메뉴 건너뛰기




Volumn 450, Issue 7170, 2007, Pages 663-669

Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes

Author keywords

[No Author keywords available]

Indexed keywords

ADENOSINE TRIPHOSPHATASE; GLUCOSE REGULATED PROTEIN 78; LIPID; MEMBRANE PROTEIN; OLIGOMER; POLYPEPTIDE; SIGNAL RECOGNITION PARTICLE;

EID: 36749001066     PISSN: 00280836     EISSN: 14764687     Source Type: Journal    
DOI: 10.1038/nature06384     Document Type: Review
Times cited : (756)

References (99)
  • 1
    • 0016785996 scopus 로고
    • Intracellular aspects of the process of protein synthesis
    • Palade, G. Intracellular aspects of the process of protein synthesis. Science 189, 347-358 (1975).
    • (1975) Science , vol.189 , pp. 347-358
    • Palade, G.1
  • 2
    • 0001174553 scopus 로고
    • Ribosome-membrane interaction in eukaryotic cells
    • Blobel, G. & Sabatini, D. D. Ribosome-membrane interaction in eukaryotic cells. Biomembranes 2, 193-195 (1971).
    • (1971) Biomembranes , vol.2 , pp. 193-195
    • Blobel, G.1    Sabatini, D.D.2
  • 4
    • 0017595348 scopus 로고
    • Synthesis and processing of an Escherichia coli alkaline phosphatase precursor in vitro
    • Inouye, H. & Beckwith, J. Synthesis and processing of an Escherichia coli alkaline phosphatase precursor in vitro. Proc. Natl Acad. Sci. USA 74, 1440-1444 (1977).
    • (1977) Proc. Natl Acad. Sci. USA , vol.74 , pp. 1440-1444
    • Inouye, H.1    Beckwith, J.2
  • 5
    • 0017351732 scopus 로고
    • A new form of structural lipoprotein of outer membrane of Escherichia coli
    • Halegoua, S., Sekizawa, J. & Inouye, M. A new form of structural lipoprotein of outer membrane of Escherichia coli. J. Biol. Chem. 252, 2324-2330 (1977).
    • (1977) J. Biol. Chem , vol.252 , pp. 2324-2330
    • Halegoua, S.1    Sekizawa, J.2    Inouye, M.3
  • 6
    • 0019381724 scopus 로고
    • Suppressor mutations that restore export of a protein with a defective signal sequence
    • Emr, S. D., Hanley-Way, S. & Silhavy, T. Suppressor mutations that restore export of a protein with a defective signal sequence. Cell 23, 79-88 (1981).
    • (1981) Cell , vol.23 , pp. 79-88
    • Emr, S.D.1    Hanley-Way, S.2    Silhavy, T.3
  • 7
    • 0019413905 scopus 로고
    • coli mutant pleiotropically defective in the export of secreted proteins
    • Oliver, D. B. & Beckwith, J. E. coli mutant pleiotropically defective in the export of secreted proteins. Cell 25, 765-772 (1981).
    • (1981) Cell , vol.25 , pp. 765-772
    • Oliver, D.B.1    Beckwith, J.E.2
  • 8
    • 0023567026 scopus 로고
    • A yeast mutant defective at an early stage in import of secretory protein precursors into the endoplasmic reticulum
    • Deshaies, R. J.&Schekman, R. A yeast mutant defective at an early stage in import of secretory protein precursors into the endoplasmic reticulum. J. Cell Biol. 105, 633-645 (1987).
    • (1987) J. Cell Biol , vol.105 , pp. 633-645
    • Deshaies, R.J.1    Schekman, R.2
  • 9
    • 0016752682 scopus 로고
    • Transfer of proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components
    • Blobel, G. & Dobberstein, B. Transfer of proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components. J. Cell Biol. 67, 852-862 (1975).
    • (1975) J. Cell Biol , vol.67 , pp. 852-862
    • Blobel, G.1    Dobberstein, B.2
  • 10
    • 0347192985 scopus 로고    scopus 로고
    • X-ray structure of a protein-conducting channel
    • Van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature 427, 36-44 (2004).
    • (2004) Nature , vol.427 , pp. 36-44
    • Van den Berg, B.1
  • 12
    • 0027936633 scopus 로고
    • Systematic probing of the environment of a translocating secretory protein during translocation through the ER membrane
    • Mothes, W., Prehn, S. & Rapoport, T. A. Systematic probing of the environment of a translocating secretory protein during translocation through the ER membrane. EMBO J. 13, 3937-3982 (1994).
    • (1994) EMBO J , vol.13 , pp. 3937-3982
    • Mothes, W.1    Prehn, S.2    Rapoport, T.A.3
  • 13
    • 0025999145 scopus 로고
    • Reconstitution of a protein translocation system containing purified SecY, SecE, and SecA from Escherichia coli
    • Akimaru, J., Matsuyama, S., Tokuda, H. & Mizushima, S. Reconstitution of a protein translocation system containing purified SecY, SecE, and SecA from Escherichia coli. Proc. Natl Acad. Sci. USA 88, 6545-6549 (1991).
    • (1991) Proc. Natl Acad. Sci. USA , vol.88 , pp. 6545-6549
    • Akimaru, J.1    Matsuyama, S.2    Tokuda, H.3    Mizushima, S.4
  • 14
    • 0025087853 scopus 로고
    • The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation
    • Brundage, L., Hendrick, J. P., Schiebel, E., Driessen, A. J. & Wickner, W. The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation. Cell 62, 649-657 (1990).
    • (1990) Cell , vol.62 , pp. 649-657
    • Brundage, L.1    Hendrick, J.P.2    Schiebel, E.3    Driessen, A.J.4    Wickner, W.5
  • 15
    • 0027424601 scopus 로고
    • Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane
    • Gorlich, D. & Rapoport, T. A. Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell 75, 615-630 (1993).
