-
1
-
-
0000874557
-
Theoretical foundations of the potential function method in pattern recognition learning
-
M. A. Aizerman, É. M. Braverman, and L. I. Rozonoér. Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control, 25:821–837, 1964.
-
(1964)
Automation and Remote Control
, vol.25
, pp. 821-837
-
-
Aizerman, M.A.1
Braverman, É.M.2
Rozonoér, L.I.3
-
3
-
-
0002094343
-
Generalization performance of support vector machines and other pattern classifiers
-
In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Cambridge, MA, MIT Press
-
P. L. Bartlett and J. Shawe-Taylor. Generalization performance of support vector machines and other pattern classifiers. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods — Support Vector Learning, pages 43-54, Cambridge, MA, 1999. MIT Press.
-
(1999)
Advances in Kernel Methods — Support Vector Learning
, pp. 43-54
-
-
Bartlett, P.L.1
Shawe-Taylor, J.2
-
5
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
In D. Haussler, editor, Pittsburgh, PA, July, ACM Press
-
B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin classifiers. In D. Haussler, editor, Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, pages 144–152, Pittsburgh, PA, July 1992. ACM Press.
-
(1992)
Proceedings of the 5Th Annual ACM Workshop on Computational Learning Theory
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
6
-
-
84898936190
-
Algorithmic stability and generalization performance
-
T. K. Leen, T. G. Dietterich, and V. Tresp, editors, MIT Press
-
O. Bousquet and A. Elisseeff. Algorithmic stability and generalization performance. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13. MIT Press, 2001.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
-
-
Bousquet, O.1
Elisseeff, A.2
-
7
-
-
0000541146
-
Asymptotic analysis of penalized likelihood and related estimators
-
D. Cox and F. O’Sullivan. Asymptotic analysis of penalized likelihood and related estimators. Annals of Statistics, 18:1676–1695, 1990.
-
(1990)
Annals of Statistics
, vol.18
, pp. 1676-1695
-
-
Cox, D.1
O’Sullivan, F.2
-
8
-
-
84898947911
-
-
. K. Leen, T. G. Dietterich, and V. Tresp, editors, MIT Press
-
L. Csató and M. Opper. Sparse representation for Gaussian process models. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13. MIT Press, 2001.
-
(2001)
Sparse representation for Gaussian process models
, vol.13
-
-
Csató, L.1
Opper, M.2
-
9
-
-
0141870680
-
Large margin classification using the perceptron algorithm
-
In J. Shavlik, editor, San Francisco, CA, Morgan Kaufmann
-
Y. Freund and R. E. Schapire. Large margin classification using the perceptron algorithm. In J. Shavlik, editor, Machine Learning: Proceedings of the Fifteenth International Conference, San Francisco, CA, 1998. Morgan Kaufmann.
-
(1998)
Machine Learning: Proceedings of the Fifteenth International Conference
-
-
Freund, Y.1
Schapire, R.E.2
-
10
-
-
0000897328
-
The kernel adatron algorithm: A fast and simple learning procedure for support vector machines
-
Morgan Kaufmann Publishers
-
T.-T. Frieß, N. Cristianini, and C. Campbell. The kernel adatron algorithm: A fast and simple learning procedure for support vector machines. In J. Shavlik, editor, 15th International Conf. Machine Learning, pages 188–196. Morgan Kaufmann Publishers, 1998.
-
(1998)
J. Shavlik, Editor, 15Th International Conf. Machine Learning
, pp. 188-196
-
-
Frieß, T.-T.1
Cristianini, N.2
Campbell, C.3
-
12
-
-
0001219859
-
Regularization theory and neural networks architectures
-
F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural networks architectures. Neural Computation, 7(2):219–269, 1995.
-
(1995)
Neural Computation
, vol.7
, Issue.2
, pp. 219-269
-
-
Girosi, F.1
Jones, M.2
Poggio, T.3
-
13
-
-
0008267184
-
-
Technical Report UCSCCRL- 99-10, Computer Science Department, University of California at Santa Cruz
-
D. Haussler. Convolutional kernels on discrete structures. Technical Report UCSCCRL- 99-10, Computer Science Department, University of California at Santa Cruz, 1999.
