메뉴 건너뛰기




Volumn 12, Issue 10, 2005, Pages 870-878

Sequential triage of transmembrane segments by Sec61α during biogenesis of a native multispanning membrane protein

Author keywords

[No Author keywords available]

Indexed keywords

AQUAPORIN; AQUAPORIN 4; CARRIER PROTEIN; MEMBRANE PROTEIN; PROTEIN SEC61ALPHA; TRANSLOCON; UNCLASSIFIED DRUG;

EID: 27144549973     PISSN: 15459993     EISSN: 15459985     Source Type: Journal    
DOI: 10.1038/nsmb994     Document Type: Article
Times cited : (130)

References (50)
  • 1
    • 0033281074 scopus 로고    scopus 로고
    • The translocon: A dynamic gateway at the ER membrane
    • Johnson, A. & van Waes, M. The translocon: a dynamic gateway at the ER membrane. Annu. Rev. Cell Dev. Biol. 15, 799-842 (1999).
    • (1999) Annu. Rev. Cell Dev. Biol. , vol.15 , pp. 799-842
    • Johnson, A.1    Van Waes, M.2
  • 2
    • 4644356464 scopus 로고    scopus 로고
    • Membrane-protein integration and the role of the translocation channel
    • Rapoport, T., Goder, V., Heinrich, S. & Matlack, K. Membrane-protein integration and the role of the translocation channel. Trends Cell Biol. 14, 568-575 (2004).
    • (2004) Trends Cell Biol. , vol.14 , pp. 568-575
    • Rapoport, T.1    Goder, V.2    Heinrich, S.3    Matlack, K.4
  • 3
    • 16244373735 scopus 로고    scopus 로고
    • Architecture of the ribosome-channel complex derived from native membranes
    • Menetret, J.-F. et al. Architecture of the ribosome-channel complex derived from native membranes. J. Mol. Biol. 348, 445-457 (2005).
    • (2005) J. Mol. Biol. , vol.348 , pp. 445-457
    • Menetret, J.-F.1
  • 4
    • 0027424601 scopus 로고
    • Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane
    • Görlich, D. & Rapoport, T. Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell 75, 615-630 (1993).
    • (1993) Cell , vol.75 , pp. 615-630
    • Görlich, D.1    Rapoport, T.2
  • 5
    • 0027985063 scopus 로고
    • Secretory proteins move through the endoplasmic reticulum membrane via an aqueous, gated pore
    • Crowley, K., Liao, S., Worrell, V., Reinhart, G. & Johnson, A. Secretory proteins move through the endoplasmic reticulum membrane via an aqueous, gated pore. Cell 78, 461-471 (1994).
    • (1994) Cell , vol.78 , pp. 461-471
    • Crowley, K.1    Liao, S.2    Worrell, V.3    Reinhart, G.4    Johnson, A.5
  • 6
    • 0347192985 scopus 로고    scopus 로고
    • X-ray structure of a protein-conducting channel
    • Van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature 427, 36-44 (2004).
    • (2004) Nature , vol.427 , pp. 36-44
    • Van Den Berg, B.1
  • 7
    • 0027454264 scopus 로고
    • Site-specific photocrosslinking reveals that Sec61P and TRAM contact different regions of a membrane inserted signal sequence
    • High, S. et al. Site-specific photocrosslinking reveals that Sec61P and TRAM contact different regions of a membrane inserted signal sequence. J. Biol. Chem. 268, 26745-26751 (1993).
    • (1993) J. Biol. Chem. , vol.268 , pp. 26745-26751
    • High, S.1
  • 8
    • 0026061020 scopus 로고
    • A nascent membrane protein is located adjacent to ER membrane proteins throughout its integration and translocation
    • Thrift, R.N., Andrews, D.W., Walter, P. & Johnson, A.E. A nascent membrane protein is located adjacent to ER membrane proteins throughout its integration and translocation. J. Cell Biol. 112, 809-821 (1991).
