bacteriol.
, vol.187
, pp. 2983-2991
-
-
Huber, D.1
Boyd, D.2
Xia, Y.3
Olma, M.H.4
Gerstein, M.5
Beckwith, J.6
-
30
-
-
0030774264
-
Dipeptidyl aminopeptidase processing and biosynthesis of alkaline extracellular protease from Yarrowia lipolytica
-
Matoba S., Morano K.A., Klionsky D.J., Kim K., Ogrydziak D.M. Dipeptidyl aminopeptidase processing and biosynthesis of alkaline extracellular protease from Yarrowia lipolytica. Microbiology 1997, 143(Pt 10):3263-3272.
-
(1997)
Microbiology
, vol.143
, Issue.PART 10
, pp. 3263-3272
-
-
Matoba, S.1
Morano, K.A.2
Klionsky, D.J.3
Kim, K.4
Ogrydziak, D.M.5
-
31
-
-
0242412456
-
Basic amino acids in a distinct subset of signal peptides promote interaction with the signal recognition particle
-
Peterson J.H., Woolhead C.A., Bernstein H.D. Basic amino acids in a distinct subset of signal peptides promote interaction with the signal recognition particle. J. Biol. Chem. 2003, 278:46155-46162.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 46155-46162
-
-
Peterson, J.H.1
Woolhead, C.A.2
Bernstein, H.D.3
-
32
-
-
84863934536
-
Efficient secretion of small proteins in mammalian cells relies on Sec62-dependent posttranslational translocation
-
Lakkaraju A.K., Thankappan R., Mary C., Garrison J.L., Taunton J., Strub K. Efficient secretion of small proteins in mammalian cells relies on Sec62-dependent posttranslational translocation. Mol. Biol. Cell 2012, 23:2712-2722.
-
(2012)
Mol. Biol. Cell
, vol.23
, pp. 2712-2722
-
-
Lakkaraju, A.K.1
Thankappan, R.2
Mary, C.3
Garrison, J.L.4
Taunton, J.5
Strub, K.6
-
33
-
-
33646918973
-
An unusual signal peptide extension inhibits the binding of bacterial presecretory proteins to the signal recognition particle, trigger factor, and the SecYEG complex
-
Peterson J.H., Szabady R.L., Bernstein H.D. An unusual signal peptide extension inhibits the binding of bacterial presecretory proteins to the signal recognition particle, trigger factor, and the SecYEG complex. J. Biol. Chem. 2006, 281:9038-9048.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 9038-9048
-
-
Peterson, J.H.1
Szabady, R.L.2
Bernstein, H.D.3
-
34
-
-
0038719738
-
SRP binds to ribosome-bound signal sequences with fluorescence-detected subnanomolar affinity that does not diminish as the nascent chain lengthens
-
Flanagan J.J., Chen J.C., Miao Y., Shao Y., Lin J., Bock P.E., Johnson A.E. SRP binds to ribosome-bound signal sequences with fluorescence-detected subnanomolar affinity that does not diminish as the nascent chain lengthens. J. Biol. Chem. 2003, 278:18628-18637.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 18628-18637
-
-
Flanagan, J.J.1
Chen, J.C.2
Miao, Y.3
Shao, Y.4
Lin, J.5
Bock, P.E.6
Johnson, A.E.7
-
35
-
-
43249083239
-
Signal sequence-independent membrane targeting of ribosomes containing short nascent peptides within the exit tunnel
-
Bornemann T., Jockel J., Rodnina M.V., Wintermeyer W. Signal sequence-independent membrane targeting of ribosomes containing short nascent peptides within the exit tunnel. Nat. Struct. Mol. Biol. 2008, 15:494-499.
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 494-499
-
-
Bornemann, T.1
Jockel, J.2
Rodnina, M.V.3
Wintermeyer, W.4
-
36
-
-
84870817496
-
Dynamic switch of the signal recognition particle from scanning to targeting
-
Holtkamp W., Lee S., Bornemann T., Senyushkina T., Rodnina M.V., Wintermeyer W. Dynamic switch of the signal recognition particle from scanning to targeting. Nat. Struct. Mol. Biol. 2012.
-
(2012)
Nat. Struct. Mol. Biol.
-
-
Holtkamp, W.1
Lee, S.2
Bornemann, T.3
Senyushkina, T.4
Rodnina, M.V.5
Wintermeyer, W.6
-
37
-
-
0029068214
-
SRP samples nascent chains for the presence of signal sequences by interacting with the ribosome at a discrete step during translation elongation
-
Ogg S.C., Walter P. SRP samples nascent chains for the presence of signal sequences by interacting with the ribosome at a discrete step during translation elongation. Cell 1995, 81:1075-1084.
-
(1995)
Cell
, vol.81
, pp. 1075-1084
-
-
Ogg, S.C.1
Walter, P.2
-
38
-
-
0037162838
-
Distinct modes of signal recognition particle interaction with the ribosome
-
Pool M.R., Stumm J., Fulga T.A., Sinning I., Dobberstein B. Distinct modes of signal recognition particle interaction with the ribosome. Science 2002, 297:1345-1348.
-
(2002)
Science
, vol.297
, pp. 1345-1348
-
-
Pool, M.R.1
Stumm, J.2
Fulga, T.A.3
Sinning, I.4
Dobberstein, B.5
-
39
-
-
1542319100
-
Structure of the signal recognition particle interacting with the elongation-arrested ribosome
-
Halic M., Becker T., Pool M.R., Spahn C.M., Grassucci R.A., Frank J., Beckmann R. Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature 2004, 427:808-814.
-
(2004)
Nature
, vol.427
, pp. 808-814
-
-
Halic, M.1
Becker, T.2
Pool, M.R.3
Spahn, C.M.4
Grassucci, R.A.5
Frank, J.6
Beckmann, R.7
-
40
-
-
33751325296
-
Following the signal sequence from ribosomal tunnel exit to signal recognition particle
-
Halic M., Blau M., Becker T., Mielke T., Pool M.R., Wild K., Sinning I., Beckmann R. Following the signal sequence from ribosomal tunnel exit to signal recognition particle. Nature 2006, 444:507-511.
-
(2006)
Nature
, vol.444
, pp. 507-511
-
-
Halic, M.1
Blau, M.2
Becker, T.3
Mielke, T.4
Pool, M.R.5
Wild, K.6
Sinning, I.7
Beckmann, R.8
-
41
-
-
0037406142
-
The signal recognition particle binds to protein L23 at the peptide exit of the Escherichia coli ribosome
-
Gu S.Q., Peske F., Wieden H.J., Rodnina M.V., Wintermeyer W. The signal recognition particle binds to protein L23 at the peptide exit of the Escherichia coli ribosome. RNA 2003, 9:566-573.
-
(2003)
RNA
, vol.9
, pp. 566-573
-
-
Gu, S.Q.1
Peske, F.2
Wieden, H.J.3
Rodnina, M.V.4
Wintermeyer, W.5
-
42
-
-
66849109240
-
The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins
-
Kramer G., Boehringer D., Ban N., Bukau B. The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat. Struct. Mol. Biol. 2009, 16:589-597.
