메뉴 건너뛰기




Volumn 8, Issue , 2007, Pages 1769-1797

Characterizing the function space for bayesian kernel models

Author keywords

Dirichlet processes; Gaussian processes; Integral operator; L vy processes; Non parametric Bayesian methods; Reproducing kernel Hilbert space

Indexed keywords

GAUSSIAN DISTRIBUTION; IMAGE ANALYSIS; MATHEMATICAL MODELS; MATHEMATICAL OPERATORS; RANDOM PROCESSES;

EID: 34547900221     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (46)

References (60)
  • 1
    • 33845973782 scopus 로고    scopus 로고
    • Lévy Processes and Stochasitic Calculus
    • Cambridge Univ. Press, Cambridge, UK
    • David Applebaum. Lévy Processes and Stochasitic Calculus. Cambridge Studies in Advanced Mathematics. Cambridge Univ. Press, Cambridge, UK, 2004.
    • (2004) Cambridge Studies in Advanced Mathematics
    • Applebaum, D.1
  • 2
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • Nachman Aronszajn. Theory of reproducing kernels. T. Am. Math. Soc., 686:337-404, 1950.
    • (1950) T. Am. Math. Soc , vol.686 , pp. 337-404
    • Aronszajn, N.1
  • 3
    • 3142725535 scopus 로고    scopus 로고
    • Semi-supervised learning on Riemannian manifolds
    • Mikhail Belkin and Partha Niyogi. Semi-supervised learning on Riemannian manifolds. Machine Learning, 56(1-3):209-239, 2004.
    • (2004) Machine Learning , vol.56 , Issue.1-3 , pp. 209-239
    • Belkin, M.1    Niyogi, P.2
  • 4
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res., 7:2399-2434, 2006.
    • (2006) J. Mach. Learn. Res , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 5
    • 84867186048 scopus 로고    scopus 로고
    • Variational inference for Dirichlet process mixtures
    • 121-143 electronic
    • David M. Blei and Michael I. Jordan. Variational inference for Dirichlet process mixtures. Bayesian Anal., 1(1):121-143 (electronic), 2006.
    • (2006) Bayesian Anal , vol.1 , Issue.1
    • Blei, D.M.1    Jordan, M.I.2
  • 6
  • 7
    • 34547882872 scopus 로고    scopus 로고
    • Bayesian non-linear regression for large p small n problems
    • Under revision
    • Sounak Chakraborty, Malay Ghosh, and Bani K. Mallick. Bayesian non-linear regression for large p small n problems. J. Am. Stat. Assoc., 2005. Under revision.
    • (2005) J. Am. Stat. Assoc
    • Chakraborty, S.1    Ghosh, M.2    Mallick, B.K.3
  • 8
    • 34249753618 scopus 로고
    • Support-vector networks
    • Corinna Cortes and Vladimir N. Vapnik. Support-vector networks. Machine Learning, 20(3):273-297, 1995.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.N.2
  • 10
    • 34547863634 scopus 로고    scopus 로고
    • Carl de Boor and Robert E. Lynch. On splines and their minimum properties. J. Math. Mech., 15:953-969, 1966.
    • Carl de Boor and Robert E. Lynch. On splines and their minimum properties. J. Math. Mech., 15:953-969, 1966.
  • 12
    • 0000087886 scopus 로고
    • Bayesian numerical analysis
    • Shanti S. Gupta and James O. Berger, editors, Springer-Verlag, New York, NY
    • Persi Diaconis. Bayesian numerical analysis. In Shanti S. Gupta and James O. Berger, editors, Statistical decision theory and related topics, IV, volume 1, pages 163-175. Springer-Verlag, New York, NY, 1988.
    • (1988) Statistical decision theory and related topics, IV , vol.1 , pp. 163-175
    • Diaconis, P.1
  • 13
    • 84950937290 scopus 로고
    • Bayesian density estimation and inference using mixtures
    • Michael D. Escobar and Mike West. Bayesian density estimation and inference using mixtures. J. Am. Stat. Assoc., 90:577-588, 1995.
    • (1995) J. Am. Stat. Assoc , vol.90 , pp. 577-588
    • Escobar, M.D.1    West, M.2
  • 15
    • 0000780135 scopus 로고
    • Prior distributions on spaces of probability measures
    • Thomas S. Ferguson. Prior distributions on spaces of probability measures. Ann. Stat., 2:615-629, 1974.
    • (1974) Ann. Stat , vol.2 , pp. 615-629
    • Ferguson, T.S.1
  • 16
    • 0001120413 scopus 로고
    • Bayesian analysis of some nonparametric problems
    • Thomas S. Ferguson. A Bayesian analysis of some nonparametric problems. Ann. Stat., 1:209-230, 1973.
    • (1973) Ann. Stat , vol.1 , pp. 209-230
    • Thomas, S.1    Ferguson, A.2
  • 18
    • 33847339319 scopus 로고    scopus 로고
    • Posterior consistency of Gaussian process prior for nonparametric binary regression
    • Subhashis Ghosal and Anindya Roy. Posterior consistency of Gaussian process prior for nonparametric binary regression. Ann. Statist., 34(5):2413-2429, 2006.
    • (2006) Ann. Statist , vol.34 , Issue.5 , pp. 2413-2429
    • Ghosal, S.1    Roy, A.2
  • 19
    • 0002500486 scopus 로고
    • Sur les problèmes aux dérivées partielles et leur signification physique
    • Jacques Hadamard. Sur les problèmes aux dérivées partielles et leur signification physique. Princeton University Bulletin, pages 49-52, 1902.
    • (1902) Princeton University Bulletin , pp. 49-52
    • Hadamard, J.1
  • 20
    • 0000716144 scopus 로고
    • On linear statistical problems in stochastic processes
    • Jaroslav Hájek. On linear statistical problems in stochastic processes. Czechoslovak Math. J., 12(87):404-444, 1962.
    • (1962) Czechoslovak Math. J , vol.12 , Issue.87 , pp. 404-444
    • Hájek, J.1
  • 21
    • 34547892758 scopus 로고
    • On a property of normal distributions of any stochastic process
    • Jaroslv Hájek. On a property of normal distributions of any stochastic process. Select. Transl. Math. Statist, and Probability, 1:245-252, 1961.
    • (1961) Select. Transl. Math. Statist, and Probability , vol.1 , pp. 245-252
    • Hájek, J.1
  • 23
    • 33645066123 scopus 로고    scopus 로고
    • Conjugacy as a distinctive feature of the Dirichlet process
    • Lancelot F. James, Antonio Lijoa, and Igor Prünster. Conjugacy as a distinctive feature of the Dirichlet process. Scand. J. Stat., 33:105-120, 2005.
    • (2005) Scand. J. Stat , vol.33 , pp. 105-120
    • James, L.F.1    Lijoa, A.2    Prünster, I.3
  • 24
    • 33746111348 scopus 로고    scopus 로고
    • Function estimation in Gaussian noise: Sequence models
    • Iain Johnstone. Function estimation in Gaussian noise: sequence models. Draft of a monograph, 1998.
    • (1998) Draft of a monograph
    • Johnstone, I.1
  • 25
    • 0041086220 scopus 로고
    • The role of reproducing kernel Hilbert spaces in the study of Gaussian processes
    • Gopinath Kallianpur. The role of reproducing kernel Hilbert spaces in the study of Gaussian processes. Advances in Probability and Related Topics, 2:49-83, 1970.
    • (1970) Advances in Probability and Related Topics , vol.2 , pp. 49-83
    • Kallianpur, G.1
  • 27
    • 0000406385 scopus 로고
    • A correspondence between Bayesian estimation on stochastic processes and smoothing by splines
    • George S. Kimeldorf and Grace Wahba. A correspondence between Bayesian estimation on stochastic processes and smoothing by splines. Ann. Math. Statist., 41(2):495-502, 1971.
    • (1971) Ann. Math. Statist , vol.41 , Issue.2 , pp. 495-502
    • Kimeldorf, G.S.1    Wahba, G.2
  • 28
    • 34547855609 scopus 로고    scopus 로고
    • Understanding the use of unlabelled data in predictive modeling
    • To appear
    • Feng Liang, Sayan Mukherjee, and Mike West. Understanding the use of unlabelled data in predictive modeling. Stat. Sci., 2006. To appear.
    • (2006) Stat. Sci
    • Liang, F.1    Mukherjee, S.2    West, M.3
  • 29
    • 34547922908 scopus 로고    scopus 로고
    • Feng Liang, Ming Liao, Kai Mao, Sayan Mukherjee, and Mike West. Non-parametric Bayesian kernel models. Discussion Paper 2007-10, Duke University ISDS, Durham, NC, 2007. URL {emwww.stat.duke.edu/research/papers/}.
    • Feng Liang, Ming Liao, Kai Mao, Sayan Mukherjee, and Mike West. Non-parametric Bayesian kernel models. Discussion Paper 2007-10, Duke University ISDS, Durham, NC, 2007. URL {emwww.stat.duke.edu/research/papers/}.
  • 30
    • 33644940148 scopus 로고    scopus 로고
    • Stochasitic processes with sample paths in reproducing kernel Hilbert spaces
    • Milan N. Lukić and Jay H. Beder. Stochasitic processes with sample paths in reproducing kernel Hilbert spaces. T. Am. Math. Soc., 353(10):3945-3969, 2001.
    • (2001) T. Am. Math. Soc , vol.353 , Issue.10 , pp. 3945-3969
    • Lukić, M.N.1    Beder, J.H.2
  • 31
    • 0032221058 scopus 로고    scopus 로고
    • Estimating mixture of Dirichlet process models
    • Stephen MacEachern and Peter Müller. Estimating mixture of Dirichlet process models. J. Comput. Graph. Stat., pages 223-238, 1998.
    • (1998) J. Comput. Graph. Stat , pp. 223-238
    • MacEachern, S.1    Müller, P.2
  • 32
    • 0003796632 scopus 로고
    • Springer-Verlag, New York, NY
    • Vladimir G. Mazja. Sobolev Spaces. Springer-Verlag, New York, NY, 1985.
    • (1985) Sobolev Spaces
    • Mazja, V.G.1
  • 33
    • 3543010206 scopus 로고    scopus 로고
    • A method for combining inference across related nonparametric Bayesian models
    • Peter Müller, Fernando Quintana, and Gary Rosner. A method for combining inference across related nonparametric Bayesian models. J. Am. Stat. Assoc., pages 735-749, 2004.
    • (2004) J. Am. Stat. Assoc , pp. 735-749
    • Müller, P.1    Quintana, F.2    Rosner, G.3
  • 34
    • 0001500115 scopus 로고
    • Functions of positive and negative type and their connection with the theory of integral equations
    • James Mercer. Functions of positive and negative type and their connection with the theory of integral equations. Philosophical Transactions of the Royal Society, London A, 209:415-446, 1909.
    • (1909) Philosophical Transactions of the Royal Society, London A , vol.209 , pp. 415-446
    • Mercer, J.1
  • 35
    • 0002417069 scopus 로고
    • Design problems for optimal surface interpolation. In Zvi Ziegler, editor
    • Charles A. Micchelli and Grace Wahba. Design problems for optimal surface interpolation. In Zvi Ziegler, editor, Approximation Theory and Applications, pages 329-348, 1981.
    • (1981) Approximation Theory and Applications , pp. 329-348
    • Micchelli, C.A.1    Wahba, G.2
  • 37
    • 0003301456 scopus 로고    scopus 로고
    • Bayesian Learning for Neural Networks
    • Springer, New York
    • Neal, R. M. Bayesian Learning for Neural Networks. Springer, New York, 1996. Lecture Notes in Statistics 118.
    • (1996) Lecture Notes in Statistics , vol.118
    • Neal, R.M.1
  • 38
    • 34547859378 scopus 로고    scopus 로고
    • Emanuel Parzen. Probability density functionals and reproducing kernel Hilbert spaces. In Murray Rosenblatt, editor, Proceedings of the Symposium on Time Series Analysis, pages 155-169, New York, NY, 1963. John Wiley & Sons.
    • Emanuel Parzen. Probability density functionals and reproducing kernel Hilbert spaces. In Murray Rosenblatt, editor, Proceedings of the Symposium on Time Series Analysis, pages 155-169, New York, NY, 1963. John Wiley & Sons.
  • 39
    • 0025056697 scopus 로고
    • Regularization algorithms for learning that are equivalent to multilayer networks
    • Tomaso Poggio and Federico Girosi. Regularization algorithms for learning that are equivalent to multilayer networks. Science, 247:978-982, 1990.
    • (1990) Science , vol.247 , pp. 978-982
    • Poggio, T.1    Girosi, F.2
  • 40
    • 1842420581 scopus 로고    scopus 로고
    • General conditions for predictivity in learning theory
    • Tomaso Poggio, Ryan M. Rifkin, Sayan Mukherjee, and Partha Niyogi. General conditions for predictivity in learning theory. Nature, 428:419-422, 2004.
    • (2004) Nature , vol.428 , pp. 419-422
    • Poggio, T.1    Rifkin, R.M.2    Mukherjee, S.3    Niyogi, P.4
  • 45
    • 0001878701 scopus 로고
    • Positive definite functions on spheres
    • Isaac J. