-
1
-
-
0033281074
-
The translocon: A dynamic gateway at the ER membrane
-
Johnson, A. & van Waes, M. The translocon: a dynamic gateway at the ER membrane. Annu. Rev. Cell Dev. Biol. 15, 799-842 (1999).
-
(1999)
Annu. Rev. Cell Dev. Biol.
, vol.15
, pp. 799-842
-
-
Johnson, A.1
Van Waes, M.2
-
2
-
-
4644356464
-
Membrane-protein integration and the role of the translocation channel
-
Rapoport, T., Goder, V., Heinrich, S. & Matlack, K. Membrane-protein integration and the role of the translocation channel. Trends Cell Biol. 14, 568-575 (2004).
-
(2004)
Trends Cell Biol.
, vol.14
, pp. 568-575
-
-
Rapoport, T.1
Goder, V.2
Heinrich, S.3
Matlack, K.4
-
3
-
-
16244373735
-
Architecture of the ribosome-channel complex derived from native membranes
-
Menetret, J.-F. et al. Architecture of the ribosome-channel complex derived from native membranes. J. Mol. Biol. 348, 445-457 (2005).
-
(2005)
J. Mol. Biol.
, vol.348
, pp. 445-457
-
-
Menetret, J.-F.1
-
4
-
-
0027424601
-
Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane
-
Görlich, D. & Rapoport, T. Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell 75, 615-630 (1993).
-
(1993)
Cell
, vol.75
, pp. 615-630
-
-
Görlich, D.1
Rapoport, T.2
-
5
-
-
0027985063
-
Secretory proteins move through the endoplasmic reticulum membrane via an aqueous, gated pore
-
Crowley, K., Liao, S., Worrell, V., Reinhart, G. & Johnson, A. Secretory proteins move through the endoplasmic reticulum membrane via an aqueous, gated pore. Cell 78, 461-471 (1994).
-
(1994)
Cell
, vol.78
, pp. 461-471
-
-
Crowley, K.1
Liao, S.2
Worrell, V.3
Reinhart, G.4
Johnson, A.5
-
6
-
-
0347192985
-
X-ray structure of a protein-conducting channel
-
Van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature 427, 36-44 (2004).
-
(2004)
Nature
, vol.427
, pp. 36-44
-
-
Van Den Berg, B.1
-
7
-
-
0027454264
-
Site-specific photocrosslinking reveals that Sec61P and TRAM contact different regions of a membrane inserted signal sequence
-
High, S. et al. Site-specific photocrosslinking reveals that Sec61P and TRAM contact different regions of a membrane inserted signal sequence. J. Biol. Chem. 268, 26745-26751 (1993).
-
(1993)
J. Biol. Chem.
, vol.268
, pp. 26745-26751
-
-
High, S.1
-
8
-
-
0026061020
-
A nascent membrane protein is located adjacent to ER membrane proteins throughout its integration and translocation
-
Thrift, R.N., Andrews, D.W., Walter, P. & Johnson, A.E. A nascent membrane protein is located adjacent to ER membrane proteins throughout its integration and translocation. J. Cell Biol. 112, 809-821 (1991).
-
(1991)
J. Cell Biol.
, vol.112
, pp. 809-821
-
-
Thrift, R.N.1
Andrews, D.W.2
Walter, P.3
Johnson, A.E.4
-
9
-
-
0027936633
-
Systematic probing of the environment of a translocating secretory protein during translocation through the ER membrane
-
Mothes, W., Prehn, S. & Rapoport, T. Systematic probing of the environment of a translocating secretory protein during translocation through the ER membrane. EMBO J. 13, 3973-3982 (1994).
-
(1994)
EMBO J.
, vol.13
, pp. 3973-3982
-
-
Mothes, W.1
Prehn, S.2
Rapoport, T.3
-
10
-
-
0141992130
-
Cotranslational protein integration into the ER membrane is mediated by the binding of nascent chains to translocon proteins
-
McCormick, P., Miao, Y., Shao, Y., Lin, J. & Johnson, A. Cotranslational protein integration into the ER membrane is mediated by the binding of nascent chains to translocon proteins. Mol. Cell 12, 329-341 (2003).
-
(2003)
Mol. Cell
, vol.12
, pp. 329-341
-
-
McCormick, P.1
Miao, Y.2
Shao, Y.3
Lin, J.4
Johnson, A.5
-
11
-
-
0031471055
-
Both lumenal and cytosolic gating of the aqueous translocon pore are regulated from inside the ribosome during membrane protein integration
-
Liao, S., Lin, J., Do, H. & Johnson, A. Both lumenal and cytosolic gating of the aqueous translocon pore are regulated from inside the ribosome during membrane protein integration. Cell 90, 31-42 (1997).
