-
1
-
-
0032488845
-
Protein translocation: Tunnel vision
-
Matlack, K. E. S., W. Mothes, and T. A. Rapoport. 1998. Protein translocation: tunnel vision. Cell. 92:381-390.
-
(1998)
Cell
, vol.92
, pp. 381-390
-
-
Matlack, K.E.S.1
Mothes, W.2
Rapoport, T.A.3
-
3
-
-
8844261813
-
Translocation of bacterial proteins - An overview
-
Holland, I. B. 2004. Translocation of bacterial proteins - an overview. Biochim. Biophys. Acta. 1694:5-16.
-
(2004)
Biochim. Biophys. Acta
, vol.1694
, pp. 5-16
-
-
Holland, I.B.1
-
4
-
-
0033933622
-
Archaeal protein translocation: Crossing membranes in the third domain of life
-
Eichler, J. 2000. Archaeal protein translocation: crossing membranes in the third domain of life. Eur. J. Biochem. 267:3402-3412.
-
(2000)
Eur. J. Biochem.
, vol.267
, pp. 3402-3412
-
-
Eichler, J.1
-
5
-
-
0347192985
-
X-ray structure of a protein-conducting channel
-
van den Berg, B., W. M. Clemons Jr., I. Collinson, Y. Modis, E. Hartmann, S. C. Harrison, and T. A. Rapoport. 2004. X-ray structure of a protein-conducting channel. Nature. 427:36-44.
-
(2004)
Nature
, vol.427
, pp. 36-44
-
-
Van Den Berg, B.1
Clemons Jr., W.M.2
Collinson, I.3
Modis, Y.4
Hartmann, E.5
Harrison, S.C.6
Rapoport, T.A.7
-
6
-
-
0029952518
-
Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes
-
Rapoport, T. A., B. Jungnickel, and U. Kutay. 1996. Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes. Annu. Rev. Biochem. 65:271-303.
-
(1996)
Annu. Rev. Biochem.
, vol.65
, pp. 271-303
-
-
Rapoport, T.A.1
Jungnickel, B.2
Kutay, U.3
-
7
-
-
0032544614
-
Signal sequence recognition in posttranslational protein transport across the yeast ER membrane
-
Plath, K., W. Mothes, B. M. Wilkinson, C. J. Stirling, and T. A. Rapoport. 1998. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell. 94:795-807.
-
(1998)
Cell
, vol.94
, pp. 795-807
-
-
Plath, K.1
Mothes, W.2
Wilkinson, B.M.3
Stirling, C.J.4
Rapoport, T.A.5
-
8
-
-
5444259691
-
Demonstration of a specific Escherichia coli SecY-signal peptide interaction
-
Wang, L., A. Miller, S. L. Rusch, and D. A. Kendall. 2004. Demonstration of a specific Escherichia coli SecY-signal peptide interaction. Biochemistry. 43:13185-13192.
-
(2004)
Biochemistry
, vol.43
, pp. 13185-13192
-
-
Wang, L.1
Miller, A.2
Rusch, S.L.3
Kendall, D.A.4
-
9
-
-
0027985063
-
Secretory proteins move through the endoplasmic reticulum membrane via an aqueous, gated pore
-
Crowley, K. S., S. Liao, V. E. Worrell, G. D. Reinhart, and A. E. Johnson. 1994. Secretory proteins move through the endoplasmic reticulum membrane via an aqueous, gated pore. Cell. 78:461-471.
-
(1994)
Cell
, vol.78
, pp. 461-471
-
-
Crowley, K.S.1
Liao, S.2
Worrell, V.E.3
Reinhart, G.D.4
Johnson, A.E.5
-
10
-
-
0029096050
-
A posttargeting signal sequence recognition event in the endoplasmic reticulum membrane
-
Jungnickel, B., and T. A. Rapoport. 1995. A posttargeting signal sequence recognition event in the endoplasmic reticulum membrane. Cell. 82:261-270.
-
(1995)
Cell
, vol.82
, pp. 261-270
-
-
Jungnickel, B.1
Rapoport, T.A.2
-
11
-
-
0024507257
-
Access of proteinase K to partially translocated nascent polypeptides in intact and detergent-solubilized membranes
-
Connolly, T., P. Collins, and R. Gilmore. 1989. Access of proteinase K to partially translocated nascent polypeptides in intact and detergent-solubilized membranes. J. Cell Biol. 108:299-307.