    • (1993) Cell , vol.75 , pp. 615-630
    • Gorlich, D.1    Rapoport, T.A.2
  • 16
    • 0025854858 scopus 로고
    • A protein-conducting channel in the endoplasmic reticulum
    • Simon, S. M. & Blobel, G. A protein-conducting channel in the endoplasmic reticulum. Cell 65, 371-380 (1991).
    • (1991) Cell , vol.65 , pp. 371-380
    • Simon, S.M.1    Blobel, G.2
  • 17
    • 0027162564 scopus 로고
    • The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation
    • Crowley, K. S., Reinhart, G. D.&Johnson, A. E. The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation. Cell 73, 1101-1115 (1993).
    • (1993) Cell , vol.73 , pp. 1101-1115
    • Crowley, K.S.1    Reinhart, G.D.2    Johnson, A.E.3
  • 18
    • 0027985063 scopus 로고
    • Secretory proteins move through the endoplasmic reticulum membrane via an aqueous, gated pore
    • Crowley, K. S., Liao, S. R., Worrell, V. E., Reinhart, G. D. & Johnson, A. E. Secretory proteins move through the endoplasmic reticulum membrane via an aqueous, gated pore. Cell 78, 461-471 (1994).
    • (1994) Cell , vol.78 , pp. 461-471
    • Crowley, K.S.1    Liao, S.R.2    Worrell, V.E.3    Reinhart, G.D.4    Johnson, A.E.5
  • 19
    • 0037043724 scopus 로고    scopus 로고
    • Three-dimensional structure of the bacterial protein-translocation complex SecYEG
    • Breyton, C., Haase, W., Rapoport, T. A., Kuhlbrandt, W. & Collinson, I. Three-dimensional structure of the bacterial protein-translocation complex SecYEG. Nature 418, 662-665 (2002).
    • (2002) Nature , vol.418 , pp. 662-665
    • Breyton, C.1    Haase, W.2    Rapoport, T.A.3    Kuhlbrandt, W.4    Collinson, I.5
  • 20
    • 24944458963 scopus 로고    scopus 로고
    • Atomic model of the E. coli membrane-bound protein translocation complex SecYEG
    • Bostina, M., Mohsin, B., Kuhlbrandt, W. & Collinson, I. Atomic model of the E. coli membrane-bound protein translocation complex SecYEG. J. Mol. Biol. 352, 1035-1043 (2005).
    • (2005) J. Mol. Biol , vol.352 , pp. 1035-1043
    • Bostina, M.1    Mohsin, B.2    Kuhlbrandt, W.3    Collinson, I.4
  • 21
    • 8844239874 scopus 로고    scopus 로고
    • SRP-mediated protein targeting: Structure and function revisited
    • Luirink, J. & Sinning, I. SRP-mediated protein targeting: structure and function revisited. Biochim. Biophys. Acta 1694, 17-35 (2004).
    • (2004) Biochim. Biophys. Acta , vol.1694 , pp. 17-35
    • Luirink, J.1    Sinning, I.2
  • 22
    • 13844266603 scopus 로고    scopus 로고
    • The signal recognition particle and its interactions during protein targeting
    • Halic, M. & Beckmann, R. The signal recognition particle and its interactions during protein targeting. Curr. Opin. Struct. Biol. 15, 116-125 (2005).
    • (2005) Curr. Opin. Struct. Biol , vol.15 , pp. 116-125
    • Halic, M.1    Beckmann, R.2
  • 23
    • 0023026186 scopus 로고
    • Formation of a functional ribosome-membrane junction during translocation requires the participation of a GTP-binding protein
    • Connolly, T. & Gilmore, R. Formation of a functional ribosome-membrane junction during translocation requires the participation of a GTP-binding protein. J. Cell Biol. 103, 2253-2261 (1986).
    • (1986) J. Cell Biol , vol.103 , pp. 2253-2261
    • Connolly, T.1    Gilmore, R.2
  • 24
    • 0030825974 scopus 로고    scopus 로고
    • Molecular mechanism of membrane protein integration into the endoplasmic reticulum
    • Mothes, W. et al. Molecular mechanism of membrane protein integration into the endoplasmic reticulum. Cell 89, 523-533 (1997).
    • (1997) Cell , vol.89 , pp. 523-533
    • Mothes, W.1
  • 25
    • 0029952547 scopus 로고    scopus 로고
    • Signal sequences specify the targeting route to the endoplasmic reticulum membrane
    • Ng, D. T., Brown, J. D. & Walter, P. Signal sequences specify the targeting route to the endoplasmic reticulum membrane. J. Cell Biol. 134, 269-278 (1996).
    • (1996) J. Cell Biol , vol.134 , pp. 269-278
    • Ng, D.T.1    Brown, J.D.2    Walter, P.3
  • 26
    • 17644386832 scopus 로고    scopus 로고
    • Use of thioredoxin as a reporter to identify a subset of Escherichia coli signal sequences that promote signal recognition particle-dependent translocation
    • Huber, D. et al. Use of thioredoxin as a reporter to identify a subset of Escherichia coli signal sequences that promote signal recognition particle-dependent translocation. J. Bacteriol. 187, 2983-2991 (2005).
    • (2005) J. Bacteriol , vol.187 , pp. 2983-2991
    • Huber, D.1
  • 27
    • 30044437119 scopus 로고    scopus 로고
    • Aselection for mutants that interfere with folding of Escherichia coli thioredoxin-1 in vivo
    • Huber, D. et al. Aselection for mutants that interfere with folding of Escherichia coli thioredoxin-1 in vivo. Proc. Natl Acad. Sci. USA 102, 18872-18877 (2005).
