-
1
-
-
0037205048
-
The phosphoinositide 3-kinase pathway
-
Cantley LC. 2002. The phosphoinositide 3-kinase pathway. Science 296:1655-57
-
(2002)
Science
, vol.296
, pp. 1655-1657
-
-
Cantley, L.C.1
-
2
-
-
79952111297
-
Targeting the RTK-PI3K-mTOR axis in malignant glioma: Overcoming resistance
-
Fan QW, Weiss WA. 2010. Targeting the RTK-PI3K-mTOR axis in malignant glioma: overcoming resistance. Curr. Top. Microbiol. Immunol. 347:279-96
-
(2010)
Curr. Top. Microbiol. Immunol
, vol.347
, pp. 279-296
-
-
Fan, Q.W.1
Weiss, W.A.2
-
4
-
-
0036199607
-
Phosphoinositide 3-kinase in immunological systems
-
Fruman DA, Cantley LC. 2002. Phosphoinositide 3-kinase in immunological systems. Semin. Immunol. 14:7-18
-
(2002)
Semin. Immunol
, vol.14
, pp. 7-18
-
-
Fruman, D.A.1
Cantley, L.C.2
-
5
-
-
0036280038
-
Phosphoinositides and signal transduction
-
Toker A. 2002. Phosphoinositides and signal transduction. Cell. Mol. Life Sci. 59:761-79
-
(2002)
Cell. Mol. Life Sci
, vol.59
, pp. 761-779
-
-
Toker, A.1
-
7
-
-
67651148274
-
Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling
-
Gewinner C,Wang ZC, Richardson A, Teruya-Feldstein J, Etemadmoghadam D, et al. 2009. Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling. Cancer Cell 16:115-25
-
(2009)
Cancer Cell
, vol.16
, pp. 115-125
-
-
Gewinner, C.1
Wang, Z.C.2
Richardson, A.3
Teruya-Feldstein, J.4
Etemadmoghadam, D.5
-
8
-
-
0035190026
-
Cellular function of phosphoinositide 3-kinases: Implications for development, immunity, homeostasis, and cancer
-
Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield MD. 2001. Cellular function of phosphoinositide 3-kinases: implications for development, immunity, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol. 17:615-75
-
(2001)
Annu. Rev. Cell Dev. Biol
, vol.17
, pp. 615-675
-
-
Katso, R.1
Okkenhaug, K.2
Ahmadi, K.3
White, S.4
Timms, J.5
Waterfield, M.D.6
-
9
-
-
13844312400
-
Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
-
Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. 2005. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098-101
-
(2005)
Science
, vol.307
, pp. 1098-1101
-
-
Sarbassov, D.D.1
Guertin, D.A.2
Ali, S.M.3
Sabatini, D.M.4
-
10
-
-
34250788809
-
AKT/PKB signaling: Navigating downstream
-
Manning BD, Cantley LC. 2007. AKT/PKB signaling: navigating downstream. Cell 129:1261-74
-
(2007)
Cell
, vol.129
, pp. 1261-1274
-
-
Manning, B.D.1
Cantley, L.C.2
-
11
-
-
51849084360
-
The PTEN-PI3K pathway: Of feedbacks and cross-talks
-
Carracedo A, Pandolfi PP. 2008. The PTEN-PI3K pathway: of feedbacks and cross-talks. Oncogene 27:5527-41
-
(2008)
Oncogene
, vol.27
, pp. 5527-5541
-
-
Carracedo, A.1
Pandolfi, P.P.2
-
12
-
-
51849111556
-
PI3K pathway alterations in cancer: Variations on a theme
-
Yuan TL, Cantley LC. 2008. PI3K pathway alterations in cancer: variations on a theme. Oncogene 27:5497-510
-
(2008)
Oncogene
, vol.27
, pp. 5497-5510
-
-
Yuan, T.L.1
Cantley, L.C.2
-
13
-
-
80054046029
-
Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation
-
Lunt SY, Vander Heiden MG. 2011. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27:441-64
-
(2011)
Annu. Rev. Cell Dev. Biol
, vol.27
, pp. 441-464
-
-
Lunt, S.Y.1
Vander Heiden, M.G.2
-
15
-
-
80052242132
-
Targeting cancer metabolism: A therapeutic window opens
-
Vander Heiden MG. 2011. Targeting cancer metabolism: a therapeutic window opens. Nat. Rev. Drug Discov. 10:671-84
-
(2011)
Nat. Rev. Drug Discov
, vol.10
, pp. 671-684
-
-
Vander Heiden, M.G.1
-
18
-
-
8144228566
-
Why do cancers have high aerobic glycolysis? Nat
-
Gatenby RA, Gillies RJ. 2004. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 4:891-99
-
(2004)
Rev. Cancer
, vol.4
, pp. 891-899
-
-
Gatenby, R.A.1
Gillies, R.J.2
-
19
-
-
46749121459