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 589-597
-
-
Kramer, G.1
Boehringer, D.2
Ban, N.3
Bukau, B.4
-
43
-
-
58149264965
-
Signal sequences activate the catalytic switch of SRP RNA
-
Bradshaw N., Neher S.B., Booth D.S., Walter P. Signal sequences activate the catalytic switch of SRP RNA. Science 2009, 323:127-130.
-
(2009)
Science
, vol.323
, pp. 127-130
-
-
Bradshaw, N.1
Neher, S.B.2
Booth, D.S.3
Walter, P.4
-
45
-
-
60849096653
-
A signal-anchor sequence stimulates signal recognition particle binding to ribosomes from inside the exit tunnel
-
Berndt U., Oellerer S., Zhang Y., Johnson A.E., Rospert S. A signal-anchor sequence stimulates signal recognition particle binding to ribosomes from inside the exit tunnel. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:1398-1403.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 1398-1403
-
-
Berndt, U.1
Oellerer, S.2
Zhang, Y.3
Johnson, A.E.4
Rospert, S.5
-
46
-
-
84862689308
-
Cotranslational protein folding within the ribosome tunnel influences trigger-factor recruitment
-
Lin K.F., Sun C.S., Huang Y.C., Chan S.I., Koubek J., Wu T.H., Huang J.J. Cotranslational protein folding within the ribosome tunnel influences trigger-factor recruitment. Biophys. J. 2012, 102:2818-2827.
-
(2012)
Biophys. J.
, vol.102
, pp. 2818-2827
-
-
Lin, K.F.1
Sun, C.S.2
Huang, Y.C.3
Chan, S.I.4
Koubek, J.5
Wu, T.H.6
Huang, J.J.7
-
47
-
-
66349109602
-
A trans-membrane domain segment inside the ribosome exit tunnel triggers RAMP4 recruitment to the Sec61p translocase
-
Pool M.R. A trans-membrane domain segment inside the ribosome exit tunnel triggers RAMP4 recruitment to the Sec61p translocase. J. Cell Biol. 2009, 185:889-902.
-
(2009)
J. Cell Biol.
, vol.185
, pp. 889-902
-
-
Pool, M.R.1
-
48
-
-
0031471055
-
Both lumenal and cytosolic gating of the aqueous ER translocon pore is regulated from within the ribosome during membrane protein integration
-
Liao S., Lin J., Do H., Johnson A.E. Both lumenal and cytosolic gating of the aqueous ER translocon pore is regulated from within the ribosome during membrane protein integration. Cell 1997, 90:31-41.
-
(1997)
Cell
, vol.90
, pp. 31-41
-
-
Liao, S.1
Lin, J.2
Do, H.3
Johnson, A.E.4
-
49
-
-
0025853753
-
The signal sequence interacts with the methionine-rich domain of the 54-kD protein of signal recognition particle
-
High S., Dobberstein B. The signal sequence interacts with the methionine-rich domain of the 54-kD protein of signal recognition particle. J. Cell Biol. 1991, 113:229-233.
-
(1991)
J. Cell Biol.
, vol.113
, pp. 229-233
-
-
High, S.1
Dobberstein, B.2
-
50
-
-
0025601549
-
The methionine-rich domain of the 54kD protein subunit of the signal recognition particle contains an RNA binding site and can be crosslinked to a signal sequence
-
Zopf D., Bernstein H.D., Johnson A.E., Walter P. The methionine-rich domain of the 54kD protein subunit of the signal recognition particle contains an RNA binding site and can be crosslinked to a signal sequence. EMBO J. 1990, 9:4511-4517.
-
(1990)
EMBO J.
, vol.9
, pp. 4511-4517
-
-
Zopf, D.1
Bernstein, H.D.2
Johnson, A.E.3
Walter, P.4
-
51
-
-
0024966540
-
Model for signal sequence recognition from amino-acid sequence of 54K subunit of signal recognition particle
-
Bernstein H.D., Poritz M.A., Strub K., Hoben P.J., Brenner S., Walter P. Model for signal sequence recognition from amino-acid sequence of 54K subunit of signal recognition particle. Nature 1989, 340:482-486.
-
(1989)
Nature
, vol.340
, pp. 482-486
-
-
Bernstein, H.D.1
Poritz, M.A.2
Strub, K.3
Hoben, P.J.4
Brenner, S.5
Walter, P.6
-
52
-
-
0037459447
-
Structural basis for the function of the beta subunit of the eukaryotic signal recognition particle receptor
-
Schwartz T., Blobel G. Structural basis for the function of the beta subunit of the eukaryotic signal recognition particle receptor. Cell 2003, 112:793-803.
-
(2003)
Cell
, vol.112
, pp. 793-803
-
-
Schwartz, T.1
Blobel, G.2
-
53
-
-
33646461205
-
The structure of the mammalian signal recognition particle (SRP) receptor as prototype for the interaction of small GTPases with Longin domains
-
Schlenker O., Hendricks A., Sinning I., Wild K. The structure of the mammalian signal recognition particle (SRP) receptor as prototype for the interaction of small GTPases with Longin domains. J. Biol. Chem. 2006, 281:8898-8906.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 8898-8906
-
-
Schlenker, O.1
Hendricks, A.2
Sinning, I.3
Wild, K.4
-
54
-
-
0028930545
-
The b subunit of the signal recognition particle receptor is a transmembrane GTPase that anchors the a subunit, a peripheral membrane GTPase, to the endoplasmic reticulum membrane
-
Miller J.D., Tajima S., Lauffer L., Walter P. The b subunit of the signal recognition particle receptor is a transmembrane GTPase that anchors the a subunit, a peripheral membrane GTPase, to the endoplasmic reticulum membrane. J. Cell Biol. 1995, 128:273-282.
-
(1995)
J. Cell Biol.
, vol.128
, pp. 273-282
-
-
Miller, J.D.1
Tajima, S.2
Lauffer, L.3
Walter, P.4
-
55
-
-
0034282447
-
Nucleotide-dependent binding of the GTPase domain of the signal recognition particle receptor b-subunit to the a-subunit
-
Legate K., Falcone D., Andrews D. Nucleotide-dependent binding of the GTPase domain of the signal recognition particle receptor b-subunit to the a-subunit. J. Biol. Chem. 2000, 275:27439-27446.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 27439-27446
-
-
Legate, K.1
Falcone, D.2
Andrews, D.3
-
56
-
-
0347584006
-
Substrate twinning activates the signal recognition particle and its receptor
-
Egea P.F., Shan S.O., Napetschnig J., Savage D.F., Walter P., Stroud R.M. Substrate twinning activates the signal recognition particle and its receptor. Nature 2004, 427:215-221.
-
(2004)
Nature
, vol.427
, pp. 215-221
-
-
Egea, P.F.1
Shan, S.O.2
Napetschnig, J.3
Savage, D.F.4
Walter, P.5
Stroud, R.M.6
-
57
-
-
0346373753
-
Heterodimeric GTPase core of the SRP targeting complex
-
Focia P.J., Shepotinovskaya I.V., Seidler J.A., Freymann D.M. Heterodimeric GTPase core of the SRP targeting complex. Science 2004, 303:373-377.
-
(2004)
Science
, vol.303
, pp. 373-377
-
-
Focia, P.J.1
Shepotinovskaya, I.V.2
Seidler, J.A.3
Freymann, D.M.4
-
58
-
-
0030845258
-
The signal recognition particle receptor of Escherichia coli (FtsY) has a nucleotide exchange factor built into the GTPase domain
-
Moser C., Mol O., Goody R.S., Sinning I. The signal recognition particle receptor of Escherichia coli (FtsY) has a nucleotide exchange factor built into the GTPase domain. Proc. Natl. Acad. Sci. U. S. A. 1997, 94:11339-11344.
-
(1997)
Proc. Natl. Acad. Sci. U. S. A.
, vol.94
, pp. 11339-11344
-
-
Moser, C.1
Mol, O.2
Goody, R.S.3
Sinning, I.4
-
59
-
-
0030678106
-
Empty site forms of SRP54 and SRalpha GTPases mediate targeting of ribosome-nascent chain complexes to the endoplasmic reticulum
-
Rapiejko P.J., Gilmore R. Empty site forms of SRP54 and SRalpha GTPases mediate targeting of ribosome-nascent chain complexes to the endoplasmic reticulum. Cell 1997, 89:703-713.
-
(1997)
Cell
, vol.89
, pp. 703-713
-
-
Rapiejko, P.J.1
Gilmore, R.2
-
60
-
-
0029097359
-
Reciprocal stimulation of GTP hydrolysis by two directly interacting GTPases
-
Powers T., Walter P. Reciprocal stimulation of GTP hydrolysis by two directly interacting GTPases. Science 1995, 269:1422-1424.
-
(1995)
Science
, vol.269
, pp. 1422-1424
-
-
Powers, T.1
Walter, P.2
-
61
-
-
47849117948
-
Demonstration of a multistep mechanism for assembly of the SRP x SRP receptor complex: implications for the catalytic role of SRP RNA
-
Zhang X., Kung S., Shan S.O. Demonstration of a multistep mechanism for assembly of the SRP x SRP receptor complex: implications for the catalytic role of SRP RNA. J. Mol. Biol. 2008, 381:581-593.
-
(2008)
J. Mol. Biol.
, vol.381
, pp. 581-593
-
-
Zhang, X.1
Kung, S.2
Shan, S.O.3
-
62
-
-
79955005771
-
Synergistic actions between the SRP RNA and translating ribosome allow efficient delivery of the correct cargos during cotranslational protein targeting
-
Shen K., Zhang X., Shan S.O. Synergistic actions between the SRP RNA and translating ribosome allow efficient delivery of the correct cargos during cotranslational protein targeting. RNA 2011, 17:892-902.
-
(2011)
RNA
, vol.17
, pp. 892-902
-
-
Shen, K.1
Zhang, X.2
Shan, S.O.3
-
63
-
-
8844253060
-
Mechanism of association and reciprocal activation of two GTPases
-
Shan S.O., Stroud R.M., Walter P. Mechanism of association and reciprocal activation of two GTPases. PLoS Biol. 2004, 2:e320.
-
(2004)
PLoS Biol.
, vol.2
-
-
Shan, S.O.1
Stroud, R.M.2
Walter, P.3
-
64
-
-
60549083291
-
Multiple conformational switches in a GTPase complex control co-translational protein targeting
-
Zhang X., Schaffitzel C., Ban N., Shan S.O. Multiple conformational switches in a GTPase complex control co-translational protein targeting. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:1754-1759.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 1754-1759
-
-
Zhang, X.1
Schaffitzel, C.2
Ban, N.3
Shan, S.O.4
-
65
-
-
77952127782
-
Sequential checkpoints govern substrate selection during cotranslational protein targeting
-
Zhang X., Rashid R., Wang K., Shan S.O. Sequential checkpoints govern substrate selection during cotranslational protein targeting. Science 2010, 328:757-760.
-
(2010)
Science
, vol.328
, pp. 757-760
-
-
Zhang, X.1
Rashid, R.2
Wang, K.3
Shan, S.O.4
-
66
-
-
0034596007
-
Role of the 4.5S RNA in assembly of the bacterial signal recognition particle with its receptor
-
Peluso P., Herschlag D., Nock S., Freymann D., Johnson A.E., Walter P. Role of the 4.5S RNA in assembly of the bacterial signal recognition particle with its receptor. Science 2000, 288.
-
(2000)
Science
, pp. 288
-
-
Peluso, P.1
Herschlag, D.2
Nock, S.3
Freymann, D.4
Johnson, A.E.5
Walter, P.6
-
67
-
-
77955881180
-
Lipid activation of the signal recognition particle receptor provides spatial coordination of protein targeting
-
Lam V.Q., Akopian D., Rome M., Henningsen D., Shan S.O. Lipid activation of the signal recognition particle receptor provides spatial coordination of protein targeting. J. Cell Biol. 2010, 190:623-635.
-
(2010)
J. Cell Biol.
, vol.190
, pp. 623-635
-
-
Lam, V.Q.1
Akopian, D.2
Rome, M.3
Henningsen, D.4
Shan, S.O.5
-
68
-
-
34547929138
-
Conformational changes in the GTPase modules of the signal reception particle and its receptor drive initiation of protein translocation
-
Shan S.O., Chandrasekar S., Walter P. Conformational changes in the GTPase modules of the signal reception particle and its receptor drive initiation of protein translocation. J. Cell Biol. 2007, 178:611-620.
-
(2007)
J. Cell Biol.
, vol.178
, pp. 611-620
-
-
Shan, S.O.1
Chandrasekar, S.2
Walter, P.3
-
69
-
-
0026557511
-
Protein translocation across the ER requires a functional GTP binding site in the a subunit of the signal recognition particle receptor
-
Rapiejko P.J., Gilmore R. Protein translocation across the ER requires a functional GTP binding site in the a subunit of the signal recognition particle receptor. J. Cell Biol. 1992, 117:493-503.
-
(1992)
J. Cell Biol.
, vol.117
, pp. 493-503
-
-
Rapiejko, P.J.1
Gilmore, R.2
-
70
-
-
0026326816
-
Requirement of GTP hydrolysis for release of signal recognition particle from its receptor
-
Connolly T., Rapiejko P.J., Gilmore R. Requirement of GTP hydrolysis for release of signal recognition particle from its receptor. Science 1991, 252:1171-1173.
-
(1991)
Science
, vol.252
, pp. 1171-1173
-
-
Connolly, T.1
Rapiejko, P.J.2
Gilmore, R.3
-
71
-
-
79951826865
-
The crystal structure of the signal recognition particle in complex with its receptor
-
Ataide S.F., Schmitz N., Shen K., Ke A., Shan S.O., Doudna J.A., Ban N. The crystal structure of the signal recognition particle in complex with its receptor. Science 2011, 331:881-886.
