메뉴 건너뛰기




Volumn 4, Issue 3, 2011, Pages 195-266

Kernels for vector-valued functions: A review

Author keywords

[No Author keywords available]

Indexed keywords

COVARIANCE FUNCTION; FUNCTIONAL METHODS; GAUSSIAN PROCESSES; KERNEL FUNCTION; KERNEL METHODS; LEARNING KERNELS; MULTIPLE OUTPUTS; MULTITASK LEARNING; REGULARIZATION THEORY; REPRODUCING KERNEL HILBERT SPACES; SUPERVISED LEARNING PROBLEMS; VECTOR-VALUED FUNCTION;

EID: 84863534141     PISSN: 19358237     EISSN: 19358245     Source Type: Journal    
DOI: 10.1561/2200000036     Document Type: Review
Times cited : (756)

References (114)
  • 2
    • 84858759793 scopus 로고    scopus 로고
    • Sparse convolved Gaussian processes for multi-output regression
    • (D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, eds.) Cambridge, MA: MIT Press
    • M. A. Álvarez and N. D. Lawrence, "Sparse convolved Gaussian processes for multi-output regression, " in Advances in Neural Information Processing Systems (NIPS), vol. 21, (D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, eds.), pp. 57-64, Cambridge, MA: MIT Press, 2009.
    • (2009) Advances in Neural Information Processing Systems (NIPS) , vol.21 , pp. 57-64
    • Álvarez, M.A.1    Lawrence, N.D.2
  • 4
    • 55149088329 scopus 로고    scopus 로고
    • Convex multi-task feature learning
    • A. Argyriou, T. Evgeniou, and M. Pontil, "Convex multi-task feature learning, " Machine Learning, vol. 73, no. 3, pp. 243-272, 2008.
    • (2008) Machine Learning , vol.73 , Issue.3 , pp. 243-272
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 12
    • 85161977902 scopus 로고    scopus 로고
    • Multi-task Gaussian process prediction
    • (J. C. Platt, D. Koller, Y. Singer, and S. Roweis, eds.), Cambridge, MA: MIT Press
    • E. V. Bonilla, K. M. Chai, and C. K. I. Williams, "Multi-task Gaussian process prediction, " in Advances in Neural Information Processing Systems (NIPS)vol. 20, (J. C. Platt, D. Koller, Y. Singer, and S. Roweis, eds.), Cambridge, MA: MIT Press, 2008.
    • (2008) Advances in Neural Information Processing Systems (NIPS) , vol.20
    • Bonilla, E.V.1    Chai, K.M.2    Williams, C.K.I.3
  • 14
    • 84898973907 scopus 로고    scopus 로고
    • Dependent gaussian processes
    • (L. Saul, Y. Weiss, and L. Bouttou, eds.) Cambridge, MA: MIT Press
    • P. Boyle and M. Frean, "Dependent Gaussian processes, " in Advances in Neural Information Processing Systems (NIPS), vol. 17, (L. Saul, Y. Weiss, and L. Bouttou, eds.), pp. 217-224, Cambridge, MA: MIT Press, 2005.
    • (2005) Advances in Neural Information Processing Systems (NIPS) , vol.17 , pp. 217-224
    • Boyle, P.1    Frean, M.2
  • 15
    • 79959205293 scopus 로고    scopus 로고
    • Multiple output Gaussian process regression
    • School of Mathematical and Computing Sciences, Victoria University, New Zealand
    • P. Boyle and M. Frean, "Multiple output Gaussian process regression, " Technical Report CS-TR-05/2, School of Mathematical and Computing Sciences, Victoria University, New Zealand, 2005.
    • (2005) Technical Report CS-TR-05/2
    • Boyle, P.1    Frean, M.2
  • 16
    • 38349102465 scopus 로고    scopus 로고
    • A dynamic process convolution approach to modeling ambient particulate matter concentrations
    • C. A. Calder, "A dynamic process convolution approach to modeling ambient particulate matter concentrations, " Environmetrics, vol. 19, pp. 39-48, 2008.