-
(1997)
Cell
, vol.90
, pp. 31-42
-
-
Liao, S.1
Lin, J.2
Do, H.3
Johnson, A.4
-
12
-
-
1542358892
-
Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins
-
Woolhead, C., McCormick, P. & Johnson, A. Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 116, 725-736 (2004).
-
(2004)
Cell
, vol.116
, pp. 725-736
-
-
Woolhead, C.1
McCormick, P.2
Johnson, A.3
-
13
-
-
0027229977
-
Sec61p is adjacent to nascent type I and type II signal-anchor proteins during their membrane insertion
-
High, S. et al. Sec61p is adjacent to nascent type I and type II signal-anchor proteins during their membrane insertion. J. Cell Biol. 121, 743-750 (1993).
-
(1993)
J. Cell Biol.
, vol.121
, pp. 743-750
-
-
High, S.1
-
14
-
-
0029002962
-
The protein-conducting channel in the membrane of the endoplasmic reticulum is open laterally toward the lipid bilayer
-
Martoglio, B., Hofmann, M., Brunner, J. & Dobberstein, B. The protein-conducting channel in the membrane of the endoplasmic reticulum is open laterally toward the lipid bilayer. Cell 81, 207-214 (1995).
-
(1995)
Cell
, vol.81
, pp. 207-214
-
-
Martoglio, B.1
Hofmann, M.2
Brunner, J.3
Dobberstein, B.4
-
15
-
-
0342995731
-
The cotranslational integration of membrane proteins into the phospholipid bilayer is a multistep process
-
Do, H., Falcone, D., Lin, J., Andrews, D. & Johnson, A. The cotranslational integration of membrane proteins into the phospholipid bilayer is a multistep process. Cell 85, 369-378 (1996).
-
(1996)
Cell
, vol.85
, pp. 369-378
-
-
Do, H.1
Falcone, D.2
Lin, J.3
Andrews, D.4
Johnson, A.5
-
16
-
-
0030825974
-
Molecular mechanism of membrane protein integration into the endoplasmic reticulum
-
Mothes, W. et al. Molecular mechanism of membrane protein integration into the endoplasmic reticulum. Cell 89, 523-533 (1997).
-
(1997)
Cell
, vol.89
, pp. 523-533
-
-
Mothes, W.1
-
17
-
-
0034697967
-
The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain
-
Heinrich, S.U., Mothes, W., Brunner, J. & Rapoport, T. The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell 102, 233-244 (2000).
-
(2000)
Cell
, vol.102
, pp. 233-244
-
-
Heinrich, S.U.1
Mothes, W.2
Brunner, J.3
Rapoport, T.4
-
18
-
-
0036906637
-
Different transmembrane domains associate with distinct endoplasmic reticulum components during membrane integration of a polytopic protein
-
Meacock, S., Lecomte, F., Crawshaw, S. & High, S. Different transmembrane domains associate with distinct endoplasmic reticulum components during membrane integration of a polytopic protein. Mol. Biol. Cell 13, 4114-4129 (2002).
-
(2002)
Mol. Biol. Cell
, vol.13
, pp. 4114-4129
-
-
Meacock, S.1
Lecomte, F.2
Crawshaw, S.3
High, S.4
-
19
-
-
0042815085
-
Cooperation of transmembrane segments during integration of a double-spanning protein into the ER membrane
-
Heinrich, S. & Rapoport, T. Cooperation of transmembrane segments during integration of a double-spanning protein into the ER membrane. EMBO J. 22, 3654-3663 (2003).
-
(2003)
EMBO J.
, vol.22
, pp. 3654-3663
-
-
Heinrich, S.1
Rapoport, T.2
-
20
-
-
4944228608
-
Topogenesis of membrane proteins at the endoplasmic reticulum
-
Higy, M., Junne, T. & Spiess, M. Topogenesis of membrane proteins at the endoplasmic reticulum. Biochemistry 43, 12716-12722 (2004).
-
(2004)
Biochemistry
, vol.43
, pp. 12716-12722
-
-
Higy, M.1
Junne, T.2
Spiess, M.3
-
21
-
-
2542452829
-
Cotranslational membrane protein biogenesis at the endoplasmic reticulum
-
Alder, N. & Johnson, A. Cotranslational membrane protein biogenesis at the endoplasmic reticulum. J. Biol. Chem. 279, 22787-22790 (2004).
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 22787-22790
-
-
Alder, N.1
Johnson, A.2
-
22
-
-
17744395499
-
Biogenesis of CFTR and other polytopic membrane proteins; new roles for the ribosome-translocon complex
-
Sadlish, H. & Skach, W. Biogenesis of CFTR and other polytopic membrane proteins; new roles for the ribosome-translocon complex. J. Membr. Biol. 202, 115-126 (2004).
-
(2004)
J. Membr. Biol.
, vol.202
, pp. 115-126
-
-
Sadlish, H.1
Skach, W.2
-
23
-
-
0028318283
-
Biogenesis and transmembrane topology of the CHIP28 water channel in the endoplasmic reticulum
-
Skach, W. et al. Biogenesis and transmembrane topology of the CHIP28 water channel in the endoplasmic reticulum. J. Cell Biol. 125, 803-815 (1994).
-
(1994)
J. Cell Biol.
, vol.125
, pp. 803-815
-
-
Skach, W.1
-
24
-
-
0027519416
-
Amino terminus assembly of human P-glycoprotein at the endoplasmic reticulum is directed by cooperative actions of two internal sequences
-
Skach, W. & Lingappa, V. Amino terminus assembly of human P-glycoprotein at the endoplasmic reticulum is directed by cooperative actions of two internal sequences. J. Biol. Chem. 268, 23552-23561 (1993).
-
(1993)
J. Biol. Chem.
, vol.268
, pp. 23552-23561
-
-
Skach, W.1
Lingappa, V.2
-
25
-
-
0028900576
-
A novel integration signal that is composed of two transmembrane segments is required to integrate the neorospora plasma membrane H+-ATPase into microsomes
-
Lin, J. & Addison, R. A novel integration signal that is composed of two transmembrane segments is required to integrate the neorospora plasma membrane H+-ATPase into microsomes. J. Biol. Chem. 270, 6935-6941 (1995).
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 6935-6941
-
-
Lin, J.1
Addison, R.2
-
26
-
-
0029738828
-
Biogenesis of polytopic membrane proteins: Membrane segments of P-glycoprotein sequentially translocate to span the ER membrane
-
Borel, A. & Simon, S. Biogenesis of polytopic membrane proteins: membrane segments of P-glycoprotein sequentially translocate to span the ER membrane. Biochemistry 35, 10587-10594 (1996).
-
(1996)
Biochemistry
, vol.35
, pp. 10587-10594
-
-
Borel, A.1
Simon, S.2
-
27
-
-
0345444027
-
Oligomeric rings of the Sec61p complex induced by ligands required for protein translocation
-
Hanein, D. et al. Oligomeric rings of the Sec61p complex induced by ligands required for protein translocation. Cell 87, 721-732 (1996).
-
(1996)
Cell
, vol.87
, pp. 721-732
-
-
Hanein, D.1
-
28
-
-
0035798359
-
Architecture of the protein-conducting channel associated with the translating 80S ribosome
-
Beckmann, R. et al. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107, 361-372 (2001).
-
(2001)
Cell
, vol.107
, pp. 361-372
-
-
Beckmann, R.1
-
29
-
-
0036927080
-
Structure of the mammalian ribosome-channel complex at 17A resolution
-
Morgan, D., Menetret, J., Neuhof, A., Rapoport, T. & Akey, C. Structure of the mammalian ribosome-channel complex at 17A resolution. J. Mol. Biol. 324, 871-886 (2002).
-
(2002)
J. Mol. Biol.
, vol.324
, pp. 871-886
-
-
Morgan, D.1
Menetret, J.2
Neuhof, A.3
Rapoport, T.4
Akey, C.5
-
30
-
-
0030782178
-
Membrane protein biogenesis: Regulated complexity at the endoplasmic reticulum
-
Hegde, R. & Lingappa, V. Membrane protein biogenesis: regulated complexity at the endoplasmic reticulum. Cell 91, 575-582 (1997).
-
(1997)
Cell
, vol.91
, pp. 575-582
-
-
Hegde, R.1
Lingappa, V.2
-
31
-
-
0032006712
-
The role of the ribosome-translocon complex in translation and assembly of polytopic membrane proteins
-
Bibi, E. The role of the ribosome-translocon complex in translation and assembly of polytopic membrane proteins. Trends Biochem. Sci. 23, 51-55 (1998).
