-
1
-
-
48849115416
-
Reproducing kernels of vector-valued function spaces
-
A. Le Meehaute et al. Eds
-
L. Amodei. Reproducing kernels of vector-valued function spaces. In Proc. of Chamonix, A. Le Meehaute et al. Eds., pages 1-9, 1997.
-
(1997)
Proc. of Chamonix
, pp. 1-9
-
-
Amodei, L.1
-
2
-
-
5844297152
-
Theory of reproducing kernels
-
N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc. 68:337-404, 1950.
-
(1950)
Trans. Amer. Math. Soc
, vol.68
, pp. 337-404
-
-
Aronszajn, N.1
-
6
-
-
48849086653
-
Vector valued reproducing kernel Hilbert spaces of integrable functions and Mercer theorem
-
C. Carmeli, E. De Vito, and A. Toigo. Vector valued reproducing kernel Hilbert spaces of integrable functions and Mercer theorem. Analysis and Applications, 4:377-408, 2006.
-
(2006)
Analysis and Applications
, vol.4
, pp. 377-408
-
-
Carmeli, C.1
De Vito, E.2
Toigo, A.3
-
7
-
-
0036071370
-
On the mathematical foundations of learning
-
F. Cucker and S. Smale. On the mathematical foundations of learning. Bull. Amer. Math. Soc., 39:1-49, 2001.
-
(2001)
Bull. Amer. Math. Soc
, vol.39
, pp. 1-49
-
-
Cucker, F.1
Smale, S.2
-
8
-
-
84879394399
-
Support vector machine soft margin classifiers: Error analysis
-
D. R. Chen, Q. Wu, Y. Ying, and D.X. Zhou. Support vector machine soft margin classifiers: error analysis. Journal of Machine Learning Research, 5:1143-1175, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 1143-1175
-
-
Chen, D.R.1
Wu, Q.2
Ying, Y.3
Zhou, D.X.4
-
9
-
-
0008548569
-
On measurable positive definite operator functions
-
A. Devinatz. On measurable positive definite operator functions. J. Lonon Math. Soc., 35:417-424, 1960.
-
(1960)
J. Lonon Math. Soc
, vol.35
, pp. 417-424
-
-
Devinatz, A.1
-
11
-
-
48849086467
-
-
J. Diestel and J. J. Uhl, Jr. Vector Measures. AMS, Providence (Math Surveys 15), 1977.
-
J. Diestel and J. J. Uhl, Jr. Vector Measures. AMS, Providence (Math Surveys 15), 1977.
-
-
-
-
14
-
-
84864063983
-
A kernel method for the two-sample problem
-
B. Schölkopf, J. Platt and T. Hoffman editors, MIT Press
-
A. Gretton, K.M. Borgwardt, M. Rasch, B. Schölkopf and A.J. Smola. A kernel method for the two-sample problem. In Advances in Neural Information Processing Systems 19, B. Schölkopf, J. Platt and T. Hoffman editors, pages 513-520, MIT Press, 2007.
-
(2007)
Advances in Neural Information Processing Systems 19
, pp. 513-520
-
-
Gretton, A.1
Borgwardt, K.M.2
Rasch, M.3
Schölkopf, B.4
Smola, A.J.5
-
16
-
-
17444417421
-
A density theorem for matrix-valued radial basis functions
-
S. Lowitzsch. A density theorem for matrix-valued radial basis functions. Numerical Algorithms, 39:253-256, 2005.
-
(2005)
Numerical Algorithms
, vol.39
, pp. 253-256
-
-
Lowitzsch, S.1
-
17
-
-
34250122797
-
Interpolation of scattered data: Distances matrices and conditionally positive definite functions
-
C. A. Micchelli, Interpolation of scattered data: distances matrices and conditionally positive definite functions. Constructive Approximation, 2:11-22, 1986.
-
(1986)
Constructive Approximation
, vol.2
, pp. 11-22
-
-
Micchelli, C.A.1
-
19
-
-
14544299611
-
On leaning vector-valued functions
-
C. A. Micchelli and M. Pontil. On leaning vector-valued functions. Neural Computation, 17:177-204, 2005.
-
(2005)
Neural Computation
, vol.17
, pp. 177-204
-
-
Micchelli, C.A.1
Pontil, M.2
-
20
-
-
33847662483
-
Feature space perspectives for learning the kernel
-
C.A. Micchelli and M. Pontil. Feature space perspectives for learning the kernel. Machine Learning, 66:297-319, 2007.
-
(2007)
Machine Learning
, vol.66
, pp. 297-319
-
-
Micchelli, C.A.1
Pontil, M.2
-
21
-
-
48849098587
-
-
C. A. Micchelli, Y. Xu, and P. Ye. Cucker Smale learning theory in Besov spaces. NATO Science Series sub Series III Computer and System Science, 190:47-68, 2003.
-
C. A. Micchelli, Y. Xu, and P. Ye. Cucker Smale learning theory in Besov spaces. NATO Science Series sub Series III Computer and System Science, 190:47-68, 2003.
-
-
-
-
24
-
-
48849102845
-
-
T. Poggio, S. Mukherjee, R. Rifkin, A. Rakhlin, and A. Verri. b. In Uncertainty in Geometric Computations, J. Winkler and M. Niranjan (eds.), Kluwer, 131-141, 2002.
-
T. Poggio, S. Mukherjee, R. Rifkin, A. Rakhlin, and A. Verri. b. In Uncertainty in Geometric Computations, J. Winkler and M. Niranjan (eds.), Kluwer, 131-141, 2002.
-
-
-
-
26
-
-
33947215991
-
Learning equivariant functions with matrix valued kernels
-
M. Reisert and H. Burkhardt. Learning equivariant functions with matrix valued kernels. J. Machine Learning Research, 8:385-408, 2007.
-
(2007)
J. Machine Learning Research
, vol.8
, pp. 385-408
-
-
Reisert, M.1
Burkhardt, H.2
-
29
-
-
84898995949
-
Derivative observations in Gaussian Process models of dynamic Systems
-
S. Becker, S. Thrun and K. Obermayer editors, MIT Press
-
E. Solak, R. Murray-Smith, W.E. Leithead, D.J. Leith and C.E. Rasmussen. Derivative observations in Gaussian Process models of dynamic Systems. In Advances in Neural Information Processing Systems 15, S. Becker, S. Thrun and K. Obermayer editors, pages 1033-1040, MIT Press, 2003.
-
(2003)
Advances in Neural Information Processing Systems 15
, pp. 1033-1040
-
-
Solak, E.1
Murray-Smith, R.2
Leithead, W.E.3
Leith, D.J.4
Rasmussen, C.E.5
-
31
-
-
0010786475
-
On the influence of the kernel on the consistency of support vector machines
-
I. Steinwart. On the influence of the kernel on the consistency of support vector machines. J. Machine Learning Research, 2:67-93, 2001.
-
(2001)
J. Machine Learning Research
, vol.2
, pp. 67-93
-
-
Steinwart, I.1
-
35
-
-
33744769015
-
Density problem and approximation error in learning theory
-
Preprint
-
D. X. Zhou. Density problem and approximation error in learning theory. Preprint, 2003.
-
(2003)
-
-
Zhou, D.X.1
|