    • (2008) Environmetrics , vol.19 , pp. 39-48
    • Calder, C.A.1
  • 19
    • 48849086653 scopus 로고    scopus 로고
    • Vector valued reproducing kernel Hilbert spaces of integrable functions and Mercer theorem
    • C. Carmeli, E. De Vito, and A. Toigo, "Vector valued reproducing kernel Hilbert spaces of integrable functions and Mercer theorem, " Analysis and Applications (Singapore), vol. 4, no. 4, pp. 377-408, 2006.
    • (2006) Analysis and Applications (Singapore) , vol.4 , Issue.4 , pp. 377-408
    • Carmeli, C.1    De Vito, E.2    Toigo, A.3
  • 20
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • R. Caruana, "Multitask learning, " Machine Learning, vol. 28, pp. 41-75, 1997. (Pubitemid 127507169)
    • (1997) Machine Learning , vol.28 , Issue.1 , pp. 41-75
    • Caruana, R.1
  • 21
    • 78349302239 scopus 로고    scopus 로고
    • Generalization errors and learning curves for regression with multi-task Gaussian processes
    • (Y. Bengio, D. Schuurmans, J. Laferty, C. Williams, and A. Culotta, eds.) Cambridge, MA: MIT Press
    • K. M. Chai, "Generalization errors and learning curves for regression with multi-task Gaussian processes, " in Advances in Neural Information Processing Systems (NIPS), vol. 22, (Y. Bengio, D. Schuurmans, J. Laferty, C. Williams, and A. Culotta, eds.), pp. 279-287, Cambridge, MA: MIT Press, 2010.
    • (2010) Advances in Neural Information Processing Systems (NIPS) , vol.22 , pp. 279-287
    • Chai, K.M.1
  • 22
    • 79960122862 scopus 로고    scopus 로고
    • Multitask Gaussian process learning of robot inverse dynamics
    • (D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, eds.) Cambridge, MA: MIT Press
    • K. M. A. Chai, C. K. I. Williams, S. Klanke, and S. Vijayakumar, "Multitask Gaussian process learning of robot inverse dynamics, " in Advances in Neural Information Processing Systems (NIPS), (D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, eds.), pp. 265-272, Cambridge, MA: MIT Press, 2009.
    • (2009) Advances in Neural Information Processing Systems (NIPS) , pp. 265-272
    • Chai, K.M.A.1    Williams, C.K.I.2    Klanke, S.3    Vijayakumar, S.4
  • 23
    • 70350733506 scopus 로고    scopus 로고
    • Bayesian emulation of complex multi-output and dynamic computer models
    • S. Conti and A. O'Hagan, "Bayesian emulation of complex multi-output and dynamic computer models, " Journal of Statistical Planning and Inference, vol. 140, no. 3, pp. 640-651, 2010.
    • (2010) Journal of Statistical Planning and Inference , vol.140 , Issue.3 , pp. 640-651
    • Conti, S.1    O'Hagan, A.2
  • 29
    • 80052803648 scopus 로고    scopus 로고
    • Probabilistic uncertainty analysis of an FRF of a structure using a Gaussian process emulator
    • T. E. Fricker, J. E. Oakley, N. D. Sims, and K. Worden, "Probabilistic uncertainty analysis of an FRF of a structure using a Gaussian process emulator, " Mechanical Systems and Signal Processing, vol. 25, no. 8, pp. 2962-2975, 2011.
    • (2011) Mechanical Systems and Signal Processing , vol.25 , Issue.8 , pp. 2962-2975
    • Fricker, T.E.1    Oakley, J.E.2    Sims, N.D.3    Worden, K.4
  • 30
    • 84993812365 scopus 로고    scopus 로고
    • Interpolation of nonstationary air pollution processes: A spatial spectral approach
    • M. Fuentes, "Interpolation of nonstationary air pollution processes: A spatial spectral approach, " Statistical Modelling, vol. 2, pp. 281-298, 2002.
    • (2002) Statistical Modelling , vol.2 , pp. 281-298
    • Fuentes, M.1
  • 31
    • 0042401905 scopus 로고    scopus 로고
    • Spectral methods for nonstationary spatial processes
    • DOI 10.1093/biomet/89.1.197
    • M. Fuentes, "Spectral methods for nonstationary spatial processes, " Biometrika, vol. 89, no. 1, pp. 197-210, 2002. (Pubitemid 41312011)
    • (2002) Biometrika , vol.89 , Issue.1 , pp. 197-210
    • Fuentes, M.1
  • 33
    • 49549105346 scopus 로고    scopus 로고
    • Gaussian process modelling of latent chemical species: Applications to inferring transcription factor activities
    • P. Gao, A. Honkela, M. Rattray, and N. D. Lawrence, "Gaussian process modelling of latent chemical species: Applications to inferring transcription factor activities, " Bioinformatics, vol. 24, pp. i70-i75, 2008.