-
(1998)
Trends Biochem. Sci.
, vol.23
, pp. 51-55
-
-
Bibi, E.1
-
32
-
-
0033952945
-
Structure and function of aquaporin water channels
-
Verkman, A. & Mitra, A. Structure and function of aquaporin water channels. Am. J. Physiol. Renal Physiol. 278, F13-F28 (2000).
-
(2000)
Am. J. Physiol. Renal Physiol.
, vol.278
-
-
Verkman, A.1
Mitra, A.2
-
33
-
-
0036661083
-
Aquaporin water channels - From atomic structure to clinical medicine
-
Agre, P. et al. Aquaporin water channels - from atomic structure to clinical medicine. J. Physiol. (Lond.) 542, 3-16 (2002).
-
(2002)
J. Physiol. (Lond.)
, vol.542
, pp. 3-16
-
-
Agre, P.1
-
34
-
-
0036667729
-
Structure and function of water channels
-
Fujiyoshi, Y. et al. Structure and function of water channels. Curr. Opin. Struct. Biol. 12, 509-515 (2002).
-
(2002)
Curr. Opin. Struct. Biol.
, vol.12
, pp. 509-515
-
-
Fujiyoshi, Y.1
-
35
-
-
0035924329
-
Structural basis of water specific transport through the AQP1 water channel
-
Sui, H., Han, B.-G., Lee, J., Walian, P. & Jap, B. Structural basis of water specific transport through the AQP1 water channel. Nature 414, 872-878 (2001).
-
(2001)
Nature
, vol.414
, pp. 872-878
-
-
Sui, H.1
Han, B.-G.2
Lee, J.3
Walian, P.4
Jap, B.5
-
36
-
-
0033761347
-
Structure of a glycerol-conducting channel and the basis for its selectivity
-
Fu, D. et al. Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290, 481-486 (2000).
-
(2000)
Science
, vol.290
, pp. 481-486
-
-
Fu, D.1
-
37
-
-
0029069427
-
Distinct biogenesis mechanisms for water channels MIWC and CHIP28 at the endoplasmic reticulum
-
Shi, L.-B., Skach, W., Ma, T. & Verkman, A. Distinct biogenesis mechanisms for water channels MIWC and CHIP28 at the endoplasmic reticulum. Biochemistry 34, 8250-8256 (1995).
-
(1995)
Biochemistry
, vol.34
, pp. 8250-8256
-
-
Shi, L.-B.1
Skach, W.2
Ma, T.3
Verkman, A.4
-
38
-
-
0034602391
-
Identification of sequence determinants that direct different intracellular folding pathways for AQP1 and AQP4
-
Foster, W. et al. Identification of sequence determinants that direct different intracellular folding pathways for AQP1 and AQP4. J. Biol. Chem. 275, 34157-34165 (2000).
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 34157-34165
-
-
Foster, W.1
-
39
-
-
0037684809
-
Photocross-linking of nascent chains to the STT3 subunit of the oligosaccharyltransferase complex
-
Nilsson, I. et al. Photocross-linking of nascent chains to the STT3 subunit of the oligosaccharyltransferase complex. J. Cell Biol. 161, 715-725 (2003).
-
(2003)
J. Cell Biol.
, vol.161
, pp. 715-725
-
-
Nilsson, I.1
-
40
-
-
0037450802
-
Substrate-specific function of the translocon-associated protein complex during translocation across the ER membrane
-
Fons, R., Bogert, B. & Hegde, R. Substrate-specific function of the translocon-associated protein complex during translocation across the ER membrane. J. Cell Biol. 160, 529-539 (2003).
-
(2003)
J. Cell Biol.
, vol.160
, pp. 529-539
-
-
Fons, R.1
Bogert, B.2
Hegde, R.3
-
41
-
-
14244258608
-
Ribophorin I associates with a subset of membrane proteins after their integration at the Sec61 translocon
-
Wilson, C. et al. Ribophorin I associates with a subset of membrane proteins after their integration at the Sec61 translocon. J. Biol. Chem. 280, 4195-4206 (2005).
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 4195-4206
-
-
Wilson, C.1
-
42
-
-
1842561598
-
The organization of engaged and quiescent translocons in the endoplasmic reticulum of mammalian cells
-
Snapp, E., Reinhart, G., Bogert, B., Lippencott-Schwartz, J. & Hegde, R. The organization of engaged and quiescent translocons in the endoplasmic reticulum of mammalian cells. J. Cell Biol. 164, 997-1007 (2004).