-
(1989)
J. Cell Biol.
, vol.108
, pp. 299-307
-
-
Connolly, T.1
Collins, P.2
Gilmore, R.3
-
12
-
-
0031473345
-
Alignment of conduits for the nascent polypeptide chain in the ribosome-Sec61 complex
-
Beckmann, R., D. Bubeck, R. Grassucci, P. Penczek, A. Verschoor, G. Blobel, and J. Frank. 1997. Alignment of conduits for the nascent polypeptide chain in the ribosome-Sec61 complex. Science. 278:2123-2126.
-
(1997)
Science
, vol.278
, pp. 2123-2126
-
-
Beckmann, R.1
Bubeck, D.2
Grassucci, R.3
Penczek, P.4
Verschoor, A.5
Blobel, G.6
Frank, J.7
-
13
-
-
0033638455
-
The structure of ribosome-channel complexes engaged in protein translocation
-
Ménétret, J. F., A. Neuhof, D. G. Morgan, K. Plath, M. Radermacher, T. A. Rapoport, and C. W. Akey. 2000. The structure of ribosome-channel complexes engaged in protein translocation. Mol. Cell. 6:1219-1232.
-
(2000)
Mol. Cell.
, vol.6
, pp. 1219-1232
-
-
Ménétret, J.F.1
Neuhof, A.2
Morgan, D.G.3
Plath, K.4
Radermacher, M.5
Rapoport, T.A.6
Akey, C.W.7
-
14
-
-
0035798359
-
Architecture of the protein-conducting channel associated with the translating 80S ribosome
-
Beckmann, R., C. M. T. Spahn, N. Eswar, J. Helmers, P. A. Penczek, A. Sali, J. Frank, and G. Blobel. 2001. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell. 107:361-372.
-
(2001)
Cell
, vol.107
, pp. 361-372
-
-
Beckmann, R.1
Spahn, C.M.T.2
Eswar, N.3
Helmers, J.4
Penczek, P.A.5
Sali, A.6
Frank, J.7
Blobel, G.8
-
15
-
-
0036927080
-
Structure of the mammalian ribosome-channel complex at 17 Å resolution
-
Morgan, D. G., J. F. Ménétret, A. Neuhof, T. A. Rapoport, and C. W. Akey. 2002. Structure of the mammalian ribosome-channel complex at 17 Å resolution. J. Mol. Biol. 324:871-886.
-
(2002)
J. Mol. Biol.
, vol.324
, pp. 871-886
-
-
Morgan, D.G.1
Ménétret, J.F.2
Neuhof, A.3
Rapoport, T.A.4
Akey, C.W.5
-
16
-
-
16244373735
-
Architecture of the ribosome-channel complex derived from native membranes
-
Ménétret, J. F., R. S. Hedge, S. U. Heinrich, P. Chandramouli, S. J. Ludtke, T. A. Rapoport, and C. W. Akey. 2005. Architecture of the ribosome-channel complex derived from native membranes. J. Mol. Biol. 348:445-457.
-
(2005)
J. Mol. Biol.
, vol.348
, pp. 445-457
-
-
Ménétret, J.F.1
Hedge, R.S.2
Heinrich, S.U.3
Chandramouli, P.4
Ludtke, S.J.5
Rapoport, T.A.6
Akey, C.W.7
-
17
-
-
27844444793
-
Structure of the E. coli protein-conducting channel bound to a translating ribosome
-
Mitra, K., C. Schaffitzel, T. Shaikh, F. Tama, S. Jenni, C. L. Brooks, N. Ban, and J. Frank. 2005. Structure of the E. coli protein-conducting channel bound to a translating ribosome. Nature. 438:318-324.