    • (2008) Bioinformatics , vol.24
    • Gao, P.1    Honkela, A.2    Rattray, M.3    Lawrence, N.D.4
  • 34
    • 13444251351 scopus 로고    scopus 로고
    • Nonstationary multivariate process modeling through spatially varying coregionalization
    • A. E. Gelfand, A. M. Schmidt, S. Banerjee, and C. Sirmans, "Nonstationary multivariate process modeling through spatially varying coregionalization, " TEST, vol. 13, no. 2, pp. 263-312, 2004. (Pubitemid 40217244)
    • (2004) Test , vol.13 , Issue.2 , pp. 263-312
    • Gelfand, A.E.1    Schmidt, A.M.2    Banerjee, S.3    Sirmans, C.F.4    Fuentes, M.5    Higdon, D.6    Sanso, B.7
  • 35
    • 0024991997 scopus 로고
    • Networks and the best approximation property
    • DOI 10.1007/BF00195855
    • F. Girosi and T. Poggio, "Networks and the best approximation property, " Biological Cybernetics, vol. 63, pp. 169-176, 1989. (Pubitemid 20290535)
    • (1990) Biological Cybernetics , vol.63 , Issue.3 , pp. 169-176
    • Girosi, F.1    Poggio, T.2
  • 36
    • 0035439188 scopus 로고    scopus 로고
    • Analogies and correspondences between variograms and covariance functions
    • DOI 10.1239/aap/1005091356
    • T. Gneiting, Z. Sasvári, and M. Schlather, "Analogies and correspondences between variograms and covariance functions, " Advances in Applied Probability, vol. 33, no. 3, pp. 617-630, 2001. (Pubitemid 33038952)
    • (2001) Advances in Applied Probability , vol.33 , Issue.3 , pp. 617-630
    • Gneiting, T.1    Sasvari, Z.2    Schlather, M.3
  • 38
    • 0026465454 scopus 로고
    • Linear coregionalization model: Tools for estimation and choice of cross-variogram matrix
    • M. Goulard and M. Voltz, "Linear coregionalization model: Tools for estimation and choice of cross-variogram matrix, " Mathematical Geology, vol. 24, no. 3, pp. 269-286, 1992.
    • (1992) Mathematical Geology , vol.24 , Issue.3 , pp. 269-286
    • Goulard, M.1    Voltz, M.2
  • 39
    • 0344789103 scopus 로고    scopus 로고
    • Coregionalization by linear combination of nonorthogonal components
    • DOI 10.1023/A:1015078911063
    • J. A. V. Guzmán, A. Warrick, and D. E. Myers, " Coregionalization by linear combination of nonorthogonal components, " Mathematical Geology, vol. 34, no. 4, pp. 405-419, 2002. (Pubitemid 41444756)
    • (2002) Mathematical Geology , vol.34 , Issue.4 , pp. 405-419
    • Vargas-Guzman, J.A.1    Warrick, A.W.2    Myers, D.E.3
  • 41
    • 0028197723 scopus 로고
    • Universal cokriging under intrinsic coregionalization
    • J. D. Helterbrand and N. Cressie, "Universal cokriging under intrinsic coregionalization, " Mathematical Geology, vol. 26, no. 2, pp. 205-226, 1994. (Pubitemid 24427109)
    • (1994) Mathematical Geology , vol.26 , Issue.2 , pp. 205-226
    • Helterbrand, J.D.1    Cressie, N.2
  • 43
    • 0032422974 scopus 로고    scopus 로고
    • A process-convolution approach to modeling temperatures in the North Atlantic Ocean
    • D. M. Higdon, "A process-convolution approach to modeling temperatures in the North Atlantic Ocean, " Journal of Ecological and Environmental Statistics, vol. 5, pp. 173-190, 1998.
    • (1998) Journal of Ecological and Environmental Statistics , vol.5 , pp. 173-190
    • Higdon, D.M.1
  • 44
    • 2942619617 scopus 로고    scopus 로고
    • Space and space-time modelling using process convolutions
    • (C. Anderson, V. Barnett, P. Chatwin, and A. El-Shaarawi, eds.) Springer-Verlag
    • D. M. Higdon, "Space and space-time modelling using process convolutions, " in Quantitative methods for current environmental issues, (C. Anderson, V. Barnett, P. Chatwin, and A. El-Shaarawi, eds.), pp. 37-56, Springer-Verlag, 2002.
    • (2002) Quantitative Methods for Current Environmental Issues , pp. 37-56
    • Higdon, D.M.1
  • 45
    • 0000439277 scopus 로고    scopus 로고
    • Non-stationary spatial modeling
    • (J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, eds.) Oxford University Press
    • D. M. Higdon, J. Swall, and J. Kern, "Non-stationary spatial modeling, " in Bayesian Statistics 6, (J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, eds.), pp. 761-768, Oxford University Press, 1998.
    • (1998) Bayesian Statistics , vol.6 , pp. 761-768
    • Higdon, D.M.1    Swall, J.2    Kern, J.3
  • 50
    • 84899033524 scopus 로고    scopus 로고
    • Maximal margin labeling for multi-topic text categorization
    • (L. Saul, Y. Weiss, and L. Bouttou, eds.) Cambridge, MA: MIT Press
    • H. Kazawa, T. Izumitani, H. Taira, and E. Maeda, "Maximal margin labeling for multi-topic text categorization, " in Advances in Neural Information Processing Systems (NIPS), vol. 17, (L. Saul, Y. Weiss, and L. Bouttou, eds.), pp. 649-656, Cambridge, MA: MIT Press, 2005.
    • (2005) Advances in Neural Information Processing Systems (NIPS) , vol.17 , pp. 649-656
    • Kazawa, H.1    Izumitani, T.2    Taira, H.3    Maeda, E.4
  • 51
    • 0000406385 scopus 로고
    • A correspondence between Bayesian estimation of stochastic processes and smoothing by splines
    • G. Kimeldorf and G. Wahba, "A correspondence between Bayesian estimation of stochastic processes and smoothing by splines, " Annals of Mathematical Statistics, vol. 41, pp. 495-502, 1970.
    • (1970) Annals of Mathematical Statistics , vol.41 , pp. 495-502
    • Kimeldorf, G.1    Wahba, G.2
  • 53
    • 0031423171 scopus 로고    scopus 로고
    • Generalized cross-covariances and their estimation
    • H. Künsch, A. Papritz, and F. Bassi, "Generalized cross-covariances and their estimation, " Mathematical Geology, vol. 29, no. 6, pp. 779-799, 1997. (Pubitemid 28096724)
    • (1997) Mathematical Geology , vol.29 , Issue.6 , pp. 779-799
    • Kunsch, H.R.1    Papritz, A.2    Bassi, F.3
  • 54
    • 0041360093 scopus 로고    scopus 로고
    • Fitting a linear model of coregionalization for soil properties using simulated annealing
    • DOI 10.1016/S0016-7061(03)00065-X
    • R. M. Lark and A. Papritz, "Fitting a linear model of coregionalization for soil properties using simulated annealing, " Geoderma, vol. 115, pp. 245-260, 2003. (Pubitemid 37060370)
    • (2003) Geoderma , vol.115 , Issue.3-4 , pp. 245-260
    • Lark, R.M.1    Papritz, A.2
  • 56
    • 84864060452 scopus 로고    scopus 로고
    • Modelling transcriptional regulation using Gaussian Processes
    • (B. Schölkopf, J. C. Platt, and T. Hofmann, eds.) Cambridge, MA: MIT Press
    • N. D. Lawrence, G. Sanguinetti, and M. Rattray, "Modelling transcriptional regulation using Gaussian Processes, " in Advances in Neural Information Processing Systems (NIPS), vol. 19, (B. Schölkopf, J. C. Platt, and T. Hofmann, eds.), pp. 785-792, Cambridge, MA: MIT Press, 2007.
    • (2007) Advances in Neural Information Processing Systems (NIPS) , vol.19 , pp. 785-792
    • Lawrence, N.D.1    Sanguinetti, G.2    Rattray, M.3
  • 57
    • 80053225881 scopus 로고    scopus 로고
    • Fast sparse Gaussian process methods: The informative vector machine
    • (S. Becker, S. Thrun, and K. Obermayer, eds.) Cambridge, MA: MIT Press
    • N. D. Lawrence, M. Seeger, and R. Herbrich, "Fast sparse Gaussian process methods: The informative vector machine, " in Advances in Neural Information Processing Systems (NIPS), vol. 15, (S. Becker, S. Thrun, and K. Obermayer, eds.), pp. 625-632, Cambridge, MA: MIT Press, 2003.
    • (2003) Advances in Neural Information Processing Systems (NIPS) , vol.15 , pp. 625-632
    • Lawrence, N.D.1    Seeger, M.2    Herbrich, R.3
  • 58
    • 68149134506 scopus 로고    scopus 로고
    • Department of Statistical Science, Duke University, Discussion Paper 07-10. (Submitted for publication)
    • F. Liang, K. Mao, M. Liao, S. Mukherjee, and M. West, "Non-parametric Bayesian kernel models, " Department of Statistical Science, Duke University, Discussion Paper 07-10. (Submitted for publication), 2009.
    • (2009) Non-parametric Bayesian Kernel Models
    • Liang, F.1    Mao, K.2    Liao, M.3    Mukherjee, S.4    West, M.5
  • 59
    • 17444417421 scopus 로고    scopus 로고
    • A density theorem for matrix-valued radial basis functions
    • DOI 10.1007/s11075-004-3641-x
    • S. Lowitzsch, "A density theorem for matrix-valued radial basis functions, " Numerical Algorithms, vol. 39, no. 1, pp. 253-256, 2005. (Pubitemid 40550236)
    • (2005) Numerical Algorithms , vol.39 , Issue.1-3 , pp. 253-256
    • Lowitzsch, S.1
  • 61
    • 34248573628 scopus 로고    scopus 로고
    • Multivariate spatial modeling for geostatistical data using convolved covariance functions
    • A. Majumdar and A. E. Gelfand, "Multivariate spatial modeling for geostatistical data using convolved covariance functions, " Mathematical Geology, vol. 39, no. 2, pp. 225-244, 2007.
    • (2007) Mathematical Geology , vol.39 , Issue.2 , pp. 225-244
    • Majumdar, A.1    Gelfand, A.E.2
  • 62
    • 0015764255 scopus 로고
    • The intrinsic random functions and their applications
    • G. Matheron, "The intrinsic random functions and their applications, " Advances in Applied Probability, vol. 5, no. 3, pp. 439-468, 1973.
    • (1973) Advances in Applied Probability , vol.5 , Issue.3 , pp. 439-468
    • Matheron, G.1
  • 64
    • 14544299611 scopus 로고    scopus 로고
    • On learning vector-valued functions
    • DOI 10.1162/0899766052530802
    • C. Micchelli and M. Pontil, "On learning vector-valued functions, " Neural Computation, vol. 17, pp. 177-204, 2005. (Pubitemid 40305887)
    • (2005) Neural Computation , vol.17 , Issue.1 , pp. 177-204
    • Micchelli, C.A.1    Pontil, M.2
  • 66
    • 84863503174 scopus 로고    scopus 로고
    • Learning how to learn is learning with point sets
    • T. P. Minka and R. W. Picard, "Learning how to learn is learning with point sets, " Revised version 1999 available at http://research. microsoft.com/enus/ um/people/minka/papers/point-sets.html, 1999.
    • (1999) Revised Version , vol.1999
    • Minka, T.P.1    Picard, R.W.2
  • 67
    • 33646015688 scopus 로고    scopus 로고
    • Transformation of Gaussian process priors
    • (J. Winkler, M. Niranjan, and N. Lawrence, eds.) LNAI 3635, Springer-Verlag
    • R. Murray-Smith and B. A. Pearlmutter, "Transformation of Gaussian process priors, " in Deterministic and Statistical Methods in Machine Learning, (J. Winkler, M. Niranjan, and N. Lawrence, eds.), pp. 110-123, LNAI 3635, Springer-Verlag, 2005.