-
(2011)
Science
, vol.331
, pp. 881-886
-
-
Ataide, S.F.1
Schmitz, N.2
Shen, K.3
Ke, A.4
Shan, S.O.5
Doudna, J.A.6
Ban, N.7
-
72
-
-
84870979537
-
Activated GTPase movement on an RNA scaffold drives co-translational protein targeting
-
Shen K., Arslan S., Akopian D., Ha T., Shan S.O. Activated GTPase movement on an RNA scaffold drives co-translational protein targeting. Nature 2012, 492:271-275.
-
(2012)
Nature
, vol.492
, pp. 271-275
-
-
Shen, K.1
Arslan, S.2
Akopian, D.3
Ha, T.4
Shan, S.O.5
-
73
-
-
0035252889
-
Ribosome fidelity: tRNA discrimination, proofreading and induced fit
-
Rodnina M.V., Wintermeyer W. Ribosome fidelity: tRNA discrimination, proofreading and induced fit. Trends Biochem. Sci. 2001, 26:124-130.
-
(2001)
Trends Biochem. Sci.
, vol.26
, pp. 124-130
-
-
Rodnina, M.V.1
Wintermeyer, W.2
-
74
-
-
77951199870
-
Residues in SRP9/14 essential for elongation arrest activity of the signal recognition particle define a positively charged functional domain on one side of the protein
-
Mary C., Scherrer A., Huck L., Lakkaraju A.K., Thomas Y., Johnson A.E., Strub K. Residues in SRP9/14 essential for elongation arrest activity of the signal recognition particle define a positively charged functional domain on one side of the protein. RNA 2010, 16:969-979.
-
(2010)
RNA
, vol.16
, pp. 969-979
-
-
Mary, C.1
Scherrer, A.2
Huck, L.3
Lakkaraju, A.K.4
Thomas, Y.5
Johnson, A.E.6
Strub, K.7
-
75
-
-
0019822645
-
Translocation of proteins across the endoplasmic reticulum III. Signal recognition protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes
-
Walter P., Blobel G. Translocation of proteins across the endoplasmic reticulum III. Signal recognition protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes. J. Cell Biol. 1981, 91:557-561.
-
(1981)
J. Cell Biol.
, vol.91
, pp. 557-561
-
-
Walter, P.1
Blobel, G.2
-
76
-
-
0021814751
-
Elongation arrest is not a prerequisite for secretory protein translocation across the microsomal membrane
-
Siegel V., Walter P. Elongation arrest is not a prerequisite for secretory protein translocation across the microsomal membrane. J. Cell Biol. 1985, 100:1913-1921.
-
(1985)
J. Cell Biol.
, vol.100
, pp. 1913-1921
-
-
Siegel, V.1
Walter, P.2
-
77
-
-
0030785575
-
A truncation in the 14kDa protein of the signal recognition particle leads to tertiary structure changes in the RNA and abolishes the elongation arrest activity of the particle
-
Thomas Y., Bui N., Strub K. A truncation in the 14kDa protein of the signal recognition particle leads to tertiary structure changes in the RNA and abolishes the elongation arrest activity of the particle. Nucleic Acids Res. 1997, 25:1920-1929.
-
(1997)
Nucleic Acids Res.
, vol.25
, pp. 1920-1929
-
-
Thomas, Y.1
Bui, N.2
Strub, K.3
-
78
-
-
42949161206
-
SRP keeps polypeptides translocation-competent by slowing translation to match limiting ER-targeting sites
-
Lakkaraju A.K., Mary C., Scherrer A., Johnson A.E., Strub K. SRP keeps polypeptides translocation-competent by slowing translation to match limiting ER-targeting sites. Cell 2008, 133:440-451.
-
(2008)
Cell
, vol.133
, pp. 440-451
-
-
Lakkaraju, A.K.1
Mary, C.2
Scherrer, A.3
Johnson, A.E.4
Strub, K.5
-
79
-
-
0346096862
-
Signal recognition particle Alu domain occupies a defined site at the ribosomal subunit interface upon signal sequence recognition
-
Terzi L., Pool M.R., Dobberstein B., Strub K. Signal recognition particle Alu domain occupies a defined site at the ribosomal subunit interface upon signal sequence recognition. Biochemistry 2004, 43:107-117.
-
(2004)
Biochemistry
, vol.43
, pp. 107-117
-
-
Terzi, L.1
Pool, M.R.2
Dobberstein, B.3
Strub, K.4
-
80
-
-
0023872049
-
Each of the activities of signal recognition particle (SRP) is contained within a distinct domain: analysis of biochemical mutants of SRP
-
Siegel V., Walter P. Each of the activities of signal recognition particle (SRP) is contained within a distinct domain: analysis of biochemical mutants of SRP. Cell 1988, 52:39-49.
-
(1988)
Cell
, vol.52
, pp. 39-49
-
-
Siegel, V.1
Walter, P.2
-
81
-
-
36749001066
-
Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes
-
Rapoport T.A. Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 2007, 450:663-669.
-
(2007)
Nature
, vol.450
, pp. 663-669
-
-
Rapoport, T.A.1
-
82
-
-
0027936633
-
Systematic probing of the environment of a translocating secretory protein during translocation through the ER membrane
-
Mothes W., Prehn S., Rapoport T.A. Systematic probing of the environment of a translocating secretory protein during translocation through the ER membrane. EMBO J. 1994, 13:3973-3982.
-
(1994)
EMBO J.
, vol.13
, pp. 3973-3982
-
-
Mothes, W.1
Prehn, S.2
Rapoport, T.A.3
-
83
-
-
0002744720
-
Labelling the hydrophobic core of membranes
-
Brunner J. Labelling the hydrophobic core of membranes. Trends Biochem. Sci. 1981, 6:44-46.
-
(1981)
Trends Biochem. Sci.
, vol.6
, pp. 44-46
-
-
Brunner, J.1
-
84
-
-
0027424601
-
Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane
-
Görlich D., Rapoport T.A. Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell 1993, 75:615-630.
-
(1993)
Cell
, vol.75
, pp. 615-630
-
-
Görlich, D.1
Rapoport, T.A.2
-
85
-
-
0026684458
-
Signal peptides open protein-conducting channels in E. coli
-
Simon S.M., Blobel G. Signal peptides open protein-conducting channels in E. coli. Cell 1992, 69:677-684.
-
(1992)
Cell
, vol.69
, pp. 677-684
-
-
Simon, S.M.1
Blobel, G.2
-
86
-
-
0027162564
-
The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation
-
Crowley K.S., Reinhart G.D., Johnson A.E. The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation. Cell 1993, 73:1101-1115.
-
(1993)
Cell
, vol.73
, pp. 1101-1115
-
-
Crowley, K.S.1
Reinhart, G.D.2
Johnson, A.E.3
-
87
-
-
0347192985
-
X-ray structure of a protein-conducting channel
-
Van den Berg B., Clemons W.M., Collinson I., Modis Y., Hartmann E., Harrison S.C., Rapoport T.A. X-ray structure of a protein-conducting channel. Nature 2004, 427:36-44.