    • (1991) J. Cell Biol. , vol.112 , pp. 809-821
    • Thrift, R.N.1    Andrews, D.W.2    Walter, P.3    Johnson, A.E.4
  • 9
    • 0027936633 scopus 로고
    • Systematic probing of the environment of a translocating secretory protein during translocation through the ER membrane
    • Mothes, W., Prehn, S. & Rapoport, T. Systematic probing of the environment of a translocating secretory protein during translocation through the ER membrane. EMBO J. 13, 3973-3982 (1994).
    • (1994) EMBO J. , vol.13 , pp. 3973-3982
    • Mothes, W.1    Prehn, S.2    Rapoport, T.3
  • 10
    • 0141992130 scopus 로고    scopus 로고
    • Cotranslational protein integration into the ER membrane is mediated by the binding of nascent chains to translocon proteins
    • McCormick, P., Miao, Y., Shao, Y., Lin, J. & Johnson, A. Cotranslational protein integration into the ER membrane is mediated by the binding of nascent chains to translocon proteins. Mol. Cell 12, 329-341 (2003).
    • (2003) Mol. Cell , vol.12 , pp. 329-341
    • McCormick, P.1    Miao, Y.2    Shao, Y.3    Lin, J.4    Johnson, A.5
  • 11
    • 0031471055 scopus 로고    scopus 로고
    • Both lumenal and cytosolic gating of the aqueous translocon pore are regulated from inside the ribosome during membrane protein integration
    • Liao, S., Lin, J., Do, H. & Johnson, A. Both lumenal and cytosolic gating of the aqueous translocon pore are regulated from inside the ribosome during membrane protein integration. Cell 90, 31-42 (1997).
    • (1997) Cell , vol.90 , pp. 31-42
    • Liao, S.1    Lin, J.2    Do, H.3    Johnson, A.4
  • 12
    • 1542358892 scopus 로고    scopus 로고
    • Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins
    • Woolhead, C., McCormick, P. & Johnson, A. Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 116, 725-736 (2004).
    • (2004) Cell , vol.116 , pp. 725-736
    • Woolhead, C.1    McCormick, P.2    Johnson, A.3
  • 13
    • 0027229977 scopus 로고
    • Sec61p is adjacent to nascent type I and type II signal-anchor proteins during their membrane insertion
    • High, S. et al. Sec61p is adjacent to nascent type I and type II signal-anchor proteins during their membrane insertion. J. Cell Biol. 121, 743-750 (1993).
    • (1993) J. Cell Biol. , vol.121 , pp. 743-750
    • High, S.1
  • 14
    • 0029002962 scopus 로고
    • The protein-conducting channel in the membrane of the endoplasmic reticulum is open laterally toward the lipid bilayer
    • Martoglio, B., Hofmann, M., Brunner, J. & Dobberstein, B. The protein-conducting channel in the membrane of the endoplasmic reticulum is open laterally toward the lipid bilayer. Cell 81, 207-214 (1995).
    • (1995) Cell , vol.81 , pp. 207-214
    • Martoglio, B.1    Hofmann, M.2    Brunner, J.3    Dobberstein, B.4
  • 15
    • 0342995731 scopus 로고    scopus 로고
    • The cotranslational integration of membrane proteins into the phospholipid bilayer is a multistep process
    • Do, H., Falcone, D., Lin, J., Andrews, D. & Johnson, A. The cotranslational integration of membrane proteins into the phospholipid bilayer is a multistep process. Cell 85, 369-378 (1996).
    • (1996) Cell , vol.85 , pp. 369-378
    • Do, H.1    Falcone, D.2    Lin, J.3    Andrews, D.4    Johnson, A.5
  • 16
    • 0030825974 scopus 로고    scopus 로고
    • Molecular mechanism of membrane protein integration into the endoplasmic reticulum
    • Mothes, W. et al. Molecular mechanism of membrane protein integration into the endoplasmic reticulum. Cell 89, 523-533 (1997).
    • (1997) Cell , vol.89 , pp. 523-533
    • Mothes, W.1
  • 17
    • 0034697967 scopus 로고    scopus 로고
    • The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain
    • Heinrich, S.U., Mothes, W., Brunner, J. & Rapoport, T. The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell 102, 233-244 (2000).