-
Causes and consequences of increased glucose metabolism of cancers
-
Gillies RJ, Robey I, Gatenby RA. 2008. Causes and consequences of increased glucose metabolism of cancers. J. Nucl. Med. 49(Suppl. 2):24-42S
-
(2008)
J. Nucl. Med
, vol.49
, Issue.SUPPL. 2
-
-
Gillies, R.J.1
Robey, I.2
Gatenby, R.A.3
-
20
-
-
79952284127
-
Hallmarks of cancer: The next generation
-
Hanahan D,Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144:646-74
-
(2011)
Cell
, vol.144
, pp. 646-674
-
-
Hanahan, D.1
Weinberg, R.A.2
-
21
-
-
76049100577
-
HIF-1: Upstream and downstream of cancer metabolism
-
Semenza GL. 2010. HIF-1: upstream and downstream of cancer metabolism. Curr. Opin. Genet. Dev. 20:51-56
-
(2010)
Curr. Opin. Genet. Dev
, vol.20
, pp. 51-56
-
-
Semenza, G.L.1
-
22
-
-
66249108601
-
Understanding the Warburg effect: The metabolic requirements of cell proliferation
-
Vander Heiden MG, Cantley LC, Thompson CB. 2009. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029-33
-
(2009)
Science
, vol.324
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
Cantley, L.C.2
Thompson, C.B.3
-
23
-
-
80052258995
-
Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis
-
Locasale JW, Grassian AR,Melman T, Lyssiotis CA,Mattaini KR, et al. 2011. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat. Genet. 43:869-74
-
(2011)
Nat. Genet
, vol.43
, pp. 869-874
-
-
Locasale, J.W.1
Grassian, A.R.2
Melman, T.3
Lyssiotis, C.A.4
Mattaini, K.R.5
-
25
-
-
57349194139
-
Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers
-
Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, et al. 2008. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat. Med. 14:1351-56
-
(2008)
Nat. Med
, vol.14
, pp. 1351-1356
-
-
Engelman, J.A.1
Chen, L.2
Tan, X.3
Crosby, K.4
Guimaraes, A.R.5
-
26
-
-
36448965201
-
CT and PET: Early prognostic indicators of response to imatinib mesylate in patients with gastrointestinal stromal tumor
-
Holdsworth CH, Badawi RD, Manola JB, Kijewski MF, Israel DA, et al. 2007. CT and PET: early prognostic indicators of response to imatinib mesylate in patients with gastrointestinal stromal tumor. Am. J. Roentgenol. 189:W324-30
-
(2007)
Am. J. Roentgenol
, vol.189
-
-
Holdsworth, C.H.1
Badawi, R.D.2
Manola, J.B.3
Kijewski, M.F.4
Israel, D.A.5
-
27
-
-
0002951660
-
The specific amino acid requirements of a human carcinoma cell (strain HeLa) in tissue culture
-
Eagle H. 1955. The specific amino acid requirements of a human carcinoma cell (strain HeLa) in tissue culture. J. Exp. Med. 102:37-48
-
(1955)
J. Exp. Med
, vol.102
, pp. 37-48
-
-
Eagle, H.1
-
28
-
-
84861975431
-
Metabolic reprogramming in cancer: Unraveling the role of glutamine in tumorigenesis
-
Daye D, Wellen KE. 2012. Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis. Semin. Cell Dev. Biol. 23:362-69
-
(2012)
Semin. Cell Dev. Biol
, vol.23
, pp. 362-369
-
-
Daye, D.1
Wellen, K.E.2
-
30
-
-
64749116346
-
C-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism
-
Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, et al. 2009. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458:762-65
-
(2009)
Nature
, vol.458
, pp. 762-765
-
-
Gao, P.1
Tchernyshyov, I.2
Chang, T.C.3
Lee, Y.S.4
Kita, K.5
-
31
-
-
57749088701
-
Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction
-
Wise DR,DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, et al. 2008. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc. Natl. Acad. Sci. USA 105:18782-87
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 18782-18787
-
-
Wise Drdeberardinis, R.J.1
Mancuso, A.2
Sayed, N.3
Zhang, X.Y.4
-
32
-
-
34347402459
-
Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells
-
Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y. 2007. Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J. Cell Biol. 178:93-105