-
(2005)
Nature
, vol.438
, pp. 318-324
-
-
Mitra, K.1
Schaffitzel, C.2
Shaikh, T.3
Tama, F.4
Jenni, S.5
Brooks, C.L.6
Ban, N.7
Frank, J.8
-
18
-
-
0025005885
-
Translocation of proOmpA possessing an intramolecular disulfide bridge into membrane vesicles of Escherichia coli. Effect of membrane energization
-
Tani, K., H. Tokuda, and S. Mizushima. 1990. Translocation of proOmpA possessing an intramolecular disulfide bridge into membrane vesicles of Escherichia coli. Effect of membrane energization. J. Biol. Chem. 265:17341-17347.
-
(1990)
J. Biol. Chem.
, vol.265
, pp. 17341-17347
-
-
Tani, K.1
Tokuda, H.2
Mizushima, S.3
-
19
-
-
0023857532
-
RNA-mediated labelling of proteins with biotin. A nonradioactive method for the detection of cell-free translation products
-
Kurzchalia, T. V., M. Wiedmann, H. Breter, W. Zimmermann, E. Bauschke, and T. A. Rapoport. 1988. tRNA-mediated labelling of proteins with biotin. A nonradioactive method for the detection of cell-free translation products. Eur. J. Biochem. 172:663-668.
-
(1988)
Eur. J. Biochem.
, vol.172
, pp. 663-668
-
-
Kurzchalia, T.V.1
Wiedmann, M.2
Breter, H.3
Zimmermann, W.4
Bauschke, E.5
Rapoport, T.A.6
-
20
-
-
4143107016
-
Structural insight into the protein translocation channel
-
Clemons, W. M. Jr., J. F. Ménétret, C. W. Akey, and T. A. Rapoport. 2004. Structural insight into the protein translocation channel. Curr. Opin. Struct. Biol. 14:390-396.
-
(2004)
Curr. Opin. Struct. Biol.
, vol.14
, pp. 390-396
-
-
Clemons Jr., W.M.1
Ménétret, J.F.2
Akey, C.W.3
Rapoport, T.A.4
-
21
-
-
0034161573
-
SecYEG assembles into a tetramer to form the active protein translocation channel
-
Manting, E. H., C. van der Does, H. Remigy, A. Engel, and A. J. M. Driessen. 2000. SecYEG assembles into a tetramer to form the active protein translocation channel. EMBO J. 19:852-861.
-
(2000)
EMBO J.
, vol.19
, pp. 852-861
-
-
Manting, E.H.1
Van Der Does, C.2
Remigy, H.3
Engel, A.4
Driessen, A.J.M.5
-
22
-
-
0037043724
-
Three-dimensional structure of the bacterial protein-translocation complex SecYEG
-
Breyton, C., W. Haase, T. A. Rapoport, W. Kühlbrandt, and I. Collinson. 2002. Three-dimensional structure of the bacterial protein-translocation complex SecYEG. Nature. 418:662-665.
-
(2002)
Nature
, vol.418
, pp. 662-665
-
-
Breyton, C.1
Haase, W.2
Rapoport, T.A.3
Kühlbrandt, W.4
Collinson, I.5
-
23
-
-
0037687309
-
Fluorescence resonance energy transfer analysis of protein translocase. SecYE from Thermus thermophilus HB8 forms a constitutive oligomer in membranes
-
Mori, H., T. Tsukazaki, R. Masui, S. Kuramitsu, S. Yokoyama, A. E. Johnson, Y. Kimura, Y. Akiyama, and K. Ito. 2003. Fluorescence resonance energy transfer analysis of protein translocase. SecYE from Thermus thermophilus HB8 forms a constitutive oligomer in membranes. J. Biol. Chem. 278:14257-14264.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 14257-14264
-
-
Mori, H.1
Tsukazaki, T.2
Masui, R.3
Kuramitsu, S.4
Yokoyama, S.5
Johnson, A.E.6
Kimura, Y.7
Akiyama, Y.8
Ito, K.9
-
24
-
-
0041736710
-
Binding, activation and dissociation of the dimeric SecA ATPase at the dimeric SecYEG translocase
-
Duong, F. 2003. Binding, activation and dissociation of the dimeric SecA ATPase at the dimeric SecYEG translocase. EMBO J. 22:4375-4384.
-
(2003)
EMBO J.