    • (2000) Cell , vol.102 , pp. 233-244
    • Heinrich, S.U.1    Mothes, W.2    Brunner, J.3    Rapoport, T.4
  • 18
    • 0036906637 scopus 로고    scopus 로고
    • Different transmembrane domains associate with distinct endoplasmic reticulum components during membrane integration of a polytopic protein
    • Meacock, S., Lecomte, F., Crawshaw, S. & High, S. Different transmembrane domains associate with distinct endoplasmic reticulum components during membrane integration of a polytopic protein. Mol. Biol. Cell 13, 4114-4129 (2002).
    • (2002) Mol. Biol. Cell , vol.13 , pp. 4114-4129
    • Meacock, S.1    Lecomte, F.2    Crawshaw, S.3    High, S.4
  • 19
    • 0042815085 scopus 로고    scopus 로고
    • Cooperation of transmembrane segments during integration of a double-spanning protein into the ER membrane
    • Heinrich, S. & Rapoport, T. Cooperation of transmembrane segments during integration of a double-spanning protein into the ER membrane. EMBO J. 22, 3654-3663 (2003).
    • (2003) EMBO J. , vol.22 , pp. 3654-3663
    • Heinrich, S.1    Rapoport, T.2
  • 20
    • 4944228608 scopus 로고    scopus 로고
    • Topogenesis of membrane proteins at the endoplasmic reticulum
    • Higy, M., Junne, T. & Spiess, M. Topogenesis of membrane proteins at the endoplasmic reticulum. Biochemistry 43, 12716-12722 (2004).
    • (2004) Biochemistry , vol.43 , pp. 12716-12722
    • Higy, M.1    Junne, T.2    Spiess, M.3
  • 21
    • 2542452829 scopus 로고    scopus 로고
    • Cotranslational membrane protein biogenesis at the endoplasmic reticulum
    • Alder, N. & Johnson, A. Cotranslational membrane protein biogenesis at the endoplasmic reticulum. J. Biol. Chem. 279, 22787-22790 (2004).
    • (2004) J. Biol. Chem. , vol.279 , pp. 22787-22790
    • Alder, N.1    Johnson, A.2
  • 22
    • 17744395499 scopus 로고    scopus 로고
    • Biogenesis of CFTR and other polytopic membrane proteins; new roles for the ribosome-translocon complex
    • Sadlish, H. & Skach, W. Biogenesis of CFTR and other polytopic membrane proteins; new roles for the ribosome-translocon complex. J. Membr. Biol. 202, 115-126 (2004).
    • (2004) J. Membr. Biol. , vol.202 , pp. 115-126
    • Sadlish, H.1    Skach, W.2
  • 23
    • 0028318283 scopus 로고
    • Biogenesis and transmembrane topology of the CHIP28 water channel in the endoplasmic reticulum
    • Skach, W. et al. Biogenesis and transmembrane topology of the CHIP28 water channel in the endoplasmic reticulum. J. Cell Biol. 125, 803-815 (1994).
    • (1994) J. Cell Biol. , vol.125 , pp. 803-815
    • Skach, W.1
  • 24
    • 0027519416 scopus 로고
    • Amino terminus assembly of human P-glycoprotein at the endoplasmic reticulum is directed by cooperative actions of two internal sequences
    • Skach, W. & Lingappa, V. Amino terminus assembly of human P-glycoprotein at the endoplasmic reticulum is directed by cooperative actions of two internal sequences. J. Biol. Chem. 268, 23552-23561 (1993).
    • (1993) J. Biol. Chem. , vol.268 , pp. 23552-23561
    • Skach, W.1    Lingappa, V.2
  • 25
    • 0028900576 scopus 로고
    • A novel integration signal that is composed of two transmembrane segments is required to integrate the neorospora plasma membrane H+-ATPase into microsomes
    • Lin, J. & Addison, R. A novel integration signal that is composed of two transmembrane segments is required to integrate the neorospora plasma membrane H+-ATPase into microsomes. J. Biol. Chem. 270, 6935-6941 (1995).
    • (1995) J. Biol. Chem. , vol.270 , pp. 6935-6941
    • Lin, J.1    Addison, R.2
  • 26
    • 0029738828 scopus 로고    scopus 로고
    • Biogenesis of polytopic membrane proteins: Membrane segments of P-glycoprotein sequentially translocate to span the ER membrane
    • Borel, A. & Simon, S. Biogenesis of polytopic membrane proteins: membrane segments of P-glycoprotein sequentially translocate to span the ER membrane. Biochemistry 35, 10587-10594 (1996).
    • (1996) Biochemistry , vol.35 , pp. 10587-10594
    • Borel, A.1    Simon, S.2
  • 27
    • 0345444027 scopus 로고    scopus 로고
    • Oligomeric rings of the Sec61p complex induced by ligands required for protein translocation
    • Hanein, D. et al. Oligomeric rings of the Sec61p complex induced by ligands required for protein translocation. Cell 87, 721-732 (1996).
    • (1996) Cell , vol.87 , pp. 721-732
    • Hanein, D.1
  • 28
    • 0035798359 scopus 로고    scopus 로고
    • Architecture of the protein-conducting channel associated with the translating 80S ribosome
    • Beckmann, R. et al. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107, 361-372 (2001).
    • (2001) Cell , vol.107 , pp. 361-372
    • Beckmann, R.1
  • 29
    • 0036927080 scopus 로고    scopus 로고
    • Structure of the mammalian ribosome-channel complex at 17A resolution
    • Morgan, D., Menetret, J., Neuhof, A., Rapoport, T. & Akey, C. Structure of the mammalian ribosome-channel complex at 17A resolution. J. Mol. Biol. 324, 871-886 (2002).
    • (2002) J. Mol. Biol. , vol.324 , pp. 871-886
    • Morgan, D.1    Menetret, J.2    Neuhof, A.3    Rapoport, T.4    Akey, C.5
  • 30
    • 0030782178 scopus 로고    scopus 로고
    • Membrane protein biogenesis: Regulated complexity at the endoplasmic reticulum
    • Hegde, R. & Lingappa, V. Membrane protein biogenesis: regulated complexity at the endoplasmic reticulum. Cell 91, 575-582 (1997).
    • (1997) Cell , vol.91 , pp. 575-582
    • Hegde, R.1    Lingappa, V.2
  • 31
    • 0032006712 scopus 로고    scopus 로고
    • The role of the ribosome-translocon complex in translation and assembly of polytopic membrane proteins
    • Bibi, E. The role of the ribosome-translocon complex in translation and assembly of polytopic membrane proteins. Trends Biochem. Sci. 23, 51-55 (1998).
    • (1998) Trends Biochem. Sci. , vol.23 , pp. 51-55
    • Bibi, E.1
  • 32
    • 0033952945 scopus 로고    scopus 로고
    • Structure and function of aquaporin water channels
    • Verkman, A. & Mitra, A. Structure and function of aquaporin water channels. Am. J. Physiol. Renal Physiol. 278, F13-F28 (2000).
    • (2000) Am. J. Physiol. Renal Physiol. , vol.278
    • Verkman, A.1    Mitra, A.2
  • 33
    • 0036661083 scopus 로고    scopus 로고
    • Aquaporin water channels - From atomic structure to clinical medicine
    • Agre, P. et al. Aquaporin water channels - from atomic structure to clinical medicine. J. Physiol. (Lond.) 542, 3-16 (2002).
    • (2002) J. Physiol. (Lond.) , vol.542 , pp. 3-16
    • Agre, P.1
  • 34
    • 0036667729 scopus 로고    scopus 로고
    • Structure and function of water channels
    • Fujiyoshi, Y. et al. Structure and function of water channels. Curr. Opin. Struct. Biol. 12, 509-515 (2002).
    • (2002) Curr. Opin. Struct. Biol. , vol.12 , pp. 509-515
    • Fujiyoshi, Y.1
  • 35
    • 0035924329 scopus 로고    scopus 로고
    • Structural basis of water specific transport through the AQP1 water channel
    • Sui, H., Han, B.-G., Lee, J., Walian, P. & Jap, B. Structural basis of water specific transport through the AQP1 water channel. Nature 414, 872-878 (2001).
    • (2001) Nature , vol.414 , pp. 872-878
    • Sui, H.1    Han, B.-G.2    Lee, J.3    Walian, P.4    Jap, B.5
  • 36
    • 0033761347 scopus 로고    scopus 로고
    • Structure of a glycerol-conducting channel and the basis for its selectivity
    • Fu, D. et al. Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290, 481-486 (2000).
    • (2000) Science , vol.290 , pp. 481-486
    • Fu, D.1
  • 37
    • 0029069427 scopus 로고
    • Distinct biogenesis mechanisms for water channels MIWC and CHIP28 at the endoplasmic reticulum
    • Shi, L.-B., Skach, W., Ma, T. & Verkman, A. Distinct biogenesis mechanisms for water channels MIWC and CHIP28 at the endoplasmic reticulum. Biochemistry 34, 8250-8256 (1995).
    • (1995) Biochemistry , vol.34 , pp. 8250-8256
    • Shi, L.-B.1    Skach, W.2    Ma, T.3    Verkman, A.4
  • 38
    • 0034602391 scopus 로고    scopus 로고
    • Identification of sequence determinants that direct different intracellular folding pathways for AQP1 and AQP4
    • Foster, W. et al. Identification of sequence determinants that direct different intracellular folding pathways for AQP1 and AQP4. J. Biol. Chem. 275, 34157-34165 (2000).
    • (2000) J. Biol. Chem. , vol.275 , pp. 34157-34165
    • Foster, W.1
  • 39
    • 0037684809 scopus 로고    scopus 로고
    • Photocross-linking of nascent chains to the STT3 subunit of the oligosaccharyltransferase complex
    • Nilsson, I. et al. Photocross-linking of nascent chains to the STT3 subunit of the oligosaccharyltransferase complex. J. Cell Biol. 161, 715-725 (2003).
    • (2003) J. Cell Biol. , vol.161 , pp. 715-725
    • Nilsson, I.1
  • 40
    • 0037450802 scopus 로고    scopus 로고
    • Substrate-specific function of the translocon-associated protein complex during translocation across the ER membrane
    • Fons, R., Bogert, B. & Hegde, R. Substrate-specific function of the translocon-associated protein complex during translocation across the ER membrane. J. Cell Biol. 160, 529-539 (2003).
    • (2003) J. Cell Biol. , vol.160 , pp. 529-539
    • Fons, R.1    Bogert, B.2    Hegde, R.3
  • 41
    • 14244258608 scopus 로고    scopus 로고
    • Ribophorin I associates with a subset of membrane proteins after their integration at the Sec61 translocon
    • Wilson, C. et al. Ribophorin I associates with a subset of membrane proteins after their integration at the Sec61 translocon. J. Biol. Chem. 280, 4195-4206 (2005).
    • (2005) J. Biol. Chem. , vol.280 , pp. 4195-4206
    • Wilson, C.1
  • 42
    • 1842561598 scopus 로고    scopus 로고
    • The organization of engaged and quiescent translocons in the endoplasmic reticulum of mammalian cells
    • Snapp, E., Reinhart, G., Bogert, B., Lippencott-Schwartz, J. & Hegde, R. The organization of engaged and quiescent translocons in the endoplasmic reticulum of mammalian cells. J. Cell Biol. 164, 997-1007 (2004).
    • (2004) J. Cell Biol. , vol.164 , pp. 997-1007
    • Snapp, E.1    Reinhart, G.2    Bogert, B.3    Lippencott-Schwartz, J.4    Hegde, R.5
  • 43
    • 0037043724 scopus 로고    scopus 로고
    • Three-dimensional structure of the bacterial protein-translocation complex SecYEG
    • Breyton, C., Haase, W., Rapoport, T., Kuehlbrandt, W. & Collinson, I. Three-dimensional structure of the bacterial protein-translocation complex SecYEG. Nature 418, 662-665 (2002).