    • (2005) Proc. Natl Acad. Sci. USA , vol.102 , pp. 18872-18877
    • Huber, D.1
  • 28
    • 0025970051 scopus 로고
    • Assembly of yeast Sec proteins involved in translocation into the endoplasmic reticulum into a membrane-bound multisubunit complex
    • Deshaies, R. J., Sanders, S. L., Feldheim, D. A. & Schekman, R. Assembly of yeast Sec proteins involved in translocation into the endoplasmic reticulum into a membrane-bound multisubunit complex. Nature 349, 806-808 (1991).
    • (1991) Nature , vol.349 , pp. 806-808
    • Deshaies, R.J.1    Sanders, S.L.2    Feldheim, D.A.3    Schekman, R.4
  • 29
    • 0028997459 scopus 로고
    • Posttranslational protein transport in yeast reconstituted with a purified complex of Sec proteins and Kar2p
    • Panzner, S., Dreier, L., Hartmann, E., Kostka, S. & Rapoport, T. A. Posttranslational protein transport in yeast reconstituted with a purified complex of Sec proteins and Kar2p. Cell 81, 561-570 (1995).
    • (1995) Cell , vol.81 , pp. 561-570
    • Panzner, S.1    Dreier, L.2    Hartmann, E.3    Kostka, S.4    Rapoport, T.A.5
  • 30
    • 0034640293 scopus 로고    scopus 로고
    • Mammalian Sec61 is associated with Sec62 and Sec63
    • Meyer, H. A. et al. Mammalian Sec61 is associated with Sec62 and Sec63. J. Biol. Chem. 275, 14550-14557 (2000).
    • (2000) J. Biol. Chem , vol.275 , pp. 14550-14557
    • Meyer, H.A.1
  • 31
    • 12944254591 scopus 로고    scopus 로고
    • Homologs of the yeast Sec complex subunits Sec62p and Sec63p are abundant proteins in dog pancreas microsomes
    • Tyedmers, J. et al. Homologs of the yeast Sec complex subunits Sec62p and Sec63p are abundant proteins in dog pancreas microsomes. Proc. Natl Acad. Sci. USA 97, 7214-7219 (2000).
    • (2000) Proc. Natl Acad. Sci. USA , vol.97 , pp. 7214-7219
    • Tyedmers, J.1
  • 32
    • 0034597099 scopus 로고    scopus 로고
    • Spontaneous release of cytosolic proteins from posttranslational substrates before their transport into the endoplasmic reticulum
    • Plath, K. & Rapoport, T. A. Spontaneous release of cytosolic proteins from posttranslational substrates before their transport into the endoplasmic reticulum. J. Cell Biol. 151, 167-178 (2000).
    • (2000) J. Cell Biol , vol.151 , pp. 167-178
    • Plath, K.1    Rapoport, T.A.2
  • 33
    • 0033612302 scopus 로고    scopus 로고
    • BiP acts as a molecular ratchet during posttranslational transport of prepro-α factor across the ER membrane
    • Matlack, K. E., Misselwitz, B., Plath, K. & Rapoport, T. A. BiP acts as a molecular ratchet during posttranslational transport of prepro-α factor across the ER membrane. Cell 97, 553-564 (1999).
    • (1999) Cell , vol.97 , pp. 553-564
    • Matlack, K.E.1    Misselwitz, B.2    Plath, K.3    Rapoport, T.A.4
  • 34
    • 0032214832 scopus 로고    scopus 로고
    • J proteins catalytically activate Hsp70 molecules to trap a wide range of peptide sequences
    • Misselwitz, B., Staeck, O. & Rapoport, T. A. J proteins catalytically activate Hsp70 molecules to trap a wide range of peptide sequences. Mol. Cell 2, 593-603 (1998).
    • (1998) Mol. Cell , vol.2 , pp. 593-603
    • Misselwitz, B.1    Staeck, O.2    Rapoport, T.A.3
  • 35
    • 0037144467 scopus 로고    scopus 로고
    • Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA
    • Hunt, J. F. et al. Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA. Science 297, 2018-2026 (2002).
    • (2002) Science , vol.297 , pp. 2018-2026
    • Hunt, J.F.1
  • 36
    • 3343011973 scopus 로고    scopus 로고
    • Osborne, A. R., Clemons, W. M. Jr & Rapoport, T. A. A large conformational change of the translocation ATPase SecA. Proc. Natl Acad. Sci. USA 101, 10937-10942 (2004).
    • Osborne, A. R., Clemons, W. M. Jr & Rapoport, T. A. A large conformational change of the translocation ATPase SecA. Proc. Natl Acad. Sci. USA 101, 10937-10942 (2004).
  • 37
    • 0037009514 scopus 로고    scopus 로고
    • Dissociation of the dimeric SecA ATPase during protein translocation across the bacterial membrane
    • Or, E., Navon, A. & Rapoport, T. Dissociation of the dimeric SecA ATPase during protein translocation across the bacterial membrane. EMBO J. 21, 4470-4479 (2002).
    • (2002) EMBO J , vol.21 , pp. 4470-4479
    • Or, E.1    Navon, A.2    Rapoport, T.3
  • 38
    • 0041736710 scopus 로고    scopus 로고
    • Binding, activation and dissociation of the dimeric SecA ATPase at the dimeric SecYEG translocase
    • Duong, F. Binding, activation and dissociation of the dimeric SecA ATPase at the dimeric SecYEG translocase. EMBO J. 22, 4375-4384 (2003).