-
(2007)
J. Cell Biol
, vol.178
, pp. 93-105
-
-
Yuneva, M.1
Zamboni, N.2
Oefner, P.3
Sachidanandam, R.4
Lazebnik, Y.5
-
33
-
-
77952737658
-
Mitochondrial metabolism and ROS generation are essential forKras-mediated tumorigenicity
-
Weinberg F, Hamanaka R, WheatonWW,Weinberg S, Joseph J, et al. 2010. Mitochondrial metabolism and ROS generation are essential forKras-mediated tumorigenicity. Proc.Natl. Acad. Sci. USA 107:8788-93
-
(2010)
Proc.Natl. Acad. Sci. USA
, vol.107
, pp. 8788-8793
-
-
Weinberg, F.1
Hamanaka, R.2
Wheatonwwweinberg, S.3
Joseph, J.4
-
34
-
-
72549095406
-
Regulation mechanisms and signaling pathways of autophagy
-
He C, Klionsky DJ. 2009. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43:67-93
-
(2009)
Annu. Rev. Genet
, vol.43
, pp. 67-93
-
-
He, C.1
Klionsky, D.J.2
-
36
-
-
77956172813
-
Physiological role of autophagy as an intracellular recycling system: With an emphasis on nutrient metabolism
-
Kuma A, Mizushima N. 2010. Physiological role of autophagy as an intracellular recycling system: with an emphasis on nutrient metabolism. Semin. Cell Dev. Biol. 21:683-90
-
(2010)
Semin. Cell Dev. Biol
, vol.21
, pp. 683-690
-
-
Kuma, A.1
Mizushima, N.2
-
37
-
-
27944504351
-
P62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death
-
Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, et al. 2005. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171:603-14
-
(2005)
J. Cell Biol
, vol.171
, pp. 603-614
-
-
Bjorkoy, G.1
Lamark, T.2
Brech, A.3
Outzen, H.4
Perander, M.5
-
38
-
-
36849089101
-
Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice
-
Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, et al. 2007. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131:1149-63
-
(2007)
Cell
, vol.131
, pp. 1149-1163
-
-
Komatsu, M.1
Waguri, S.2
Koike, M.3
Sou, Y.S.4
Ueno, T.5
-
39
-
-
67650234499
-
NBR1 cooperates with p62 in selective autophagy of ubiquitinated targets
-
Kirkin V, Lamark T, Johansen T, Dikic I. 2009. NBR1 cooperates with p62 in selective autophagy of ubiquitinated targets. Autophagy 5:732-33
-
(2009)
Autophagy
, vol.5
, pp. 732-733
-
-
Kirkin, V.1
Lamark, T.2
Johansen, T.3
Dikic, I.4
-
40
-
-
34548259958
-
P62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
-
Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, et al. 2007. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282:24131-45
-
(2007)
J. Biol. Chem
, vol.282
, pp. 24131-24145
-
-
Pankiv, S.1
Clausen, T.H.2
Lamark, T.3
Brech, A.4
Bruun, J.A.5
-
41
-
-
84861939463
-
P62: A versatile multitasker takes on cancer
-
Moscat J, Diaz-Meco MT. 2012. p62: a versatile multitasker takes on cancer. Trends Biochem. Sci. 37:230-36
-
(2012)
Trends Biochem. Sci
, vol.37
, pp. 230-236
-
-
Moscat, J.1
Diaz-Meco, M.T.2
-
42
-
-
79551634458
-
Autophagy in tumorigenesis and energy metabolism: Friend by day, foe by night
-
Mathew R, White E. 2011. Autophagy in tumorigenesis and energy metabolism: friend by day, foe by night. Curr. Opin. Genet. Dev. 21:113-19
-
(2011)
Curr. Opin. Genet. Dev
, vol.21
, pp. 113-119
-
-
Mathew, R.1
White, E.2
-
43
-
-
11144245626
-
The role of autophagy during the early neonatal starvation period
-
Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, et al. 2004. The role of autophagy during the early neonatal starvation period. Nature 432:1032-36
-
(2004)
Nature
, vol.432
, pp. 1032-1036
-
-
Kuma, A.1
Hatano, M.2
Matsui, M.3
Yamamoto, A.4
Nakaya, H.5
-
44
-
-
21044455137
-
Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice
-
Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, et al. 2005. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 169:425-34
-
(2005)
J. Cell Biol
, vol.169
, pp. 425-434