    • (2005) Deterministic and Statistical Methods in Machine Learning , pp. 110-123
    • Murray-Smith, R.1    Pearlmutter, B.A.2
  • 68
    • 84968510026 scopus 로고
    • Generalized Hermite interpolation via matrix-valued conditionally positive definite functions
    • F. Narcowich and J. Ward, "Generalized Hermite interpolation via matrix-valued conditionally positive definite functions, " Mathematics of Computation, vol. 63, no. 208, pp. 661-687, 1994.
    • (1994) Mathematics of Computation , vol.63 , Issue.208 , pp. 661-687
    • Narcowich, F.1    Ward, J.2
  • 69
    • 77953322499 scopus 로고    scopus 로고
    • Joint covariate selection and joint subspace selection for multiple classification problems
    • G. Obozinski, B. Taskar, and M. Jordan, "Joint covariate selection and joint subspace selection for multiple classification problems, " Statistics and Computing, vol. 20, no. 2, pp. 231-252, 2010.
    • (2010) Statistics and Computing , vol.20 , Issue.2 , pp. 231-252
    • Obozinski, G.1    Taskar, B.2    Jordan, M.3
  • 70
    • 33745699573 scopus 로고    scopus 로고
    • Bayesian analysis of computer code outputs: A tutorial
    • A. O'Hagan, "Bayesian analysis of computer code outputs: A tutorial, " Reliability Engineering and System Safety, vol. 91, pp. 1290-1300, 2006.
    • (2006) Reliability Engineering and System Safety , vol.91 , pp. 1290-1300
    • O'Hagan, A.1
  • 71
    • 49149117453 scopus 로고    scopus 로고
    • Technical Report, Department of Engineering Science, University of Oxford
    • M. A. Osborne and S. J. Roberts, "Gaussian processes for prediction, " Technical Report, Department of Engineering Science, University of Oxford, 2007.
    • (2007) Gaussian Processes for Prediction
    • Osborne, M.A.1    Roberts, S.J.2
  • 73
    • 84899028582 scopus 로고    scopus 로고
    • Nonstationary covariance functions for Gaussian process regression
    • (S. Thrun, L. Saul, and B. Schölkopf, eds.), Cambridge, MA: MIT Press
    • C. J. Paciorek and M. J. Schervish, "Nonstationary covariance functions for Gaussian process regression, " in Advances in Neural Information Processing Systems (NIPS) 16, (S. Thrun, L. Saul, and B. Schölkopf, eds.), Cambridge, MA: MIT Press, 2004.
    • (2004) Advances in Neural Information Processing Systems (NIPS) , vol.16
    • Paciorek, C.J.1    Schervish, M.J.2
  • 75
    • 0027807842 scopus 로고
    • On the pseudo cross-variogram
    • A. Papritz, H. Künsch, and R. Webster, "On the Pseudo cross-variogram, " Mathematical Geology, vol. 25, no. 8, pp. 1015-1026, 1993. (Pubitemid 24422457)
    • (1993) Mathematical Geology , vol.25 , Issue.8 , pp. 1015-1026
    • Papritz, A.1    Kunsch, H.R.2    Webster, R.3
  • 76
    • 3042803149 scopus 로고    scopus 로고
    • Fitting the linear model of coregionalization by generalized least squares
    • B. Pelletier, P. Dutilleul, G. Larocque, and J. W. Fyles, "Fitting the linear model of coregionalization by generalized least squares, " Mathematical Geology, vol. 36, no. 3, pp. 323-343, 2004.
    • (2004) Mathematical Geology , vol.36 , Issue.3 , pp. 323-343
    • Pelletier, B.1    Dutilleul, P.2    Larocque, G.3    Fyles, J.W.4
  • 78
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • T. Poggio and F. Girosi, "Networks for approximation and learning, " Proceedings of the IEEE, vol. 78, no. 9, pp. 1481-1497, 1990.
    • (1990) Proceedings of the IEEE , vol.78 , Issue.9 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 79
    • 55149088117 scopus 로고    scopus 로고
    • Gaussian process models for computer experiments with qualitative and quantitative factors
    • P. Z. G. Qian, H.Wu, and C. F. J.Wu, "Gaussian process models for computer experiments with qualitative and quantitative factors, " Technometrics, vol. 50, no. 3, pp. 383-396, 2008.