    • (2003) EMBO J , vol.22 , pp. 4375-4384
    • Duong, F.1
  • 39
    • 15744404686 scopus 로고    scopus 로고
    • The bacterial ATPase SecA functions as a monomer in protein translocation
    • Or, E., Boyd, D., Gon, S., Beckwith, J. & Rapoport, T. The bacterial ATPase SecA functions as a monomer in protein translocation. J. Biol. Chem. 280, 9097-9105 (2004).
    • (2004) J. Biol. Chem , vol.280 , pp. 9097-9105
    • Or, E.1    Boyd, D.2    Gon, S.3    Beckwith, J.4    Rapoport, T.5
  • 40
    • 34247214427 scopus 로고    scopus 로고
    • Nanodiscs unravel the interaction between the SecYEG channel and its cytosolic partner SecA
    • Alami, M., Dalal, K., Lelj-Garolla, B., Sligar, S. G. & Duong, F. Nanodiscs unravel the interaction between the SecYEG channel and its cytosolic partner SecA. EMBO J. 26, 1995-2004 (2007).
    • (2007) EMBO J , vol.26 , pp. 1995-2004
    • Alami, M.1    Dalal, K.2    Lelj-Garolla, B.3    Sligar, S.G.4    Duong, F.5
  • 41
    • 19644372742 scopus 로고    scopus 로고
    • Dimeric SecA is essential for protein translocation
    • Jilaveanu, L. B., Zito, C. R. & Oliver, D. Dimeric SecA is essential for protein translocation. Proc. Natl Acad. Sci. USA 102, 7511-7516 (2005).
    • (2005) Proc. Natl Acad. Sci. USA , vol.102 , pp. 7511-7516
    • Jilaveanu, L.B.1    Zito, C.R.2    Oliver, D.3
  • 42
    • 27444439568 scopus 로고    scopus 로고
    • Covalently dimerized SecA is functional in protein translocation
    • de Keyzer, J. et al. Covalently dimerized SecA is functional in protein translocation. J. Biol. Chem. 280, 35255-35260 (2005).
    • (2005) J. Biol. Chem , vol.280 , pp. 35255-35260
    • de Keyzer, J.1
  • 43
    • 33750580851 scopus 로고    scopus 로고
    • Co- and post-translational translocation through the protein-conducting channel: Analogous mechanisms at work?
    • Mitra, K., Frank, J. & Driessen, A. Co- and post-translational translocation through the protein-conducting channel: analogous mechanisms at work? Nature Struct. Mol. Biol. 13, 957-964 (2006).
    • (2006) Nature Struct. Mol. Biol , vol.13 , pp. 957-964
    • Mitra, K.1    Frank, J.2    Driessen, A.3
  • 44
    • 0031037648 scopus 로고    scopus 로고
    • Binding of SecB to ribosome-bound polypeptides has the same characteristics as binding to full-length, denatured proteins
    • Randall, L. L. et al. Binding of SecB to ribosome-bound polypeptides has the same characteristics as binding to full-length, denatured proteins. Proc. Natl Acad. Sci. USA 94, 802-807 (1997).
    • (1997) Proc. Natl Acad. Sci. USA , vol.94 , pp. 802-807
    • Randall, L.L.1
  • 45
    • 0025019705 scopus 로고
    • The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins
    • Lill, R., Dowhan, W. & Wickner, W. The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins. Cell 60, 271-280 (1990).
    • (1990) Cell , vol.60 , pp. 271-280
    • Lill, R.1    Dowhan, W.2    Wickner, W.3
  • 46
    • 0036809395 scopus 로고    scopus 로고
    • SecB, one small chaperone in the complex milieu of the cell
    • Randall, L. L. & Hardy, S. J. SecB, one small chaperone in the complex milieu of the cell. Cell. Mol. Life Sci. 59, 1617-1623 (2002).
    • (2002) Cell. Mol. Life Sci , vol.59 , pp. 1617-1623
    • Randall, L.L.1    Hardy, S.J.2
  • 47
    • 33845667561 scopus 로고    scopus 로고
    • Selective photoaffinity labeling identifies the signal peptide binding domain on SecA
    • Musial-Siwek, M., Rusch, S. L. & Kendall, D. A. Selective photoaffinity labeling identifies the signal peptide binding domain on SecA. J. Mol. Biol. 365, 637-648 (2006).
    • (2006) J. Mol. Biol , vol.365 , pp. 637-648
    • Musial-Siwek, M.1    Rusch, S.L.2    Kendall, D.A.3
  • 48
    • 33947717366 scopus 로고    scopus 로고
    • Protein translocation is mediated by oligomers of the SecY complex with one SecY copy forming the channel
    • Osborne, A. R. & Rapoport, T. A. Protein translocation is mediated by oligomers of the SecY complex with one SecY copy forming the channel. Cell 129, 97-110 (2007).
    • (2007) Cell , vol.129 , pp. 97-110
    • Osborne, A.R.1    Rapoport, T.A.2
  • 49
    • 0028064967 scopus 로고
    • SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion
    • Economou, A. & Wickner, W. SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell 78, 835-843 (1994).
    • (1994) Cell , vol.78 , pp. 835-843
    • Economou, A.1    Wickner, W.2
  • 50
    • 0027956170 scopus 로고
    • SecA protein is exposed to the periplasmic surface of the E. coli inner membrane in its active state
    • Kim, Y. J, Rajapandi, T. & Oliver, D. SecA protein is exposed to the periplasmic surface of the E. coli inner membrane in its active state. Cell 78, 845-853 (1994).
    • (1994) Cell , vol.78 , pp. 845-853
    • Kim, Y.J.1    Rajapandi, T.2    Oliver, D.3
  • 51
    • 0026073817 scopus 로고
    • H + and ATP function at different steps of the catalytic cycle of preprotein translocase
    • H + and ATP function at different steps of the catalytic cycle of preprotein translocase. Cell 64, 927-939 (1991).
    • (1991) Cell , vol.64 , pp. 927-939
    • Schiebel, E.1    Driessen, A.J.2    Hartl, F.U.3    Wickner, W.4
  • 52
    • 0038305947 scopus 로고    scopus 로고
    • Post-translational secretion of fusion proteins in the halophilic archaea Haloferax volcanii
    • Irihimovitch, V. & Eichler, J. Post-translational secretion of fusion proteins in the halophilic archaea Haloferax volcanii. J. Biol. Chem. 278, 12881-12887 (2003).
    • (2003) J. Biol. Chem , vol.278 , pp. 12881-12887
    • Irihimovitch, V.1    Eichler, J.2
  • 53
    • 0034725568 scopus 로고    scopus 로고
    • Evidence for post-translational membrane insertion of the integral membrane protein bacterioopsin expressed in the heterologous halophilic archaeon Haloferax volcanii
    • Ortenberg, R. & Mevarech, M. Evidence for post-translational membrane insertion of the integral membrane protein bacterioopsin expressed in the heterologous halophilic archaeon Haloferax volcanii. J. Biol. Chem. 275, 22839-22846 (2000).
    • (2000) J. Biol. Chem , vol.275 , pp. 22839-22846
    • Ortenberg, R.1    Mevarech, M.2
  • 54
    • 0023737896 scopus 로고
    • Evidence for the loop model of signal-sequence insertion into the endoplasmic reticulum
    • Shaw, A. S., Rottier, P. J. & Rose, J. K. Evidence for the loop model of signal-sequence insertion into the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 85, 7592-7596 (1988).
    • (1988) Proc. Natl Acad. Sci. USA , vol.85 , pp. 7592-7596
    • Shaw, A.S.1    Rottier, P.J.2    Rose, J.K.3
  • 55
    • 0034631835 scopus 로고    scopus 로고
    • Role of the cytoplasmic segments of Sec61α in the ribosome-binding and translocation-promoting activities of the Sec61 complex
    • Raden, D., Song, W. & Gilmore, R. Role of the cytoplasmic segments of Sec61α in the ribosome-binding and translocation-promoting activities of the Sec61 complex. J. Cell Biol. 150, 53-64 (2000).
    • (2000) J. Cell Biol , vol.150 , pp. 53-64
    • Raden, D.1    Song, W.2    Gilmore, R.3
  • 56
    • 0032544614 scopus 로고    scopus 로고
    • Signal sequence recognition in posttranslational protein transport across the yeast ER membrane
    • Plath, K., Mothes, W., Wilkinson, B. M., Stirling, C. J. & Rapoport, T. A. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 94, 795-807 (1998).
    • (1998) Cell , vol.94 , pp. 795-807
    • Plath, K.1    Mothes, W.2    Wilkinson, B.M.3    Stirling, C.J.4    Rapoport, T.A.5
  • 57
    • 0033032483 scopus 로고    scopus 로고
    • Mapping an interface of SecY (PrlA) and SecE (PrlG) by using synthetic phenotypes and in vivo cross-linking
    • Harris, C. R. & Silhavy, T. J. Mapping an interface of SecY (PrlA) and SecE (PrlG) by using synthetic phenotypes and in vivo cross-linking. J. Bacteriol. 181, 3438-3444 (1999).
    • (1999) J. Bacteriol , vol.181 , pp. 3438-3444
    • Harris, C.R.1    Silhavy, T.J.2
  • 58
    • 27144525002 scopus 로고    scopus 로고
    • Investigating the SecY plug movement at the SecYEG translocation channel
    • Tam, P. C., Maillard, A. P., Chan, K. K. & Duong, F. Investigating the SecY plug movement at the SecYEG translocation channel. EMBO J. 24, 3380-3388 (2005).
    • (2005) EMBO J , vol.24 , pp. 3380-3388
    • Tam, P.C.1    Maillard, A.P.2    Chan, K.K.3    Duong, F.4
  • 59
    • 24944465005 scopus 로고    scopus 로고
    • Modeling the effects of prl mutations on the Escherichia coli SecY complex
    • Smith, M. A., Clemons, W. M. Jr, DeMars, C. J. & Flower, A. M. Modeling the effects of prl mutations on the Escherichia coli SecY complex. J. Bacteriol. 187, 6454-6465 (2005).
    • (2005) J. Bacteriol , vol.187 , pp. 6454-6465
    • Smith, M.A.1    Clemons Jr, W.M.2    DeMars, C.J.3    Flower, A.M.4
  • 60
    • 0037150672 scopus 로고    scopus 로고
    • Identification of signal peptide peptidase, a presenilin-type aspartic protease
    • Weihofen, A., Binns, K., Lemberg, M. K., Ashman, K. & Martoglio, B. Identification of signal peptide peptidase, a presenilin-type aspartic protease. Science 296, 2215-2218 (2002).
    • (2002) Science , vol.296 , pp. 2215-2218
    • Weihofen, A.1    Binns, K.2    Lemberg, M.K.3    Ashman, K.4    Martoglio, B.5
  • 61
    • 18544380083 scopus 로고    scopus 로고
    • Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY
    • Cannon, K. S., Or, E., Clemons, W. M. Jr, Shibata, Y. & Rapoport, T. A. Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY. J. Cell Biol. 169, 219-225 (2005).
    • (2005) J. Cell Biol , vol.169 , pp. 219-225
    • Cannon, K.S.1    Or, E.2    Clemons Jr, W.M.3    Shibata, Y.4    Rapoport, T.A.5
  • 62
    • 0025005885 scopus 로고
    • Translocation of proOmpA possessing an intramolecular disulfide bridge into membrane vesicles of Escherichia coli. Effect of membrane energization
    • Tani, K., Tokuda, H. & Mizushima, S. Translocation of proOmpA possessing an intramolecular disulfide bridge into membrane vesicles of Escherichia coli. Effect of membrane energization. J. Biol. Chem. 265, 17341-17347 (1990).