, vol.22
, pp. 4375-4384
-
-
Duong, F.1
-
25
-
-
0345444027
-
Oligomeric rings of the Sec61p complex induced by ligands required for protein translocation
-
Hanein, D., K. E. S. Matlack, B. Jungnickel, K. Plath, K.-U. Kalies, K. R. Miller, T. A. Rapoport, and C. W. Akey. 1996. Oligomeric rings of the Sec61p complex induced by ligands required for protein translocation. Cell. 87:721-732.
-
(1996)
Cell
, vol.87
, pp. 721-732
-
-
Hanein, D.1
Matlack, K.E.S.2
Jungnickel, B.3
Plath, K.4
Kalies, K.-U.5
Miller, K.R.6
Rapoport, T.A.7
Akey, C.W.8
-
26
-
-
0030611388
-
The aqueous pore through the translocon has a diameter of 40-60 Å during cotranslational protein translocation at the ER membrane
-
Hamman, B. D., J. C. Chen, E. E. Johnson, and A. E. Johnson. 1997. The aqueous pore through the translocon has a diameter of 40-60 Å during cotranslational protein translocation at the ER membrane. Cell. 89:535-544.
-
(1997)
Cell
, vol.89
, pp. 535-544
-
-
Hamman, B.D.1
Chen, J.C.2
Johnson, E.E.3
Johnson, A.E.4
-
27
-
-
0034663803
-
Evaluating the oligomeric state of SecYEG in preprotein translocase
-
Yahr, T. L., and W. T. Wickner. 2000. Evaluating the oligomeric state of SecYEG in preprotein translocase. EMBO J. 19:4393-4401.
-
(2000)
EMBO J.
, vol.19
, pp. 4393-4401
-
-
Yahr, T.L.1
Wickner, W.T.2
-
28
-
-
18544380083
-
Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY
-
Cannon, K. S., E. Or, W. M. Clemons Jr., Y. Shibata, and T. A. Rapoport. 2005. Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY. J. Cell Biol. 169:219-225.
-
(2005)
J. Cell Biol.
, vol.169
, pp. 219-225
-
-
Cannon, K.S.1
Or, E.2
Clemons Jr., W.M.3
Shibata, Y.4
Rapoport, T.A.5
-
29
-
-
0033551435
-
Cysteine-directed cross-linking demonstrates that helix 3 of SecE is close to helix 2 of SecY and helix 3 of a neighboring SecE
-
Kaufmann, A., E. H. Manting, A. K. J. Veenendaal, A. J. M. Driessen, and C. van der Does. 1999. Cysteine-directed cross-linking demonstrates that helix 3 of SecE is close to helix 2 of SecY and helix 3 of a neighboring SecE. Biochemistry. 38:9115-9125.
-
(1999)
Biochemistry
, vol.38
, pp. 9115-9125
-
-
Kaufmann, A.1
Manting, E.H.2
Veenendaal, A.K.J.3
Driessen, A.J.M.4
Van Der Does, C.5
-
30
-
-
27144525002
-
Investigating the SecY plug movement at the SecYEG translocation channel
-
Tam, P. C. K., A. P. Maillard, K. K. Y. Chan, and F. Duong. 2005. Investigating the SecY plug movement at the SecYEG translocation channel. EMBO J. 24:3380-3388.
-
(2005)
EMBO J.
, vol.24
, pp. 3380-3388
-
-
Tam, P.C.K.1
Maillard, A.P.2
Chan, K.K.Y.3
Duong, F.4
-
31
-
-
24944458963
-
Atomic model of the E. coli membrane-bound protein translocation complex SecYEG
-
Bostina, M., B. Mohsin, W. Kühlbrandt, and I. Collinson. 2005. Atomic model of the E. coli membrane-bound protein translocation complex SecYEG. J. Mol. Biol. 352:1035-1043.
-
(2005)
J. Mol. Biol.
, vol.352
, pp. 1035-1043
-
-
Bostina, M.1
Mohsin, B.2
Kühlbrandt, W.3
Collinson, I.4
-
33
-
-
27344436659
-
Scalable molecular dynamics with NAMD
-
Phillips, J. C., R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kale, and K. Schulten. 2005. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26:1781-1802.