    • (2002) Nature , vol.418 , pp. 662-665
    • Breyton, C.1    Haase, W.2    Rapoport, T.3    Kuehlbrandt, W.4    Collinson, I.5
  • 44
    • 0034161573 scopus 로고    scopus 로고
    • SecYEG assembles into a tetramer to form the active protein translocation channel
    • Manting, E., van der Does, C., Remigy, H., Engel, A. & Driessen, A. SecYEG assembles into a tetramer to form the active protein translocation channel. EMBO J. 19, 852-861 (2000).
    • (2000) EMBO J. , vol.19 , pp. 852-861
    • Manting, E.1    Van Der Does, C.2    Remigy, H.3    Engel, A.4    Driessen, A.5
  • 45
    • 0030611388 scopus 로고    scopus 로고
    • The aqueous pore through the translocon has a diameter of 40-60A during cotranslational protein translocation at the ER membrane
    • Hamman, B., Chen, J.-C., Johnson, E. & Johnson, A. The aqueous pore through the translocon has a diameter of 40-60A during cotranslational protein translocation at the ER membrane. Cell 89, 535-544 (1997).
    • (1997) Cell , vol.89 , pp. 535-544
    • Hamman, B.1    Chen, J.-C.2    Johnson, E.3    Johnson, A.4
  • 46
    • 0031686961 scopus 로고    scopus 로고
    • Coupled translocation events generate topologic heterogeneity at the endoplasmic reticulum membrane
    • Moss, K., Helm, A., Lu, Y., Bragin, A. & Skach, W. Coupled translocation events generate topologic heterogeneity at the endoplasmic reticulum membrane. Mol. Biol. Cell 9, 2681-2697 (1998).
    • (1998) Mol. Biol. Cell , vol.9 , pp. 2681-2697
    • Moss, K.1    Helm, A.2    Lu, Y.3    Bragin, A.4    Skach, W.5
  • 47
    • 0037131183 scopus 로고    scopus 로고
    • Cooperativity and flexibility of cytsic fibrosis transmembrane conductance regulator transmembrane segments participate in membrane localization of a charged residue
    • Carveth, K., Buck, T., Anthony, V. & Skach, W. Cooperativity and flexibility of cytsic fibrosis transmembrane conductance regulator transmembrane segments participate in membrane localization of a charged residue. J. Biol. Chem. 277, 39507-39514 (2002).
    • (2002) J. Biol. Chem. , vol.277 , pp. 39507-39514
    • Carveth, K.1    Buck, T.2    Anthony, V.3    Skach, W.4
  • 48
    • 0032727707 scopus 로고    scopus 로고
    • Glycosylation can influence topogenesis of membrane proteins and reveals dynamic reorientation of nascent polypeptides within the translocon
    • Goder, V., Bieri, C. & Spiess, M. Glycosylation can influence topogenesis of membrane proteins and reveals dynamic reorientation of nascent polypeptides within the translocon. J. Cell Biol. 147, 257-266 (1999).
    • (1999) J. Cell Biol. , vol.147 , pp. 257-266
    • Goder, V.1    Bieri, C.2    Spiess, M.3
  • 49
    • 0034492193 scopus 로고    scopus 로고
    • Reorientation of Aquaporin-1 topology during maturation in the endoplasmic reticulum
    • Lu, Y. et al. Reorientation of Aquaporin-1 topology during maturation in the endoplasmic reticulum. Mol. Biol. Cell 11, 2973-2985 (2000).
    • (2000) Mol. Biol. Cell , vol.11 , pp. 2973-2985
    • Lu, Y.1
  • 50
    • 0032544614 scopus 로고    scopus 로고
    • Signal sequence recognition in posttranslational protein transport across the yeast ER membrane
    • Plath, K., Mothes, W., Wilkinson, B., Stirling, C. & Rapoport, T. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 94, 795-807 (1998).
    • (1998) Cell , vol.94 , pp. 795-807
    • Plath, K.1    Mothes, W.2    Wilkinson, B.3    Stirling, C.4    Rapoport, T.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.