    • (1990) J. Biol. Chem , vol.265 , pp. 17341-17347
    • Tani, K.1    Tokuda, H.2    Mizushima, S.3
  • 63
    • 0023857532 scopus 로고
    • tRNA-mediated labelling of proteins with biotin. A nonradioactive method for the detection of cell-free translation products
    • Kurzchalia, T. V. et al. tRNA-mediated labelling of proteins with biotin. A nonradioactive method for the detection of cell-free translation products. Eur. J. Biochem. 172, 663-668 (1988).
    • (1988) Eur. J. Biochem , vol.172 , pp. 663-668
    • Kurzchalia, T.V.1
  • 64
    • 33646271115 scopus 로고    scopus 로고
    • Molecular dynamics studies of the archaeal translocon
    • Gumbart, J. & Schulten, K. Molecular dynamics studies of the archaeal translocon. Biophys. J. 90, 2356-2367 (2006).
    • (2006) Biophys. J , vol.90 , pp. 2356-2367
    • Gumbart, J.1    Schulten, K.2
  • 65
    • 33646191829 scopus 로고    scopus 로고
    • Size, motion, and function of the SecY translocon revealed by molecular dynamics simulations with virtual probes
    • Tian, P. & Andricioaei, I. Size, motion, and function of the SecY translocon revealed by molecular dynamics simulations with virtual probes. Biophys. J. 90, 2718-2730 (2006).
    • (2006) Biophys. J , vol.90 , pp. 2718-2730
    • Tian, P.1    Andricioaei, I.2
  • 66
    • 33751074442 scopus 로고    scopus 로고
    • Simulations of a protein translocation pore: SecY
    • Haider, S., Hall, B. A. & Sansom, M. S. Simulations of a protein translocation pore: SecY. Biochemistry 45, 13018-13024 (2006).
    • (2006) Biochemistry , vol.45 , pp. 13018-13024
    • Haider, S.1    Hall, B.A.2    Sansom, M.S.3
  • 67
    • 34248563028 scopus 로고    scopus 로고
    • Determining the conductance of the SecY protein translocation channel for small molecules
    • Saparov, S. M. et al. Determining the conductance of the SecY protein translocation channel for small molecules. Mol. Cell 26, 501-509 (2007).
    • (2007) Mol. Cell , vol.26 , pp. 501-509
    • Saparov, S.M.1
  • 68
    • 0036810271 scopus 로고    scopus 로고
    • Protein folding during cotranslational translocation in the endoplasmic reticulum
    • Kowarik, M., Kung, S., Martoglio, B. & Helenius, A. Protein folding during cotranslational translocation in the endoplasmic reticulum. Mol. Cell 10, 769-778 (2002).
    • (2002) Mol. Cell , vol.10 , pp. 769-778
    • Kowarik, M.1    Kung, S.2    Martoglio, B.3    Helenius, A.4
  • 69
    • 0030611388 scopus 로고    scopus 로고
    • The aqueous pore through the translocon has a diameter of 40-60 Å during cotranslational protein translocation at the ER membrane
    • Hamman, B. D., Chen, J. C., Johnson, E. E. & Johnson, A. E. The aqueous pore through the translocon has a diameter of 40-60 Å during cotranslational protein translocation at the ER membrane. Cell 89, 535-544 (1997).
    • (1997) Cell , vol.89 , pp. 535-544
    • Hamman, B.D.1    Chen, J.C.2    Johnson, E.E.3    Johnson, A.E.4
  • 70
    • 0033551435 scopus 로고    scopus 로고
    • Cysteine-directed cross-linking demonstrates that helix 3 of SecE is close to helix 2 of SecY and helix 3 of a neighboring SecE
    • Kaufmann, A., Manting, E. H., Veenendaal, A. K., Driessen, A. J. & van der Does, C. Cysteine-directed cross-linking demonstrates that helix 3 of SecE is close to helix 2 of SecY and helix 3 of a neighboring SecE. Biochemistry 38, 9115-9125 (1999).
    • (1999) Biochemistry , vol.38 , pp. 9115-9125
    • Kaufmann, A.1    Manting, E.H.2    Veenendaal, A.K.3    Driessen, A.J.4    van der Does, C.5
  • 71
    • 27844444793 scopus 로고    scopus 로고
    • Structure of the E. coli protein-conducting channel bound to a translating ribosome
    • Mitra, K. et al. Structure of the E. coli protein-conducting channel bound to a translating ribosome. Nature 438, 318-324 (2005).
    • (2005) Nature , vol.438 , pp. 318-324
    • Mitra, K.1
  • 72
    • 84945517104 scopus 로고    scopus 로고
    • Ribosome binding of a single copy of the SecY complex: Implications for protein translocation
    • in the press
    • Ménétret, J. F. et al. Ribosome binding of a single copy of the SecY complex: implications for protein translocation. Mol. Cell (in the press).
    • Mol. Cell
    • Ménétret, J.F.1
  • 73
    • 33745628037 scopus 로고    scopus 로고
    • The geometry of the ribosomal polypeptide exit tunnel
    • Voss, N. R., Gerstein, M., Steitz, T. A. & Moore, P. B. The geometry of the ribosomal polypeptide exit tunnel. J. Mol. Biol. 360, 893-906 (2006).
    • (2006) J. Mol. Biol , vol.360 , pp. 893-906
    • Voss, N.R.1    Gerstein, M.2    Steitz, T.A.3    Moore, P.B.4
  • 74
    • 33751325296 scopus 로고    scopus 로고
    • Following the signal sequence from ribosomal tunnel exit to signal recognition particle
    • Halic, M. et al. Following the signal sequence from ribosomal tunnel exit to signal recognition particle. Nature 444, 507-511 (2006).
    • (2006) Nature , vol.444 , pp. 507-511
    • Halic, M.1
  • 75
    • 33646524478 scopus 로고    scopus 로고
    • Elongation arrest by SecM via a cascade of ribosomal RNA rearrangements
    • Mitra, K. et al. Elongation arrest by SecM via a cascade of ribosomal RNA rearrangements. Mol. Cell 22, 533-543 (2006).
    • (2006) Mol. Cell , vol.22 , pp. 533-543
    • Mitra, K.1
  • 76
    • 0348049828 scopus 로고    scopus 로고
    • Maintaining the permeability barrier during protein trafficking at the endoplasmic reticulum membrane
    • Johnson, A. E. Maintaining the permeability barrier during protein trafficking at the endoplasmic reticulum membrane. Biochem. Soc. Trans. 31, 1227-1231 (2003).
    • (2003) Biochem. Soc. Trans , vol.31 , pp. 1227-1231
    • Johnson, A.E.1
  • 77
    • 33646442605 scopus 로고    scopus 로고
    • Signal recognition particle receptor exposes the ribosomal translocon binding site
    • Halic, M. et al. Signal recognition particle receptor exposes the ribosomal translocon binding site. Science 312, 745-747 (2006).
    • (2006) Science , vol.312 , pp. 745-747
    • Halic, M.1
  • 78
    • 33748297447 scopus 로고    scopus 로고
    • Ribosome binding to and dissociation from translocation sites of the endoplasmic reticulum membrane
    • Schaletzky, J. & Rapoport, T. A. Ribosome binding to and dissociation from translocation sites of the endoplasmic reticulum membrane. Mol. Biol. Cell 17, 3860-3869 (2006).
    • (2006) Mol. Biol. Cell , vol.17 , pp. 3860-3869
    • Schaletzky, J.1    Rapoport, T.A.2
  • 79
    • 0345444027 scopus 로고    scopus 로고
    • Oligomeric rings of the Sec61p complex induced by ligands required for protein translocation
    • Hanein, D. et al. Oligomeric rings of the Sec61p complex induced by ligands required for protein translocation. Cell 87, 721-732 (1996).
    • (1996) Cell , vol.87 , pp. 721-732
    • Hanein, D.1
  • 80
    • 0035798359 scopus 로고    scopus 로고
    • Architecture of the protein-conducting channel associated with the translating 80S ribosome
    • Beckmann, R. et al. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107, 361-372 (2001).
    • (2001) Cell , vol.107 , pp. 361-372
    • Beckmann, R.1
  • 81
    • 16244373735 scopus 로고    scopus 로고
    • Architecture of the ribosome-channel complex derived from native membranes
    • Ménétret, J. F. et al. Architecture of the ribosome-channel complex derived from native membranes. J. Mol. Biol. 348, 445-457 (2005).
    • (2005) J. Mol. Biol , vol.348 , pp. 445-457
    • Ménétret, J.F.1
  • 82
    • 18844384961 scopus 로고    scopus 로고
    • Protein secretion in the absence of ATP: The autotransporter, two-partner secretion and chaperone/usher pathways of Gram-negative bacteria
    • Thanassi, D. G., Stathopoulos, C., Karkal, A. & Li, H. Protein secretion in the absence of ATP: the autotransporter, two-partner secretion and chaperone/usher pathways of Gram-negative bacteria. Mol. Membr. Biol. 22, 63-72 (2005).
    • (2005) Mol. Membr. Biol , vol.22 , pp. 63-72
    • Thanassi, D.G.1    Stathopoulos, C.2    Karkal, A.3    Li, H.4
  • 83
    • 0033615958 scopus 로고    scopus 로고
    • The TOM core complex: The general protein import pore of the outer membrane of mitochondria
    • Ahting, U. et al. The TOM core complex: the general protein import pore of the outer membrane of mitochondria. J. Cell Biol. 147, 959-968 (1999).
    • (1999) J. Cell Biol , vol.147 , pp. 959-968
    • Ahting, U.1
  • 84
    • 0242669353 scopus 로고    scopus 로고
    • Protein insertion into the mitochondrial inner membrane by a twin-pore translocase
    • Rehling, P. et al. Protein insertion into the mitochondrial inner membrane by a twin-pore translocase. Science 299, 1747-1751 (2003).
    • (2003) Science , vol.299 , pp. 1747-1751
    • Rehling, P.1
  • 85
    • 0034697967 scopus 로고    scopus 로고
    • The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain
    • Heinrich, S. U., Mothes, W., Brunner, J. & Rapoport, T. A. The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell 102, 233-244 (2000).
    • (2000) Cell , vol.102 , pp. 233-244
    • Heinrich, S.U.1    Mothes, W.2    Brunner, J.3    Rapoport, T.A.4
  • 86
    • 13444262028 scopus 로고    scopus 로고
    • Recognition of transmembrane helices by the endoplasmic reticulum translocon
    • Hessa, T. et al. Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433, 377-381 (2005).
    • (2005) Nature , vol.433 , pp. 377-381
    • Hessa, T.1
  • 87
    • 34848895197 scopus 로고    scopus 로고
    • Structural determinants of lateral gate opening in the protein translocon
    • Gumbart, J. & Schulten, K. Structural determinants of lateral gate opening in the protein translocon. Biochemistry 46, 11147-11157 (2007).