-
(2005)
J. Comput. Chem.
, vol.26
, pp. 1781-1802
-
-
Phillips, J.C.1
Braun, R.2
Wang, W.3
Gumbart, J.4
Tajkhorshid, E.5
Villa, E.6
Chipot, C.7
Skeel, R.D.8
Kale, L.9
Schulten, K.10
-
34
-
-
0041784950
-
All-atom empirical potential for molecular modeling and dynamics studies of proteins
-
MacKerell, A. D. Jr., D. Bashford, M. Bellott, R. L. Dunbrack Jr., J. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, I. W. E. Reiher, B. Roux, M. Schlenkrich, J. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, and M. Karplus. 1998. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B. 102:3586-3616.
-
(1998)
J. Phys. Chem. B
, vol.102
, pp. 3586-3616
-
-
MacKerell Jr., A.D.1
Bashford, D.2
Bellott, M.3
Dunbrack Jr., R.L.4
Evanseck, J.5
Field, M.J.6
Fischer, S.7
Gao, J.8
Guo, H.9
Ha, S.10
Joseph, D.11
Kuchnir, L.12
Kuczera, K.13
Lau, F.T.K.14
Mattos, C.15
Michnick, S.16
Ngo, T.17
Nguyen, D.T.18
Prodhom, B.19
Reiher, I.W.E.20
Roux, B.21
Schlenkrich, M.22
Smith, J.23
Stote, R.24
Straub, J.25
Watanabe, M.26
Wiorkiewicz-Kuczera, J.27
Yin, D.28
Karplus, M.29
more..
-
35
-
-
0030987036
-
Molecular dynamics study of unbinding of the avidin-biotin complex
-
Izrailev, S., S. Stepaniants, M. Balsera, Y. Oono, and K. Schulten. 1997. Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys. J. 72:1568-1581.
-
(1997)
Biophys. J.
, vol.72
, pp. 1568-1581
-
-
Izrailev, S.1
Stepaniants, S.2
Balsera, M.3
Oono, Y.4
Schulten, K.5
-
36
-
-
0033523904
-
Mechanical unfolding intermediates in titin modules
-
Marszalek, P. E., H. Lu, H. Li, M. Carrion-Vazquez, A. F. Oberhauser, K. Schulten, and J. M. Fernandez. 1999. Mechanical unfolding intermediates in titin modules. Nature. 402:100-103.
-
(1999)
Nature
, vol.402
, pp. 100-103
-
-
Marszalek, P.E.1
Lu, H.2
Li, H.3
Carrion-Vazquez, M.4
Oberhauser, A.F.5
Schulten, K.6
Fernandez, J.M.7
-
37
-
-
0035312645
-
Steered molecular dynamics and mechanical functions of proteins
-
Isralewitz, B., M. Gao, and K. Schulten. 2001. Steered molecular dynamics and mechanical functions of proteins. Curr. Opin. Struct. Biol. 11:224-230.
-
(2001)
Curr. Opin. Struct. Biol.
, vol.11
, pp. 224-230
-
-
Isralewitz, B.1
Gao, M.2
Schulten, K.3
-
38
-
-
0035003803
-
Steered molecular dynamics investigations of protein function
-
Isralewitz, B., J. Baudry, J. Gullingsrud, D. Kosztin, and K. Schulten. 2001. Steered molecular dynamics investigations of protein function. J. Mol. Graph. Model. 19:13-25.
-
(2001)
J. Mol. Graph. Model
, vol.19
, pp. 13-25
-
-
Isralewitz, B.1
Baudry, J.2
Gullingsrud, J.3
Kosztin, D.4
Schulten, K.5
-
39
-
-
23044496908
-
What makes an aquaporin a glycerol channel: A comparative study of AqpZ and GlpF
-
Wang, Y., K. Schulten, and E. Tajkhorshid. 2005. What makes an aquaporin a glycerol channel: a comparative study of AqpZ and GlpF. Structure. 13:1107-1118.
-
(2005)
Structure
, vol.13
, pp. 1107-1118
-
-
Wang, Y.1
Schulten, K.2
Tajkhorshid, E.3
-
40
-
-
17044401714
-
In search of the hair-cell gating spring: Elastic properties of ankyrin and cadherin repeats
-
Sotomayor, M., D. P. Corey, and K. Schulten. 2005. In search of the hair-cell gating spring: elastic properties of ankyrin and cadherin repeats. Structure. 13:669-682.