-
(1999)
Convolutional Kernels on Discrete Structures
-
-
Haussler, D.1
-
14
-
-
0000406385
-
A correspondence between Bayesian estimation on stochastic processes and smoothing by splines
-
G. S. Kimeldorf and G. Wahba. A correspondence between Bayesian estimation on stochastic processes and smoothing by splines. Annals of Mathematical Statistics, 41:495–502, 1970.
-
(1970)
Annals of Mathematical Statistics
, vol.41
, pp. 495-502
-
-
Kimeldorf, G.S.1
Wahba, G.2
-
15
-
-
0015000439
-
Some results on Tchebycheffian spline functions
-
G. S. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions. J. Math. Anal. Applic., 33:82–95, 1971.
-
(1971)
J. Math. Anal. Applic
, vol.33
, pp. 82-95
-
-
Kimeldorf, G.S.1
Wahba, G.2
-
17
-
-
0003357515
-
Maximal margin perceptron
-
In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Cambridge, MA, MIT Press
-
A. Kowalczyk. Maximal margin perceptron. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 75–113, Cambridge, MA, 2000. MIT Press.
-
(2000)
Advances in Large Margin Classifiers
, pp. 75-113
-
-
Kowalczyk, A.1
-
18
-
-
0142139440
-
Text classification using string kernels
-
Technical Report 2000-79, NeuroCOLT, 2000. Published in: T. K. Leen, T. G. Dietterich and V. Tresp (eds.), MIT Press
-
H. Lodhi, J. Shawe-Taylor, N. Cristianini, and C. Watkins: Text classification using string kernels. Technical Report 2000-79, NeuroCOLT, 2000. Published in: T. K. Leen, T. G. Dietterich and V. Tresp (eds.), Advances in Neural Information Processing Systems 13, MIT Press, 2001.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
-
-
Lodhi, H.1
Shawe-Taylor, J.2
Cristianini, N.3
Watkins, C.4
-
21
-
-
0002570938
-
Kernel principal component analysis
-
In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, MIT Press, Cambridge, MA
-
B. Schölkopf, A. Smola, and K.-R. Müller. Kernel principal component analysis. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, pages 327–352. MIT Press, Cambridge, MA, 1999.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 327-352
-
-
Schölkopf, B.1
Smola, A.2
Müller, K.-R.3
-
22
-
-
84898946392
-
Semiparametric support vector and linear programming machines
-
In M. S. Kearns, S. A. Solla, and D. A. Cohn, editors, Cambridge, MA, MIT Press
-
A. Smola, T. Frieß, and B. Schölkopf. Semiparametric support vector and linear programming machines. In M. S. Kearns, S. A. Solla, and D. A. Cohn, editors, Advances in Neural Information ProcessingSystems 11, pages 585–591, Cambridge, MA, 1999. MIT Press.
-
(1999)
Advances in Neural Information Processingsystems
, vol.11
, pp. 585-591
-
-
Smola, A.1
Frieß, T.2
Schölkopf, B.3
-
25
-
-
0001873883
-
Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV
-
In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Cambridge, MA, MIT Press
-
G. Wahba. Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods — Support Vector Learning, pages 69–88, Cambridge, MA, 1999. MIT Press.
-
(1999)
Advances in Kernel Methods — Support Vector Learning
, pp. 69-88
-
-
Wahba, G.1
-
26
-
-
0002531715
-
Dynamic alignment kernels
-
In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Cambridge, MA, MIT Press
-
C. Watkins. Dynamic alignment kernels. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 39–50, Cambridge, MA, 2000. MIT Press.
-
(2000)
Advances in Large Margin Classifiers
, pp. 39-50
-
-
Watkins, C.1
-
27
-
-
0003017575
-
Prediction with Gaussian processes: From linear regression to linear prediction and beyond
-
M. I. Jordan, editor, Kluwer
-
C. K. I. Williams. Prediction with Gaussian processes: From linear regression to linear prediction and beyond. In M. I. Jordan, editor, Learningand Inference in Graphical Models. Kluwer, 1998.
-
Learningand Inference in Graphical Models
, pp. 1998
-
-
Williams, C.K.I.1
|