-
(2004)
Nature
, vol.427
, pp. 36-44
-
-
Van den Berg, B.1
Clemons, W.M.2
Collinson, I.3
Modis, Y.4
Hartmann, E.5
Harrison, S.C.6
Rapoport, T.A.7
-
88
-
-
54049151196
-
Conformational transition of Sec machinery inferred from bacterial SecYE structures
-
Tsukazaki T., Mori H., Fukai S., Ishitani R., Mori T., Dohmae N., Perederina A., Sugita Y., Vassylyev D.G., Ito K., Nureki O. Conformational transition of Sec machinery inferred from bacterial SecYE structures. Nature 2008, 455:988-991.
-
(2008)
Nature
, vol.455
, pp. 988-991
-
-
Tsukazaki, T.1
Mori, H.2
Fukai, S.3
Ishitani, R.4
Mori, T.5
Dohmae, N.6
Perederina, A.7
Sugita, Y.8
Vassylyev, D.G.9
Ito, K.10
Nureki, O.11
-
89
-
-
54049111011
-
Structure of a complex of the ATPase SecA and the protein-translocation channel
-
Zimmer J., Nam Y., Rapoport T.A. Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature 2008, 455:936-943.
-
(2008)
Nature
, vol.455
, pp. 936-943
-
-
Zimmer, J.1
Nam, Y.2
Rapoport, T.A.3
-
90
-
-
71549167617
-
Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome
-
Becker T., Bhushan S., Jarasch A., Armache J.P., Funes S., Jossinet F., Gumbart J., Mielke T., Berninghausen O., Schulten K., Westhof E., Gilmore R., Mandon E.C., Beckmann R. Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome. Science 2009, 326:1369-1373.
-
(2009)
Science
, vol.326
, pp. 1369-1373
-
-
Becker, T.1
Bhushan, S.2
Jarasch, A.3
Armache, J.P.4
Funes, S.5
Jossinet, F.6
Gumbart, J.7
Mielke, T.8
Berninghausen, O.9
Schulten, K.10
Westhof, E.11
Gilmore, R.12
Mandon, E.C.13
Beckmann, R.14
-
91
-
-
46049116259
-
Single copies of Sec61 and TRAP associate with a nontranslating mammalian ribosome
-
Menetret J.F., Hegde R.S., Aguiar M., Gygi S.P., Park E., Rapoport T.A., Akey C.W. Single copies of Sec61 and TRAP associate with a nontranslating mammalian ribosome. Structure 2008, 16:1126-1137.
-
(2008)
Structure
, vol.16
, pp. 1126-1137
-
-
Menetret, J.F.1
Hegde, R.S.2
Aguiar, M.3
Gygi, S.P.4
Park, E.5
Rapoport, T.A.6
Akey, C.W.7
-
92
-
-
18544380083
-
Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY
-
Cannon K.S., Or E., Clemons W.M., Shibata Y., Rapoport T.A. Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY. J. Cell Biol. 2005, 169:219-225.
-
(2005)
J. Cell Biol.
, vol.169
, pp. 219-225
-
-
Cannon, K.S.1
Or, E.2
Clemons, W.M.3
Shibata, Y.4
Rapoport, T.A.5
-
93
-
-
33646271115
-
Molecular dynamics studies of the archaeal translocon
-
Gumbart J., Schulten K. Molecular dynamics studies of the archaeal translocon. Biophys. J. 2006, 90:2356-2367.
-
(2006)
Biophys. J.
, vol.90
, pp. 2356-2367
-
-
Gumbart, J.1
Schulten, K.2
-
94
-
-
34248563028
-
Determining the conductance of the SecY protein translocation channel for small molecules
-
Saparov S.M., Erlandson K., Cannon K., Schaletzky J., Schulman S., Rapoport T.A., Pohl P. Determining the conductance of the SecY protein translocation channel for small molecules. Mol. Cell 2007, 26:501-509.
-
(2007)
Mol. Cell
, vol.26
, pp. 501-509
-
-
Saparov, S.M.1
Erlandson, K.2
Cannon, K.3
Schaletzky, J.4
Schulman, S.5
Rapoport, T.A.6
Pohl, P.7
-
95
-
-
0023737896
-
Evidence for the loop model of signal sequence insertion into the endoplasmic reticulum
-
Shaw A.E., Rottier P.J.M., Rose J.K. Evidence for the loop model of signal sequence insertion into the endoplasmic reticulum. Proc. Natl. Acad. Sci. U. S. A. 1988, 85:7592-7596.
-
(1988)
Proc. Natl. Acad. Sci. U. S. A.
, vol.85
, pp. 7592-7596
-
-
Shaw, A.E.1
Rottier, P.J.M.2
Rose, J.K.3
-
96
-
-
0032544614
-
Signal sequence recognition in posttranslational protein transport across the yeast ER membrane
-
Plath K., Mothes W., Wilkinson B.M., Stirling C.J., Rapoport T.A. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 1998, 94:795-807.
-
(1998)
Cell
, vol.94
, pp. 795-807
-
-
Plath, K.1
Mothes, W.2
Wilkinson, B.M.3
Stirling, C.J.4
Rapoport, T.A.5
-
97
-
-
77957800562
-
Sss1p is required to complete protein translocon activation
-
Wilkinson B.M., Brownsword J.K., Mousley C.J., Stirling C.J. Sss1p is required to complete protein translocon activation. J. Biol. Chem. 2010, 285:32671-32677.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 32671-32677
-
-
Wilkinson, B.M.1
Brownsword, J.K.2
Mousley, C.J.3
Stirling, C.J.4
-
98
-
-
33847698213
-
Deregulation of the SecYEG translocation channel upon removal of the plug domain
-
Maillard A.P., Lalani S., Silva F., Belin D., Duong F. Deregulation of the SecYEG translocation channel upon removal of the plug domain. J. Biol. Chem. 2007, 282:1281-1287.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 1281-1287
-
-
Maillard, A.P.1
Lalani, S.2
Silva, F.3
Belin, D.4
Duong, F.5
-
99
-
-
77952378779
-
The hydrophobic core of the Sec61 translocon defines the hydrophobicity threshold for membrane integration
-
Junne T., Kocik L., Spiess M. The hydrophobic core of the Sec61 translocon defines the hydrophobicity threshold for membrane integration. Mol. Biol. Cell 2010, 21:1662-1670.
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 1662-1670
-
-
Junne, T.1
Kocik, L.2
Spiess, M.3
-
100
-
-
24944465005
-
Modeling the effects of prl mutations on the Escherichia coli SecY complex
-
Smith M.A., Clemons W.M., DeMars C.J., Flower A.M. Modeling the effects of prl mutations on the Escherichia coli SecY complex. J. Bacteriol. 2005, 187:6454-6465.
-
(2005)
J. Bacteriol.
, vol.187
, pp. 6454-6465
-
-
Smith, M.A.1
Clemons, W.M.2
DeMars, C.J.3
Flower, A.M.4
-
101
-
-
27144525002
-
Investigating the SecY plug movement at the SecYEG translocation channel
-
Tam P.C., Maillard A.P., Chan K.K., Duong F. Investigating the SecY plug movement at the SecYEG translocation channel. EMBO J. 2005, 24:3380-3388.
-
(2005)
EMBO J.