-
(2005)
Structure
, vol.13
, pp. 669-682
-
-
Sotomayor, M.1
Corey, D.P.2
Schulten, K.3
-
41
-
-
0027145628
-
The pore dimensions of Gramicidin A
-
Smart, O., J. Goodfellow, and B. Wallace. 1993. The pore dimensions of Gramicidin A. Biophys. J. 65:2455-2460.
-
(1993)
Biophys. J.
, vol.65
, pp. 2455-2460
-
-
Smart, O.1
Goodfellow, J.2
Wallace, B.3
-
42
-
-
84986518863
-
AMBER: Assisted model building with energy refinement. A general program for modeling molecules and their interactions
-
Weiner, P. K., and P. A. Kollman. 1981. AMBER: assisted model building with energy refinement. A general program for modeling molecules and their interactions. J. Comput. Chem. 2:287-303.
-
(1981)
J. Comput. Chem.
, vol.2
, pp. 287-303
-
-
Weiner, P.K.1
Kollman, P.A.2
-
43
-
-
0035956901
-
Solvent effects on the energy landscapes and folding kinetics of polyalanine
-
Levy, Y., J. Jortner, and O. M. Becker. 2001. Solvent effects on the energy landscapes and folding kinetics of polyalanine. Proc. Natl. Acad. Sci. USA. 98:2188-2193.
-
(2001)
Proc. Natl. Acad. Sci. USA
, vol.98
, pp. 2188-2193
-
-
Levy, Y.1
Jortner, J.2
Becker, O.M.3
-
44
-
-
0033032483
-
Mapping an interface of SecY (PrlA) and SecE (PrlG) by using synthetic phenotypes and in vivo cross-linking
-
Harris, C. R., and T. J. Silhavy. 1999. Mapping an interface of SecY (PrlA) and SecE (PrlG) by using synthetic phenotypes and in vivo cross-linking. J. Bacteriol. 181:3438-3444.
-
(1999)
J. Bacteriol.
, vol.181
, pp. 3438-3444
-
-
Harris, C.R.1
Silhavy, T.J.2
-
45
-
-
0037076420
-
Energetics of glycerol conduction through aquaglyceroporin GlpF
-
Jensen, M. Ø., S. Park, E. Tajkhorshid, and K. Schulten. 2002. Energetics of glycerol conduction through aquaglyceroporin GlpF. Proc. Natl. Acad. Sci. USA. 99:6731-6736.
-
(2002)
Proc. Natl. Acad. Sci. USA
, vol.99
, pp. 6731-6736
-
-
Jensen, M.Ø.1
Park, S.2
Tajkhorshid, E.3
Schulten, K.4
-
47
-
-
13444262028
-
Recognition of transmembrane helices by the endoplasmic reticulum translocon
-
Hessa, T., H. Kim, K. Bihlmaier, C. Lundin, J. Boekel, H. Andersson, I. Nilsson, S. H. White, and G. von Heijne. 2005. Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature. 433:377-381.
-
(2005)
Nature
, vol.433
, pp. 377-381
-
-
Hessa, T.1
Kim, H.2
Bihlmaier, K.3
Lundin, C.4
Boekel, J.5
Andersson, H.6
Nilsson, I.7
White, S.H.8
Von Heijne, G.9
-
48
-
-
0141992130
-
Cotranslational protein integration into the ER membrane is mediated by the binding of nascent chains to translocon proteins
-
McCormick, P. J., Y. Miao, Y. Shao, J. Lin, and A. E. Johnson. 2003. Cotranslational protein integration into the ER membrane is mediated by the binding of nascent chains to translocon proteins. Mol. Cell. 12:329-341.
-
(2003)
Mol. Cell.
, vol.12
, pp. 329-341
-
-
McCormick, P.J.1
Miao, Y.2
Shao, Y.3
Lin, J.4
Johnson, A.E.5
-
49
-
-
0029002962
-
The protein-conducting channel in the membrane of the endoplasmic reticulum is open laterally toward the lipid bilayer
-
Martoglio, B., M. W. Hofmann, J. Brunner, and B. Dobberstein. 1995. The protein-conducting channel in the membrane of the endoplasmic reticulum is open laterally toward the lipid bilayer. Cell. 81:207-214.