-
-
Komatsu, M.1
Waguri, S.2
Ueno, T.3
Iwata, J.4
Murata, S.5
-
45
-
-
33745713171
-
Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis
-
Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, et al. 2006. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10:51-64
-
(2006)
Cancer Cell
, vol.10
, pp. 51-64
-
-
Degenhardt, K.1
Mathew, R.2
Beaudoin, B.3
Bray, K.4
Anderson, D.5
-
46
-
-
34548421950
-
Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation
-
Kang C, You YJ, Avery L. 2007. Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation. Genes Dev. 21:2161-71
-
(2007)
Genes Dev
, vol.21
, pp. 2161-2171
-
-
Kang, C.1
You, Y.J.2
Avery, L.3
-
48
-
-
79955377420
-
Autophagy-deficient mice develop multiple liver tumors
-
Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, et al. 2011. Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 25:795-800
-
(2011)
Genes Dev
, vol.25
, pp. 795-800
-
-
Takamura, A.1
Komatsu, M.2
Hara, T.3
Sakamoto, A.4
Kishi, C.5
-
49
-
-
32944463899
-
Angiogenesis
-
Folkman J. 2006. Angiogenesis. Annu. Rev. Med. 57:1-18
-
(2006)
Annu. Rev. Med
, vol.57
, pp. 1-18
-
-
Folkman, J.1
-
50
-
-
0038376002
-
Molecular regulation of vessel maturation
-
Jain RK. 2003. Molecular regulation of vessel maturation. Nat. Med. 9:685-93
-
(2003)
Nat. Med
, vol.9
, pp. 685-693
-
-
Jain, R.K.1
-
51
-
-
70350217425
-
Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling
-
Yang C, Sudderth J, Dang T, Bachoo RM, McDonald JG, DeBerardinis RJ. 2009. Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling. Cancer Res. 69:7986-93
-
(2009)
Cancer Res
, vol.69
, pp. 7986-7993
-
-
Yang, C.1
Sudderth, J.2
Dang, T.3
Bachoo, R.M.4
McDonald, J.G.5
Deberardinis, R.J.6
-
52
-
-
78649704325
-
Autophagy and metabolism
-
Rabinowitz JD, White E. 2010. Autophagy and metabolism. Science 330:1344-48
-
(2010)
Science
, vol.330
, pp. 1344-1348
-
-
Rabinowitz, J.D.1
White, E.2
-
53
-
-
65949095803
-
Autophagy regulates lipid metabolism
-
Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, et al. 2009. Autophagy regulates lipid metabolism. Nature 458:1131-35
-
(2009)
Nature
, vol.458
, pp. 1131-1135
-
-
Singh, R.1
Kaushik, S.2
Wang, Y.3
Xiang, Y.4
Novak, I.5
-
54
-
-
33746257209
-
The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism
-
Engelman JA, Luo J, Cantley LC. 2006. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 7:606-19
-
(2006)
Nat. Rev. Genet
, vol.7
, pp. 606-619
-
-
Engelman, J.A.1
Luo, J.2
Cantley, L.C.3
-
55
-
-
0036714127
-
Akt regulates growth by directly phosphorylating Tsc2
-
Potter CJ, Pedraza LG, Xu T. 2002. Akt regulates growth by directly phosphorylating Tsc2. Nat. Cell Biol. 4:658-65
-
(2002)
Nat. Cell Biol
, vol.4
, pp. 658-665
-
-
Potter, C.J.1
Pedraza, L.G.2
Xu, T.3
-
56
-
-
0242539698
-
The Drosophila forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling
-
Junger MA, Rintelen F, Stocker H, Wasserman JD, Vegh M, et al. 2003. The Drosophila forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling. J. Biol. 2:20
-
(2003)
J. Biol
, vol.2
, pp. 20
-
-
Junger, M.A.1
Rintelen, F.2
Stocker, H.3
Wasserman, J.D.4
Vegh, M.5
-
57
-
-
33646148946
-
Divergent regulation of hepatic glucose and lipid metabolism by phosphoinositide 3-kinase via Akt and PKClambda/zeta
-
Taniguchi CM, Kondo T, Sajan M, Luo J, Bronson R, et al. 2006. Divergent regulation of hepatic glucose and lipid metabolism by phosphoinositide 3-kinase via Akt and PKClambda/zeta. Cell. Metab. 3:35-343
-
(2006)
Cell. Metab
, vol.3
, pp. 35-343
-
-
Taniguchi, C.M.1
Kondo, T.2
Sajan, M.3
Luo, J.4
Bronson, R.5
-
58
-
-
4544220704
-
Absence of S6K1 protects against age-and diet-induced obesity while enhancing insulin sensitivity
-
Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M, et al. 2004. Absence of S6K1 protects against age-and diet-induced obesity while enhancing insulin sensitivity. Nature 431:200-5
-
(2004)
Nature
, vol.431
, pp. 200-205
-
-
Um, S.H.1
Frigerio, F.2
Watanabe, M.3
Picard, F.4
Joaquin, M.5
-
59
-
-
0037677096
-
Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation
-
Sano H, Kane S, Sano E, Miinea CP, Asara JM, et al. 2003. Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation. J. Biol. Chem. 278:14599-602
-
(2003)
J. Biol. Chem
, vol.278
, pp. 14599-14602
-
-
Sano, H.1
Kane, S.2
Sano, E.3
Miinea, C.P.4
Asara, J.M.5
-
60
-
-
78650897555
-
Mice with AS160/TBC1D4-Thr649Ala knockin mutation are glucose intolerant with reduced insulin sensitivity and altered GLUT4 trafficking
-
Chen S, Wasserman DH, MacKintosh C, Sakamoto K. 2011. Mice with AS160/TBC1D4-Thr649Ala knockin mutation are glucose intolerant with reduced insulin sensitivity and altered GLUT4 trafficking. Cell Metab. 13:68-79
-
(2011)
Cell Metab
, vol.13
, pp. 68-79
-
-
Chen, S.1
Wasserman, D.H.2
MacKintosh, C.3
Sakamoto, K.4
-
61
-
-
60549111398
-
Is Akt the "warburg kinase"?-Akt-energy metabolism interactions and oncogenesis
-
Robey RB, Hay N. 2009. Is Akt the "Warburg kinase"?-Akt-energy metabolism interactions and oncogenesis. Semin. Cancer Biol. 19:25-31
-
(2009)
Semin. Cancer Biol
, vol.19
, pp. 25-31
-
-
Robey, R.B.1
Hay, N.2
-
62
-
-
0029587224
-
Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B
-
Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. 1995. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785-89
-
(1995)
Nature
, vol.378
, pp. 785-789
-
-
Cross, D.A.1
Alessi, D.R.2
Cohen, P.3
Andjelkovich, M.4
Hemmings, B.A.5
-
64
-
-
30544433533
-
ATPcitrate lyase is an important component of cell growth and transformation
-
Bauer DE, HatzivassiliouG,ZhaoF,Andreadis C, Thompson CB. 2005.ATPcitrate lyase is an important component of cell growth and transformation. Oncogene 24:6314-22
-
(2005)
Oncogene
, vol.24
, pp. 6314-6322
-
-
Bauer, D.E.1
Hatzivassiliou, G.2
Zhao, F.3
Andreadis, C.4
Thompson, C.B.5
-
65
-
-
33846005164
-
Phosphatidylinositol 3-kinase-dependent modulation of carnitine palmitoyltransferase 1A expression regulates lipid metabolism during hematopoietic cell growth
-
Deberardinis RJ, Lum JJ, Thompson CB. 2006. Phosphatidylinositol 3-kinase-dependent modulation of carnitine palmitoyltransferase 1A expression regulates lipid metabolism during hematopoietic cell growth. J. Biol. Chem. 281:37372-80
-
(2006)
J. Biol. Chem
, vol.281
, pp. 37372-37380
-
-
Deberardinis, R.J.1
Lum, J.J.2
Thompson, C.B.3
-
66
-
-
70450204007
-
An emerging role of mTOR in lipid biosynthesis
-
Laplante M, Sabatini DM. 2009. An emerging role of mTOR in lipid biosynthesis. Curr. Biol. 19:R1046-52
-
(2009)
Curr. Biol
, vol.19
-
-
Laplante, M.1
Sabatini, D.M.2
-
67
-
-
78650510609
-
MTOR: From growth signal integration to cancer, diabetes and ageing
-
Zoncu R, Efeyan A, Sabatini DM. 2011. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12:21-35
-
(2011)
Nat. Rev. Mol. Cell Biol
, vol.12
, pp. 21-35
-
-
Zoncu, R.1
Efeyan, A.2
Sabatini, D.M.3
-
68
-
-
80052841665
-
Regulation of TFEB and V-ATPases by mTORC1
-
Pe ̃ na-Llopis S, Vega-Rubin-de-Celis S, Schwartz JC, Wolff NC, Tran TA, et al. 2011. Regulation of TFEB and V-ATPases by mTORC1. EMBO J. 30:3242-58
-
(2011)
EMBO J
, vol.30
, pp. 3242-3258
-
-
Pe ̃ Na-Llopis, S.1
Vega-Rubin-De-Celis, S.2
Schwartz, J.C.3
Wolff, N.C.4
Tran, T.A.5
-
69
-
-
84857997408
-
A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
-
Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S, et al. 2012. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31:1095-108
-
(2012)
EMBO J
, vol.31
, pp. 1095-1108
-
-
Settembre, C.1
Zoncu, R.2
Medina, D.L.3
Vetrini, F.4