, vol.24
, pp. 3380-3388
-
-
Tam, P.C.1
Maillard, A.P.2
Chan, K.K.3
Duong, F.4
-
102
-
-
80052237952
-
Translocation channel gating kinetics balances protein translocation efficiency with signal sequence recognition fidelity
-
Trueman S.F., Mandon E.C., Gilmore R. Translocation channel gating kinetics balances protein translocation efficiency with signal sequence recognition fidelity. Mol. Biol. Cell 2011, 22:2983-2993.
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 2983-2993
-
-
Trueman, S.F.1
Mandon, E.C.2
Gilmore, R.3
-
103
-
-
0037150672
-
Identification of signal peptide peptidase, a presenilin-type aspartic protease
-
Weihofen A., Binns K., Lemberg M.K., Ashman K., Martoglio B. Identification of signal peptide peptidase, a presenilin-type aspartic protease. Science 2002, 296:2215-2218.
-
(2002)
Science
, vol.296
, pp. 2215-2218
-
-
Weihofen, A.1
Binns, K.2
Lemberg, M.K.3
Ashman, K.4
Martoglio, B.5
-
104
-
-
79959961077
-
Stepwise insertion and inversion of a type II signal anchor sequence in the ribosome-Sec61 translocon complex
-
Devaraneni P.K., Conti B., Matsumura Y., Yang Z., Johnson A.E., Skach W.R. Stepwise insertion and inversion of a type II signal anchor sequence in the ribosome-Sec61 translocon complex. Cell 2011, 146:134-147.
-
(2011)
Cell
, vol.146
, pp. 134-147
-
-
Devaraneni, P.K.1
Conti, B.2
Matsumura, Y.3
Yang, Z.4
Johnson, A.E.5
Skach, W.R.6
-
105
-
-
13444271726
-
The molecular mechanisms underlying BiP-mediated gating of the Sec61 translocon of the endoplasmic reticulum
-
Alder N.N., Shen Y., Brodsky J.L., Hendershot L.M., Johnson A.E. The molecular mechanisms underlying BiP-mediated gating of the Sec61 translocon of the endoplasmic reticulum. J. Cell Biol. 2005, 168:389-399.
-
(2005)
J. Cell Biol.
, vol.168
, pp. 389-399
-
-
Alder, N.N.1
Shen, Y.2
Brodsky, J.L.3
Hendershot, L.M.4
Johnson, A.E.5
-
106
-
-
84864877220
-
BiP-mediated closing of the Sec61 channel limits Ca2+ leakage from the ER
-
Schauble N., Lang S., Jung M., Cappel S., Schorr S., Ulucan O., Linxweiler J., Dudek J., Blum R., Helms V., Paton A.W., Paton J.C., Cavalie A., Zimmermann R. BiP-mediated closing of the Sec61 channel limits Ca2+ leakage from the ER. EMBO J. 2012, 31:3282-3296.
-
(2012)
EMBO J.
, vol.31
, pp. 3282-3296
-
-
Schauble, N.1
Lang, S.2
Jung, M.3
Cappel, S.4
Schorr, S.5
Ulucan, O.6
Linxweiler, J.7
Dudek, J.8
Blum, R.9
Helms, V.10
Paton, A.W.11
Paton, J.C.12
Cavalie, A.13
Zimmermann, R.14
-
107
-
-
0028997459
-
Posttranslational protein translocation in yeast reconstituted with a purified complex of Sec proteins and Kar2p
-
Panzner S., Dreier L., Hartmann E., Kostka S., Rapoport T.A. Posttranslational protein translocation in yeast reconstituted with a purified complex of Sec proteins and Kar2p. Cell 1995, 81:561-570.
-
(1995)
Cell
, vol.81
, pp. 561-570
-
-
Panzner, S.1
Dreier, L.2
Hartmann, E.3
Kostka, S.4
Rapoport, T.A.5
-
108
-
-
0034640293
-
Mammalian Sec61 is associated with Sec62 and Sec63
-
Meyer H.A., Grau H., Kraft R., Kostka S., Prehn S., Kalies K.U., Hartmann E. Mammalian Sec61 is associated with Sec62 and Sec63. J. Biol. Chem. 2000, 275:14550-14557.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 14550-14557
-
-
Meyer, H.A.1
Grau, H.2
Kraft, R.3
Kostka, S.4
Prehn, S.5
Kalies, K.U.6
Hartmann, E.7
-
109
-
-
12944254591
-
Homologs of the yeast Sec complex subunits Sec62p and Sec63p are abundant proteins in dog pancreas microsomes
-
Tyedmers J., Lerner M., Bies C., Dudek J., Skowronek M.H., Haas I.G., Heim N., Nastainczyk W., Volkmer J., Zimmermann R. Homologs of the yeast Sec complex subunits Sec62p and Sec63p are abundant proteins in dog pancreas microsomes. Proc. Natl. Acad. Sci. U. S. A. 2000, 97:7214-7219.
-
(2000)
Proc. Natl. Acad. Sci. U. S. A.
, vol.97
, pp. 7214-7219
-
-
Tyedmers, J.1
Lerner, M.2
Bies, C.3
Dudek, J.4
Skowronek, M.H.5
Haas, I.G.6
Heim, N.7
Nastainczyk, W.8
Volkmer, J.9
Zimmermann, R.10
-
110
-
-
0035862963
-
Sec63p and Kar2p are required for the translocation of SRP-dependent precursors into the yeast endoplasmic reticulum in vivo
-
Young B.P., Craven R., Reid P.J., Willer M., Stirling C.J. Sec63p and Kar2p are required for the translocation of SRP-dependent precursors into the yeast endoplasmic reticulum in vivo. EMBO J. 2001, 20:262-271.
-
(2001)
EMBO J.
, vol.20
, pp. 262-271
-
-
Young, B.P.1
Craven, R.2
Reid, P.J.3
Willer, M.4
Stirling, C.J.5
-
111
-
-
84863092048
-
Different effects of Sec61alpha, Sec62 and Sec63 depletion on transport of polypeptides into the endoplasmic reticulum of mammalian cells
-
Lang S., Benedix J., Fedeles S.V., Schorr S., Schirra C., Schauble N., Jalal C., Greiner M., Hassdenteufel S., Tatzelt J., Kreutzer B., Edelmann L., Krause E., Rettig J., Somlo S., Zimmermann R., Dudek J. Different effects of Sec61alpha, Sec62 and Sec63 depletion on transport of polypeptides into the endoplasmic reticulum of mammalian cells. J. Cell Sci. 2012, 125:1958-1969.
-
(2012)
J. Cell Sci.
, vol.125
, pp. 1958-1969
-
-
Lang, S.1
Benedix, J.2
Fedeles, S.V.3
Schorr, S.4
Schirra, C.5
Schauble, N.6
Jalal, C.7
Greiner, M.8
Hassdenteufel, S.9
Tatzelt, J.10
Kreutzer, B.11
Edelmann, L.12
Krause, E.13
Rettig, J.14
Somlo, S.15
Zimmermann, R.16
Dudek, J.17
-
112
-
-
33644998946
-
ERj1p uses a universal ribosomal adaptor site to coordinate the 80S ribosome at the membrane
-
Blau M., Mullapudi S., Becker T., Dudek J., Zimmermann R., Penczek P.A., Beckmann R. ERj1p uses a universal ribosomal adaptor site to coordinate the 80S ribosome at the membrane. Nat. Struct. Mol. Biol. 2005, 12:1015-1016.