    • (2007) Biochemistry , vol.46 , pp. 11147-11157
    • Gumbart, J.1    Schulten, K.2
  • 88
    • 0023782388 scopus 로고
    • Insertion of a multispanning membrane protein occurs sequentially and requires only one signal sequence
    • Wessels, H. P. & Spiess, M. Insertion of a multispanning membrane protein occurs sequentially and requires only one signal sequence. Cell 55, 61-70 (1988).
    • (1988) Cell , vol.55 , pp. 61-70
    • Wessels, H.P.1    Spiess, M.2
  • 89
    • 4644356464 scopus 로고    scopus 로고
    • Membrane-protein integration and the role of the translocation channel
    • Rapoport, T. A., Goder, V., Heinrich, S. U. & Matlack, K. E. Membrane-protein integration and the role of the translocation channel. Trends Cell Biol. 14, 568-575 (2004).
    • (2004) Trends Cell Biol , vol.14 , pp. 568-575
    • Rapoport, T.A.1    Goder, V.2    Heinrich, S.U.3    Matlack, K.E.4
  • 90
    • 0742305352 scopus 로고    scopus 로고
    • The endoplasmic reticulum membrane is permeable to small molecules
    • Le Gall, S., Neuhof, A. & Rapoport, T. The endoplasmic reticulum membrane is permeable to small molecules. Mol. Biol. Cell 15, 447-455 (2004).
    • (2004) Mol. Biol. Cell , vol.15 , pp. 447-455
    • Le Gall, S.1    Neuhof, A.2    Rapoport, T.3
  • 91
    • 0032549767 scopus 로고    scopus 로고
    • BiP maintains the permeability barrier of the ER membrane by sealing the lumenal end of the translocon pore before and early in translocation
    • Hamman, B. D., Hendershot, L. M. & Johnson, A. E. BiP maintains the permeability barrier of the ER membrane by sealing the lumenal end of the translocon pore before and early in translocation. Cell 92, 747-758 (1998).
    • (1998) Cell , vol.92 , pp. 747-758
    • Hamman, B.D.1    Hendershot, L.M.2    Johnson, A.E.3
  • 92
    • 0031471055 scopus 로고    scopus 로고
    • Both lumenal and cytosolic gating of the aqueous ER translocon pore are regulated from inside the ribosome during membrane protein integration
    • Liao, S., Lin, J., Do, H. & Johnson, A. E. Both lumenal and cytosolic gating of the aqueous ER translocon pore are regulated from inside the ribosome during membrane protein integration. Cell 90, 31-41 (1997).
    • (1997) Cell , vol.90 , pp. 31-41
    • Liao, S.1    Lin, J.2    Do, H.3    Johnson, A.E.4
  • 93
    • 1542358892 scopus 로고    scopus 로고
    • Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins
    • Woolhead, C. A., McCormick, P. J. & Johnson, A. E. Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 116, 725-736 (2004).
    • (2004) Cell , vol.116 , pp. 725-736
    • Woolhead, C.A.1    McCormick, P.J.2    Johnson, A.E.3
  • 94
    • 20444430500 scopus 로고    scopus 로고
    • Secondary structure formation of a transmembrane segment in Kv channels
    • Lu, J. & Deutsch, C. Secondary structure formation of a transmembrane segment in Kv channels. Biochemistry 44, 8230-8243 (2005).
    • (2005) Biochemistry , vol.44 , pp. 8230-8243
    • Lu, J.1    Deutsch, C.2
  • 95
    • 0033638455 scopus 로고    scopus 로고
    • The structure of ribosome-channel complexes engaged in protein translocation
    • Ménétret, J. F. et al. The structure of ribosome-channel complexes engaged in protein translocation. Mol. Cell 6, 1219-1232 (2000).
    • (2000) Mol. Cell , vol.6 , pp. 1219-1232
    • Ménétret, J.F.1
  • 96
    • 0026726165 scopus 로고
    • Preprotein translocation creates a halide anion permeability in the Escherichia coli plasma membrane
    • Schiebel, E. & Wickner, W. Preprotein translocation creates a halide anion permeability in the Escherichia coli plasma membrane. J. Biol. Chem. 267, 7505-7510 (1992).
    • (1992) J. Biol. Chem , vol.267 , pp. 7505-7510
    • Schiebel, E.1    Wickner, W.2
  • 97
    • 33748300566 scopus 로고    scopus 로고
    • The plug domain of yeast Sec61p is important for efficient protein translocation, but is not essential for cell viability
    • Junne, T., Schwede, T., Goder, V. & Spiess, M. The plug domain of yeast Sec61p is important for efficient protein translocation, but is not essential for cell viability. Mol. Biol. Cell 17, 4063-4068 (2006).
    • (2006) Mol. Biol. Cell , vol.17 , pp. 4063-4068
    • Junne, T.1    Schwede, T.2    Goder, V.3    Spiess, M.4
  • 98
    • 33847698213 scopus 로고    scopus 로고
    • Deregulation of the SecYEG translocation channel upon removal of the plug domain
    • Maillard, A. P., Lalani, S., Silva, F., Belin, D. & Duong, F. Deregulation of the SecYEG translocation channel upon removal of the plug domain. J. Biol. Chem. 282, 1281-1287 (2007).
    • (2007) J. Biol. Chem , vol.282 , pp. 1281-1287
    • Maillard, A.P.1    Lalani, S.2    Silva, F.3    Belin, D.4    Duong, F.5
  • 99
    • 34248523155 scopus 로고    scopus 로고
    • The plug domain of the SecY protein stabilizes the closed state of the translocation channel and maintains a membrane seal
    • Li, W. et al. The plug domain of the SecY protein stabilizes the closed state of the translocation channel and maintains a membrane seal. Mol. Cell 26, 511-521 (2007).
    • (2007) Mol. Cell , vol.26 , pp. 511-521
    • Li, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.