-
(1995)
Cell
, vol.81
, pp. 207-214
-
-
Martoglio, B.1
Hofmann, M.W.2
Brunner, J.3
Dobberstein, B.4
-
50
-
-
0030825974
-
Molecular mechanism of membrane protein integration into the endoplasmic reticulum
-
Mothes, W., S. U. Heinrich, R. Graf, I. Nilsson, G. von Heijne, J. Brunner, and T. A. Rapoport. 1997. Molecular mechanism of membrane protein integration into the endoplasmic reticulum. Cell. 89:523-533.
-
(1997)
Cell
, vol.89
, pp. 523-533
-
-
Mothes, W.1
Heinrich, S.U.2
Graf, R.3
Nilsson, I.4
Von Heijne, G.5
Brunner, J.6
Rapoport, T.A.7
-
51
-
-
0034697967
-
The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain
-
Heinrich, S. U., W. Mothes, J. Brunner, and T. A. Rapoport. 2000. The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell. 102:233-244.
-
(2000)
Cell
, vol.102
, pp. 233-244
-
-
Heinrich, S.U.1
Mothes, W.2
Brunner, J.3
Rapoport, T.A.4
-
52
-
-
13544259578
-
Probing the environment of signal-anchor sequences during topogenesis in the endoplasmic reticulum
-
Higy, M., S. Gander, and M. Spiess. 2005. Probing the environment of signal-anchor sequences during topogenesis in the endoplasmic reticulum. Biochemistry. 44:2039-2047.
-
(2005)
Biochemistry
, vol.44
, pp. 2039-2047
-
-
Higy, M.1
Gander, S.2
Spiess, M.3
-
53
-
-
0029738872
-
Experimentally determined hydrophobicity scale for proteins at membrane interfaces
-
Wimley, W. C., and S. H. White. 1996. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat. Struct. Biol. 3:842-848.
-
(1996)
Nat. Struct. Biol.
, vol.3
, pp. 842-848
-
-
Wimley, W.C.1
White, S.H.2
-
54
-
-
0027219902
-
PrlA suppressor mutations cluster in regions corresponding to three distinct topological domains
-
Osborne, R. S., and T. J. Silhavy. 1993. PrlA suppressor mutations cluster in regions corresponding to three distinct topological domains. EMBO J. 12:3391-3398.
-
(1993)
EMBO J.
, vol.12
, pp. 3391-3398
-
-
Osborne, R.S.1
Silhavy, T.J.2
-
56
-
-
0027457077
-
A signal sequence is not required for protein export in PrlA mutants of Escherichia coli
-
Derman, A. I., J. W. Puziss, P. J. Bassford, and J. Beckwith. 1993. A signal sequence is not required for protein export in PrlA mutants of Escherichia coli. EMBO J. 12:879-888.
-
(1993)
EMBO J.
, vol.12
, pp. 879-888
-
-
Derman, A.I.1
Puziss, J.W.2
Bassford, P.J.3
Beckwith, J.4
-
57
-
-
0028925920
-
The allele-specific synthetic lethality of prlA-prlG double mutants predicts interactive domains of SecY and SecE
-
Flower, A. M., R. S. Osborne, and T. J. Silhavy. 1995. The allele-specific synthetic lethality of prlA-prlG double mutants predicts interactive domains of SecY and SecE. EMBO J. 14:884-893.
-
(1995)
EMBO J.
, vol.14
, pp. 884-893
-
-
Flower, A.M.1
Osborne, R.S.2
Silhavy, T.J.3
-
58
-
-
0031471055
-
Both lumenal and cytosolic gating of the aqueous ER translocon pore are regulated from inside the ribosome during membrane protein integration
-
Liao, S., J. Lin, H. Do, and A. E. Johnson. 1997. Both lumenal and cytosolic gating of the aqueous ER translocon pore are regulated from inside the ribosome during membrane protein integration. Cell. 90:31-41.
-
(1997)
Cell
, vol.90
, pp. 31-41
-
-
Liao, S.1
Lin, J.2
Do, H.3
Johnson, A.E.4
|