    • (2008) Technometrics , vol.50 , Issue.3 , pp. 383-396
    • Qian, P.Z.G.1    Wu, H.2    Wu, C.F.J.3
  • 80
    • 29144453489 scopus 로고    scopus 로고
    • A unifying view of sparse approximate Gaussian process regression
    • J. Quiñonero-Candela and C. E. Rasmussen, "A unifying view of sparse approximate Gaussian process regression, " Journal of Machine Learning Research, vol. 6, pp. 1939-1959, 2005. (Pubitemid 41798128)
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1939-1959
    • Quinonero-Candela, J.1    Rasmussen, C.E.2
  • 81
    • 24144465874 scopus 로고    scopus 로고
    • Analysis of some methods for Reduced Rank Gaussian Process Regression
    • Switching and Learning in Feedback Systems - European Summer School on Multi-Agent Control
    • J. Quiñonero-Candela and C. E. Rasmussen, "Analysis of some methods for reduced rank Gaussian process regression, " in Lecture Notes in Computer Science, (R. Murray-Smith and R. Shorten, eds.), pp. 98-127, Springer, 2005. (Pubitemid 41228755)
    • (2005) Lecture Notes in Computer Science , vol.3355 , pp. 98-127
    • Quinonero-Candela, J.1    Rasmussen, C.E.2
  • 83
    • 64249139703 scopus 로고    scopus 로고
    • Efficient emulators for multivariate deterministic functions
    • J. Rougier, "Efficient emulators for multivariate deterministic functions, " Journal of Computational and Graphical Statistics, vol. 17, no. 4, pp. 827-834, 2008.
    • (2008) Journal of Computational and Graphical Statistics , vol.17 , Issue.4 , pp. 827-834
    • Rougier, J.1
  • 87
    • 84865131152 scopus 로고    scopus 로고
    • A generalized representer theorem
    • Computational Learning Theory
    • B. Schšlkopf, R. Herbrich, and A. J. Smola, "A generalized representer theorem, " in Proceedings of the Annual Conference on Computational Learning Theory (COLT), pp. 416-426, 2001. (Pubitemid 33312837)
    • (2001) Lecture Notes in Computer Science , Issue.2111 , pp. 416-426
    • Scholkopf, B.1    Herbrich, R.2    Smola, A.J.3
  • 88
    • 51649141644 scopus 로고
    • Sous-espaces hilbertiens d'espaces vectoriels topologiques et noyaux associés (noyaux reproduisants)
    • L. Schwartz, "Sous-espaces hilbertiens d'espaces vectoriels topologiques et noyaux associés (noyaux reproduisants), " Journal d'Analyse Mathématique, vol. 13, pp. 115-256, 1964.
    • (1964) Journal d'Analyse Mathématique , vol.13 , pp. 115-256
    • Schwartz, L.1
  • 91
    • 78049323760 scopus 로고    scopus 로고
    • Technical Report, Cornell University, Preprint
    • D. Sheldon, "Graphical multi-task learning, " Technical Report, Cornell University, Preprint, 2008.
    • (2008) Graphical Multi-task Learning
    • Sheldon, D.1
  • 92
    • 24144438211 scopus 로고    scopus 로고
    • Filtered Gaussian processes for learning with large data-sets
    • Switching and Learning in Feedback Systems - European Summer School on Multi-Agent Control
    • J. Q. Shi, R. Murray-Smith, D. Titterington, and B. Pearlmutter, "Learning with large data sets using filtered Gaussian process priors, " in Proceedings of the Hamilton Summer School on Switching and Learning in Feedback Systems, (R. Murray-Smith and R. Shorten, eds.), pp. 128-139, LNCS 3355, Springer- Verlag, 2005. (Pubitemid 41228756)
    • (2005) Lecture Notes in Computer Science , vol.3355 , pp. 128-139
    • Shi, J.Q.1    Murray-Smith, R.2    Titterington, D.M.3    Pearlmutter, B.A.4
  • 93
    • 83855165736 scopus 로고    scopus 로고
    • Bayesian multitask classification with Gaussian process priors
    • G. Skolidis and G. Sanguinetti, "Bayesian multitask classification With Gaussian process priors, " IEEE Transactions on Neural Networks, vol. 22, no. 12, pp. 2011-2021, 2011.