-
(2005)
Nat. Struct. Mol. Biol.
, vol.12
, pp. 1015-1016
-
-
Blau, M.1
Mullapudi, S.2
Becker, T.3
Dudek, J.4
Zimmermann, R.5
Penczek, P.A.6
Beckmann, R.7
-
113
-
-
78449234776
-
BiP modulates the affinity of its co-chaperone ERj1 for ribosomes
-
Benedix J., Lajoie P., Jaiswal H., Burgard C., Greiner M., Zimmermann R., Rospert S., Snapp E.L., Dudek J. BiP modulates the affinity of its co-chaperone ERj1 for ribosomes. J. Biol. Chem. 2010, 285:36427-36433.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 36427-36433
-
-
Benedix, J.1
Lajoie, P.2
Jaiswal, H.3
Burgard, C.4
Greiner, M.5
Zimmermann, R.6
Rospert, S.7
Snapp, E.L.8
Dudek, J.9
-
114
-
-
78650905148
-
Interaction of calmodulin with Sec61alpha limits Ca2+ leakage from the endoplasmic reticulum
-
Erdmann F., Schauble N., Lang S., Jung M., Honigmann A., Ahmad M., Dudek J., Benedix J., Harsman A., Kopp A., Helms V., Cavalie A., Wagner R., Zimmermann R. Interaction of calmodulin with Sec61alpha limits Ca2+ leakage from the endoplasmic reticulum. EMBO J. 2011, 30:17-31.
-
(2011)
EMBO J.
, vol.30
, pp. 17-31
-
-
Erdmann, F.1
Schauble, N.2
Lang, S.3
Jung, M.4
Honigmann, A.5
Ahmad, M.6
Dudek, J.7
Benedix, J.8
Harsman, A.9
Kopp, A.10
Helms, V.11
Cavalie, A.12
Wagner, R.13
Zimmermann, R.14
-
115
-
-
85027919032
-
Cryo-EM structure of the ribosome-SecYE complex in the membrane environment
-
Frauenfeld J., Gumbart J., Sluis E.O., Funes S., Gartmann M., Beatrix B., Mielke T., Berninghausen O., Becker T., Schulten K., Beckmann R. Cryo-EM structure of the ribosome-SecYE complex in the membrane environment. Nat. Struct. Mol. Biol. 2011, 18:614-621.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 614-621
-
-
Frauenfeld, J.1
Gumbart, J.2
Sluis, E.O.3
Funes, S.4
Gartmann, M.5
Beatrix, B.6
Mielke, T.7
Berninghausen, O.8
Becker, T.9
Schulten, K.10
Beckmann, R.11
-
116
-
-
80455155003
-
A single copy of SecYEG is sufficient for preprotein translocation
-
Kedrov A., Kusters I., Krasnikov V.V., Driessen A.J. A single copy of SecYEG is sufficient for preprotein translocation. EMBO J. 2011, 30:4387-4397.
-
(2011)
EMBO J.
, vol.30
, pp. 4387-4397
-
-
Kedrov, A.1
Kusters, I.2
Krasnikov, V.V.3
Driessen, A.J.4
-
117
-
-
84866388574
-
Bacterial protein translocation requires only one copy of the SecY complex in vivo
-
Park E., Rapoport T.A. Bacterial protein translocation requires only one copy of the SecY complex in vivo. J. Cell Biol. 2012, 198:881-893.
-
(2012)
J. Cell Biol.
, vol.198
, pp. 881-893
-
-
Park, E.1
Rapoport, T.A.2
-
118
-
-
0345444027
-
Oligomeric rings of the Sec61p complex induced by ligands required for protein translocation
-
Hanein D., Matlack K.E.S., Jungnickel B., Plath K., Kalies K.-U., Miller K.R., Rapoport T.A., Akey C.W. Oligomeric rings of the Sec61p complex induced by ligands required for protein translocation. Cell 1996, 87:721-732.
-
(1996)
Cell
, vol.87
, pp. 721-732
-
-
Hanein, D.1
Matlack, K.E.S.2
Jungnickel, B.3
Plath, K.4
Kalies, K.-U.5
Miller, K.R.6
Rapoport, T.A.7
Akey, C.W.8
-
119
-
-
1842561598
-
The organization of engaged and quiescent translocons in the endoplasmic reticulum of mammalian cells
-
Snapp E.L., Reinhart G.A., Bogert B.A., Lippincott-Schwartz J., Hegde R.S. The organization of engaged and quiescent translocons in the endoplasmic reticulum of mammalian cells. J. Cell Biol. 2004, 164:997-1007.
-
(2004)
J. Cell Biol.
, vol.164
, pp. 997-1007
-
-
Snapp, E.L.1
Reinhart, G.A.2
Bogert, B.A.3
Lippincott-Schwartz, J.4
Hegde, R.S.5
-
120
-
-
79953022888
-
The oligomeric state and arrangement of the active bacterial translocon
-
Deville K., Gold V.A., Robson A., Whitehouse S., Sessions R.B., Baldwin S.A., Radford S.E., Collinson I. The oligomeric state and arrangement of the active bacterial translocon. J. Biol. Chem. 2011, 286:4659-4669.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 4659-4669
-
-
Deville, K.1
Gold, V.A.2
Robson, A.3
Whitehouse, S.4
Sessions, R.B.5
Baldwin, S.A.6
Radford, S.E.7
Collinson, I.8
-
121
-
-
33646361833
-
The Brl domain in Sec63p is required for assembly of functional endoplasmic reticulum translocons
-
Jermy A.J., Willer M., Davis E., Wilkinson B.M., Stirling C.J. The Brl domain in Sec63p is required for assembly of functional endoplasmic reticulum translocons. J. Biol. Chem. 2006, 281:7899-7906.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 7899-7906
-
-
Jermy, A.J.1
Willer, M.2
Davis, E.3
Wilkinson, B.M.4
Stirling, C.J.5
-
122
-
-
84858238365
-
Two copies of the SecY channel and acidic lipids are necessary to activate the SecA translocation ATPase
-
Dalal K., Chan C.S., Sligar S.G., Duong F. Two copies of the SecY channel and acidic lipids are necessary to activate the SecA translocation ATPase. Proc. Natl. Acad. Sci. U. S. A. 2012, 109:4104-4109.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 4104-4109
-
-
Dalal, K.1
Chan, C.S.2
Sligar, S.G.3
Duong, F.4
-
123
-
-
33947717366
-
Protein translocation is mediated by oligomers of the SecY complex with one SecY copy forming the channel
-
Osborne A.R., Rapoport T.A. Protein translocation is mediated by oligomers of the SecY complex with one SecY copy forming the channel. Cell 2007, 129:97-110.