-
(2004)
J. Cell Biol.
, vol.164
, pp. 997-1007
-
-
Snapp, E.1
Reinhart, G.2
Bogert, B.3
Lippencott-Schwartz, J.4
Hegde, R.5
-
43
-
-
0037043724
-
Three-dimensional structure of the bacterial protein-translocation complex SecYEG
-
Breyton, C., Haase, W., Rapoport, T., Kuehlbrandt, W. & Collinson, I. Three-dimensional structure of the bacterial protein-translocation complex SecYEG. Nature 418, 662-665 (2002).
-
(2002)
Nature
, vol.418
, pp. 662-665
-
-
Breyton, C.1
Haase, W.2
Rapoport, T.3
Kuehlbrandt, W.4
Collinson, I.5
-
44
-
-
0034161573
-
SecYEG assembles into a tetramer to form the active protein translocation channel
-
Manting, E., van der Does, C., Remigy, H., Engel, A. & Driessen, A. SecYEG assembles into a tetramer to form the active protein translocation channel. EMBO J. 19, 852-861 (2000).
-
(2000)
EMBO J.
, vol.19
, pp. 852-861
-
-
Manting, E.1
Van Der Does, C.2
Remigy, H.3
Engel, A.4
Driessen, A.5
-
45
-
-
0030611388
-
The aqueous pore through the translocon has a diameter of 40-60A during cotranslational protein translocation at the ER membrane
-
Hamman, B., Chen, J.-C., Johnson, E. & Johnson, A. The aqueous pore through the translocon has a diameter of 40-60A during cotranslational protein translocation at the ER membrane. Cell 89, 535-544 (1997).
-
(1997)
Cell
, vol.89
, pp. 535-544
-
-
Hamman, B.1
Chen, J.-C.2
Johnson, E.3
Johnson, A.4
-
46
-
-
0031686961
-
Coupled translocation events generate topologic heterogeneity at the endoplasmic reticulum membrane
-
Moss, K., Helm, A., Lu, Y., Bragin, A. & Skach, W. Coupled translocation events generate topologic heterogeneity at the endoplasmic reticulum membrane. Mol. Biol. Cell 9, 2681-2697 (1998).
-
(1998)
Mol. Biol. Cell
, vol.9
, pp. 2681-2697
-
-
Moss, K.1
Helm, A.2
Lu, Y.3
Bragin, A.4
Skach, W.5
-
47
-
-
0037131183
-
Cooperativity and flexibility of cytsic fibrosis transmembrane conductance regulator transmembrane segments participate in membrane localization of a charged residue
-
Carveth, K., Buck, T., Anthony, V. & Skach, W. Cooperativity and flexibility of cytsic fibrosis transmembrane conductance regulator transmembrane segments participate in membrane localization of a charged residue. J. Biol. Chem. 277, 39507-39514 (2002).
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 39507-39514
-
-
Carveth, K.1
Buck, T.2
Anthony, V.3
Skach, W.4
-
48
-
-
0032727707
-
Glycosylation can influence topogenesis of membrane proteins and reveals dynamic reorientation of nascent polypeptides within the translocon
-
Goder, V., Bieri, C. & Spiess, M. Glycosylation can influence topogenesis of membrane proteins and reveals dynamic reorientation of nascent polypeptides within the translocon. J. Cell Biol. 147, 257-266 (1999).
-
(1999)
J. Cell Biol.
, vol.147
, pp. 257-266
-
-
Goder, V.1
Bieri, C.2
Spiess, M.3
-
49
-
-
0034492193
-
Reorientation of Aquaporin-1 topology during maturation in the endoplasmic reticulum
-
Lu, Y. et al. Reorientation of Aquaporin-1 topology during maturation in the endoplasmic reticulum. Mol. Biol. Cell 11, 2973-2985 (2000).
-
(2000)
Mol. Biol. Cell
, vol.11
, pp. 2973-2985
-
-
Lu, Y.1
-
50
-
-
0032544614
-
Signal sequence recognition in posttranslational protein transport across the yeast ER membrane
-
Plath, K., Mothes, W., Wilkinson, B., Stirling, C. & Rapoport, T. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 94, 795-807 (1998).
-
(1998)
Cell
, vol.94
, pp. 795-807
-
-
Plath, K.1
Mothes, W.2
Wilkinson, B.3
Stirling, C.4
Rapoport, T.5
|