    • (2011) IEEE Transactions on Neural Networks , vol.22 , Issue.12 , pp. 2011-2021
    • Skolidis, G.1    Sanguinetti, G.2
  • 97
    • 85031124575 scopus 로고    scopus 로고
    • Is learning the n-thing any easier than learning the first?
    • (D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, eds.) Cambridge, MA: MIT Press
    • S. Thrun, "Is learning the n-thing any easier than learning the first?, " in Advances in Neural Information Processing Systems (NIPS), vol. 08, (D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, eds.), pp. 640-646, Cambridge, MA: MIT Press, 1996.
    • (1996) Advances in Neural Information Processing Systems (NIPS) 08 , pp. 640-646
    • Thrun, S.1
  • 99
    • 83855162680 scopus 로고    scopus 로고
    • Efficient sampling for Gaussian process inference using control variables
    • (D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, eds.) Cambridge, MA: MIT Press
    • M. Titsias, N. D. Lawrence, and M. Rattray, "Efficient sampling for Gaussian process inference using control variables, " in Advances in Neural Information Processing Systems (NIPS), (D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, eds.), pp. 1681-1688, Cambridge, MA: MIT Press, 2009.
    • (2009) Advances in Neural Information Processing Systems (NIPS) , pp. 1681-1688
    • Titsias, M.1    Lawrence, N.D.2    Rattray, M.3
  • 102
    • 0032525527 scopus 로고    scopus 로고
    • Constructing and fitting models for cokriging and multivariable spatial prediction
    • PII S0378375897001626
    • J. M. Ver Hoef and R. P. Barry, "Constructing and fitting models for cokriging and multivariable spatial prediction, " Journal of Statistical Planning and Inference, vol. 69, pp. 275-294, 1998. (Pubitemid 128182034)
    • (1998) Journal of Statistical Planning and Inference , vol.69 , Issue.2 , pp. 275-294
    • Ver Hoef, J.M.1    Barry, R.P.2
  • 103
    • 3042679820 scopus 로고    scopus 로고
    • Flexible spatial models for kriging and cokriging using moving averages and the fast Fourier Transform (FFT)
    • DOI 10.1198/1061860043498
    • J. M. Ver Hoef, N. Cressie, and R. P. Barry, "Flexible spatial models for kriging and cokriging using moving averages and the Fast Fourier Transform (FFT), " Journal of Computational and Graphical Statistics, vol. 13, no. 2, pp. 265-282, 2004. (Pubitemid 38845885)
    • (2004) Journal of Computational and Graphical Statistics , vol.13 , Issue.2 , pp. 265-282
    • Ver Hoef, J.M.1    Cressie, N.2    Barry, R.P.3
  • 107
    • 84993723115 scopus 로고    scopus 로고
    • A kernel-based spectral model for non-Gaussian spatio-temporal processes
    • C. K. Wikle, "A kernel-based spectral model for non-Gaussian spatio-temporal processes, " Statistical Modelling, vol. 2, pp. 299-314, 2002.
    • (2002) Statistical Modelling , vol.2 , pp. 299-314
    • Wikle, C.K.1
  • 108
    • 0041985115 scopus 로고    scopus 로고
    • Hierarchical Bayesian models for predicting the spread of ecological processes
    • C. K. Wikle, "Hierarchical Bayesian models for predicting the spread of ecological processes, " Ecology, vol. 84, no. 6, pp. 1382-1394, 2003. (Pubitemid 37435724)
    • (2003) Ecology , vol.84 , Issue.6 , pp. 1382-1394
    • Wikle, C.K.1
  • 114
    • 33947110315 scopus 로고    scopus 로고
    • Maximum-likelihood estimation for multivariate spatial linear coregionalization models
    • DOI 10.1002/env.807
    • H. Zhang, "Maximum-likelihood estimation for multivariate spatial linear coregionalization models, " Environmetrics, vol. 18, pp. 125-139, 2007. (Pubitemid 46395831)
    • (2007) Environmetrics , vol.18 , Issue.2 , pp. 125-139
    • Zhang, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.