-
(2007)
Cell
, vol.129
, pp. 97-110
-
-
Osborne, A.R.1
Rapoport, T.A.2
-
124
-
-
0029951178
-
Signal sequence-dependent function of the TRAM protein during early phases of translocation across the endoplasmic reticulum membrane
-
Voigt S., Jungnickel B., Hartmann E., Rapoport T.A. Signal sequence-dependent function of the TRAM protein during early phases of translocation across the endoplasmic reticulum membrane. EMBO J. 1996, 134:25-35.
-
(1996)
EMBO J.
, vol.134
, pp. 25-35
-
-
Voigt, S.1
Jungnickel, B.2
Hartmann, E.3
Rapoport, T.A.4
-
125
-
-
0037450802
-
Substrate-specific function of the translocon-associated protein complex during translocation across the ER membrane
-
Fons R.D., Bogert B.A., Hegde R.S. Substrate-specific function of the translocon-associated protein complex during translocation across the ER membrane. J. Cell Biol. 2003, 160:529-539.
-
(2003)
J. Cell Biol.
, vol.160
, pp. 529-539
-
-
Fons, R.D.1
Bogert, B.A.2
Hegde, R.S.3
-
126
-
-
80054041334
-
Membrane protein insertion at the endoplasmic reticulum
-
Shao S., Hegde R.S. Membrane protein insertion at the endoplasmic reticulum. Ann. Rev. Cell Dev. Biol. 2011, 27:25-56.
-
(2011)
Ann. Rev. Cell Dev. Biol.
, vol.27
, pp. 25-56
-
-
Shao, S.1
Hegde, R.S.2
-
127
-
-
1542358892
-
Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins
-
Woolhead C.A., McCormick P.J., Johnson A.E. Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 2004, 116:725-736.
-
(2004)
Cell
, vol.116
, pp. 725-736
-
-
Woolhead, C.A.1
McCormick, P.J.2
Johnson, A.E.3
-
128
-
-
0030825974
-
Molecular mechanism of membrane protein integration into the endoplasmic reticulum
-
Mothes W., Heinrich S.U., Graf R., Nilsson I., von Heijne G., Brunner J., Rapoport T.A. Molecular mechanism of membrane protein integration into the endoplasmic reticulum. Cell 1997, 89:523-533.
-
(1997)
Cell
, vol.89
, pp. 523-533
-
-
Mothes, W.1
Heinrich, S.U.2
Graf, R.3
Nilsson, I.4
von Heijne, G.5
Brunner, J.6
Rapoport, T.A.7
-
129
-
-
13444262028
-
Recognition of transmembrane helices by the endoplasmic reticulum translocon
-
Hessa T., Kim H., Bihlmaier K., Lundin C., Boekel J., Andersson H., Nilsson I., White S.H., von Heijne G. Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 2005, 433:377-381.
-
(2005)
Nature
, vol.433
, pp. 377-381
-
-
Hessa, T.1
Kim, H.2
Bihlmaier, K.3
Lundin, C.4
Boekel, J.5
Andersson, H.6
Nilsson, I.7
White, S.H.8
von Heijne, G.9
-
130
-
-
57349168025
-
Molecular code for protein insertion in the endoplasmic reticulum membrane is similar for N(in)-C(out) and N(out)-C(in) transmembrane helices
-
Lundin C., Kim H., Nilsson I., White S.H., von Heijne G. Molecular code for protein insertion in the endoplasmic reticulum membrane is similar for N(in)-C(out) and N(out)-C(in) transmembrane helices. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:15702-15707.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 15702-15707
-
-
Lundin, C.1
Kim, H.2
Nilsson, I.3
White, S.H.4
von Heijne, G.5
-
131
-
-
84867218476
-
A biphasic pulling force acts on transmembrane helices during translocon-mediated membrane integration
-
Ismail N., Hedman R., Schiller N., von Heijne G. A biphasic pulling force acts on transmembrane helices during translocon-mediated membrane integration. Nat. Struct. Mol. Biol. 2012, 19:1018-1022.
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 1018-1022
-
-
Ismail, N.1
Hedman, R.2
Schiller, N.3
von Heijne, G.4
-
132
-
-
80053991771
-
Polytopic membrane protein folding at L17 in the ribosome tunnel initiates cyclical changes at the translocon
-
Lin P.J., Jongsma C.G., Pool M.R., Johnson A.E. Polytopic membrane protein folding at L17 in the ribosome tunnel initiates cyclical changes at the translocon. J. Cell Biol. 2011, 195:55-70.
-
(2011)
J. Cell Biol.
, vol.195
, pp. 55-70
-
-
Lin, P.J.1
Jongsma, C.G.2
Pool, M.R.3
Johnson, A.E.4
-
133
-
-
27144549973
-
Sequential triage of transmembrane segments by Sec61alpha during biogenesis of a native multispanning membrane protein
-
Sadlish H., Pitonzo D., Johnson A.E., Skach W.R. Sequential triage of transmembrane segments by Sec61alpha during biogenesis of a native multispanning membrane protein. Nat. Struct. Mol. Biol. 2005, 12:870-878.
-
(2005)
Nat. Struct. Mol. Biol.
, vol.12
, pp. 870-878
-
-
Sadlish, H.1
Pitonzo, D.2
Johnson, A.E.3
Skach, W.R.4
-
134
-
-
42449130051
-
Specific transmembrane segments are selectively delayed at the ER translocon during opsin biogenesis
-
Ismail N., Crawshaw S.G., Cross B.C., Haagsma A.C., High S. Specific transmembrane segments are selectively delayed at the ER translocon during opsin biogenesis. Biochem. J. 2008, 411:495-506.
-
(2008)
Biochem. J.
, vol.411
, pp. 495-506
-
-
Ismail, N.1
Crawshaw, S.G.2
Cross, B.C.3
Haagsma, A.C.4
High, S.5
-
135
-
-
84869090494
-
Membrane protein TM segments are retained at the translocon during integration until the nascent chain cues FRET-detected release into bulk lipid
-
Hou B., Lin P.J., Johnson A.E. Membrane protein TM segments are retained at the translocon during integration until the nascent chain cues FRET-detected release into bulk lipid. Mol. Cell 2012, 48:398-408.
-
(2012)
Mol. Cell
, vol.48
, pp. 398-408
-
-
Hou, B.1
Lin, P.J.2
Johnson, A.E.3
-
136
-
-
84857439394
-
Orientational preferences of neighboring helices can drive ER insertion of a marginally hydrophobic transmembrane helix
-
Ojemalm K., Halling K.K., Nilsson I., von Heijne G. Orientational preferences of neighboring helices can drive ER insertion of a marginally hydrophobic transmembrane helix. Mol. Cell 2012, 45:529-540.
-
(2012)
Mol. Cell
, vol.45
, pp. 529-540
-
-
Ojemalm, K.1
Halling, K.K.2
Nilsson, I.3
von Heijne, G.4
-
137
-
-
0025981510
-
SRP-RNA sequence alignment and secondary structure
-
Larsen N., Zwieb C. SRP-RNA sequence alignment and secondary structure. Nucl. Acids Res. 1991, 19:209-215.
-
(1991)
Nucl. Acids Res.
, vol.19
, pp. 209-215
-
-
Larsen, N.1
Zwieb, C.2
|