Erdin, S.5
-
70
-
-
84862908818
-
AMPK and mTOR in cellular energy homeostasis and drug targets
-
Inoki K, Kim J, Guan KL. 2012. AMPK and mTOR in cellular energy homeostasis and drug targets. Annu. Rev. Pharmacol. Toxicol. 52:381-400
-
(2012)
Annu. Rev. Pharmacol. Toxicol
, vol.52
, pp. 381-400
-
-
Inoki, K.1
Kim, J.2
Guan, K.L.3
-
71
-
-
79952228407
-
Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis
-
Guo JY, Chen HY, Mathew R, Fan J, Strohecker AM, et al. 2011. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 25:460-70
-
(2011)
Genes Dev
, vol.25
, pp. 460-470
-
-
Guo, J.Y.1
Chen, H.Y.2
Mathew, R.3
Fan, J.4
Strohecker, A.M.5
-
72
-
-
78751511180
-
Autophagy facilitates glycolysis during Rasmediated oncogenic transformation
-
Lock R, Roy S, Kenific CM, Su JS, Salas E, et al. 2011. Autophagy facilitates glycolysis during Rasmediated oncogenic transformation. Mol. Biol. Cell 22:165-78
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 165-178
-
-
Lock, R.1
Roy, S.2
Kenific, C.M.3
Su, J.S.4
Salas, E.5
-
73
-
-
79952229430
-
Pancreatic cancers require autophagy for tumor growth
-
Yang S, Wang X, Contino G, Liesa M, Sahin E, et al. 2011. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 25:717-29
-
(2011)
Genes Dev
, vol.25
, pp. 717-729
-
-
Yang, S.1
Wang, X.2
Contino, G.3
Liesa, M.4
Sahin, E.5
-
74
-
-
79960055459
-
RAS interaction with PI3K: More than just another effector pathway
-
Castellano E, Downward J. 2011. RAS interaction with PI3K: more than just another effector pathway. Genes Cancer 2:261-74
-
(2011)
Genes Cancer
, vol.2
, pp. 261-274
-
-
Castellano, E.1
Downward, J.2
-
75
-
-
79960585318
-
Ammonia-induced autophagy is independent of ULK1/ULK2 kinases
-
Cheong H, Lindsten T,Wu J, Lu C, Thompson CB. 2011. Ammonia-induced autophagy is independent of ULK1/ULK2 kinases. Proc. Natl. Acad. Sci. USA 108:11121-26
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 11121-11126
-
-
Cheong, H.1
Lindsten Twu, J.2
Lu, C.3
Thompson, C.B.4
-
76
-
-
77953861522
-
Ammonia derived from glutaminolysis is a diffusible regulator of autophagy
-
Eng CH, Yu K, Lucas J, White E, Abraham RT. 2010. Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Sci. Signal. 3:ra31
-
(2010)
Sci. Signal
, vol.3
-
-
Eng, C.H.1
Yu, K.2
Lucas, J.3
White, E.4
Abraham, R.T.5
-
77
-
-
59749087582
-
Rag proteins regulate amino-acid-induced mTORC1 signalling
-
Sancak Y, Sabatini DM. 2009. Rag proteins regulate amino-acid-induced mTORC1 signalling. Biochem. Soc. Trans. 37:289-90
-
(2009)
Biochem. Soc. Trans
, vol.37
, pp. 289-290
-
-
Sancak, Y.1
Sabatini, D.M.2
-
78
-
-
80555143078
-
MTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolarH+-ATPase
-
Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM. 2011. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolarH+-ATPase. Science 334:678-83
-
(2011)
Science
, vol.334
, pp. 678-683
-
-
Zoncu, R.1
Bar-Peled, L.2
Efeyan, A.3
Wang, S.4
Sancak, Y.5
Sabatini, D.M.6
-
79
-
-
77954757143
-
Proton-assisted amino-acid transporters are conserved regulators of proliferation and amino-acid-dependent mTORC1 activation
-
Heublein S, Kazi S, Ogmundsdottir MH, Attwood EV, Kala S, et al. 2010. Proton-assisted amino-acid transporters are conserved regulators of proliferation and amino-acid-dependent mTORC1 activation. Oncogene 29:4068-79
-
(2010)
Oncogene
, vol.29
, pp. 4068-4079
-
-
Heublein, S.1
Kazi, S.2
Ogmundsdottir, M.H.3
Attwood, E.V.4
Kala, S.5
-
80
-
-
79956346329
-
Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation
-
Rong Y, McPhee CK, Deng S, HuangL,Chen L, et al. 2011. Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation. Proc. Natl. Acad. Sci. USA 108:7826-31
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 7826-7831
-
-
Rong, Y.1
McPhee, C.K.2
Deng, S.3
Huanglchen, L.4
-
81
-
-
79956325949
-
Spatial coupling of mTOR and autophagy augments secretory phenotypes
-
Narita M, Young AR, Arakawa S, Samarajiwa SA, Nakashima T, et al. 2011. Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science 332:966-70
-
(2011)
Science
, vol.332
, pp. 966-970
-
-
Narita, M.1
Young, A.R.2
Arakawa, S.3
Samarajiwa, S.A.4
Nakashima, T.5
-
82
-
-
77953699711
-
Termination of autophagy and reformation of lysosomes regulated by mTOR
-
Yu L, McPhee CK, Zheng L, Mardones GA, Rong Y, et al. 2010. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465:942-46
-
(2010)
Nature
, vol.465
, pp. 942-946
-
-
Yu, L.1
McPhee, C.K.2
Zheng, L.3
Mardones, G.A.4
Rong, Y.5
-
83
-
-
80053586265
-
P62 is a key regulator of nutrient sensing in the mTORC1 pathway
-
Duran A, Amanchy R, Linares JF, Joshi J, Abu-Baker S, et al. 2011. p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Mol. Cell 44:134-46
-
(2011)
Mol. Cell
, vol.44
, pp. 134-146
-
-
Duran, A.1
Amanchy, R.2
Linares, J.F.3
Joshi, J.4
Abu-Baker, S.5
-
84
-
-
79952281400
-
Inactivation ofRheb by PRAK-mediated phosphorylation is essential for energy-depletion-induced suppression of mTORC1
-
ZhengM,Wang YH,WuXN,Wu SQ, Lu BJ, et al. 2011. Inactivation ofRheb by PRAK-mediated phosphorylation is essential for energy-depletion-induced suppression of mTORC1. Nat. Cell Biol. 13:263-72
-
(2011)
Nat. Cell Biol
, vol.13
, pp. 263-272
-
-
Zheng, M.1
Wang, Y.H.2
Wu, X.N.3
Wu, S.Q.4
Lu, B.J.5
-
85
-
-
84859023600
-
P85αSH2 domain phosphorylation by IKK promotes feedback inhibition of PI3K and Akt in response to cellular starvation
-
CombWC,Hutti JE,Cogswell P, Cantley LC, Baldwin AS. 2012. p85αSH2 domain phosphorylation by IKK promotes feedback inhibition of PI3K and Akt in response to cellular starvation. Mol. Cell 45:719-30
-
(2012)
Mol. Cell
, vol.45
, pp. 719-730
-
-
Comb, W.C.1
Hutti, J.E.2
Cogswell, P.3
Cantley, L.C.4
Baldwin, A.S.5
-
86
-
-
84859977895
-
Sirtuins mediate mammalian metabolic responses to nutrient availability
-
Chalkiadaki A, Guarente L. 2012. Sirtuins mediate mammalian metabolic responses to nutrient availability. Nat. Rev. Endocrinol. 8:287-96
-
(2012)
Nat. Rev. Endocrinol
, vol.8
, pp. 287-296
-
-
Chalkiadaki, A.1
Guarente, L.2
-
87
-
-
20144365700
-
Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes
-
Frescas D, Valenti L, Accili D. 2005. Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J. Biol. Chem. 280:20589-95
-
(2005)
J. Biol. Chem
, vol.280
, pp. 20589-20595
-
-
Frescas, D.1
Valenti, L.2
Accili, D.3
-
88
-
-
60749108379
-
Regulation of autophagy by reactive oxygen species (ROS): Implications for cancer progression and treatment
-
Azad MB, Chen Y, Gibson SB. 2009. Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment. Antioxid. Redox Signal. 11:777-90
-
(2009)
Antioxid. Redox Signal
, vol.11
, pp. 777-790
-
-
Azad, M.B.1
Chen, Y.2
Gibson, S.B.3
-
89
-
-
78650890352
-
Regulation of autophagy by ROS: Physiology and pathology
-
Scherz-Shouval R, Elazar Z. 2011. Regulation of autophagy by ROS: physiology and pathology. Trends Biochem. Sci. 36:30-38
-
(2011)
Trends Biochem. Sci
, vol.36
, pp. 30-38
-
-
Scherz-Shouval, R.1
Elazar, Z.2
-
90
-
-
85047684646
-
Protein-tyrosine phosphatases: Emerging targets for therapeutic intervention in type 2 diabetes and related states of insulin resistance
-
Goldstein BJ. 2002. Protein-tyrosine phosphatases: emerging targets for therapeutic intervention in type 2 diabetes and related states of insulin resistance. J. Clin. Endocrinol. Metab. 87:2474-80
-
(2002)
J. Clin. Endocrinol. Metab
, vol.87
, pp. 2474-2480
-
-
Goldstein, B.J.1
-
91
-
-
0036184190
-
Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo
-
Meng TC, Fukada T, Tonks NK. 2002. Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol. Cell 9:387-99
-
(2002)
Mol. Cell
, vol.9
, pp. 387-399
-
-
Meng, T.C.1
Fukada, T.2
Tonks, N.K.3
-
92
-
-
49849098119
-
Mammalian target of rapamycin inhibition as a therapeutic strategy in the management of urologic malignancies
-
Garcia JA, Danielpour D. 2008. Mammalian target of rapamycin inhibition as a therapeutic strategy in the management of urologic malignancies. Mol. Cancer Ther. 7:1347-54
-
(2008)
Mol. Cancer Ther
, vol.7
, pp. 1347-1354
-
-
Garcia, J.A.1
Danielpour, D.2
-
93
-
-
80054099469
-
Emerging roles for mammalian target of rapamycin inhibitors in the treatment of solid tumors and hematological malignancies
-
Khokhar NZ, Altman JK, Platanias LC. 2011. Emerging roles for mammalian target of rapamycin inhibitors in the treatment of solid tumors and hematological malignancies. Curr. Opin. Oncol. 23:578-86
-
(2011)
Curr. Opin. Oncol
, vol.23
, pp. 578-586
-
-
Khokhar, N.Z.1
Altman, J.K.2
Platanias, L.C.3
-
94
-
-
79959926021
-
ATP-competitive inhibitors of mTOR: An update
-
Schenone S, Brullo C, Musumeci F, Radi M, Botta M. 2011. ATP-competitive inhibitors of mTOR: an update. Curr. Med. Chem. 18:2995-3014
-
(2011)
Curr. Med. Chem
, vol.18
, pp. 2995-3014
-
-
Schenone, S.1
Brullo, C.2
Musumeci, F.3
Radi, M.4
Botta, M.5
-
95
-
-
78651458656
-
AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity
-
Chandarlapaty S, Sawai A, Scaltriti M, Rodrik-Outmezguine V, Grbovic-Huezo O, et al. 2011. AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell 19:58-71
-
(2011)
Cancer Cell
, vol.19
, pp. 58-71
-
-
Chandarlapaty, S.1
Sawai, A.2
Scaltriti, M.3
Rodrik-Outmezguine, V.4
Grbovic-Huezo, O.5
-
96
-
-
79957917078
-
PI3K inhibition results in enhanced HERsignaling and acquiredERKdependency in HER2-overexpressing breast cancer
-
Serra V, Scaltriti M, Prudkin L, Eichhorn PJ, Ibrahim YH, et al. 2011. PI3K inhibition results in enhanced HERsignaling and acquiredERKdependency in HER2-overexpressing breast cancer. Oncogene 30:2547-57
-
(2011)
Oncogene
, vol.30
, pp. 2547-2557
-
-
Serra, V.1
Scaltriti, M.2
Prudkin, L.3
Eichhorn, P.J.4
Ibrahim, Y.H.5
-
97
-
-
79951847989
-
Principles and current strategies for targeting autophagy for cancer treatment
-
Amaravadi RK,Lippincott-Schwartz J, Yin XM, Weiss WA, Takebe N, et al. 2011. Principles and current strategies for targeting autophagy for cancer treatment. Clin. Cancer Res. 17:654-66
-
(2011)
Clin. Cancer Res
, vol.17
, pp. 654-666
-
-
Amaravadi, R.K.1
Lippincott-Schwartz, J.2
Yin, X.M.3
Weiss, W.A.4
Takebe, N.5
-
98
-
-
0032530924
-
Direct binding of chloroquine to the multidrug resistance protein (MRP): Possible role for MRP in chloroquine drug transport and resistance in tumor cells
-
Vezmar M, Georges E. 1998. Direct binding of chloroquine to the multidrug resistance protein (MRP): possible role for MRP in chloroquine drug transport and resistance in tumor cells. Biochem. Pharmacol. 56:733-42
-
(1998)
Biochem. Pharmacol
, vol.56
, pp. 733-742
-
-
Vezmar, M.1
Georges, E.2
-
99
-
-
77956416339
-
Autophagy inmammalian development and differentiation
-
Mizushima N, Levine B. 2010. Autophagy inmammalian development and differentiation. Nat. Cell Biol. 12:823-30
-
(2010)
Nat. Cell Biol
, vol.12
, pp. 823-830
-
-
Mizushima, N.1
Levine, B.2
-
100
-
-
79955961530
-
Defective regulation of autophagy upon leucine deprivation reveals a targetable liability of human melanoma cells in vitro and in vivo
-
Sheen JH, Zoncu R, Kim D, Sabatini DM. 2011. Defective regulation of autophagy upon leucine deprivation reveals a targetable liability of human melanoma cells in vitro and in vivo. Cancer Cell 19:613-28
-
(2011)
Cancer Cell
, vol.19
, pp. 613-628
-
-
Sheen, J.H.1
Zoncu, R.2
Kim, D.3
Sabatini, D.M.4
|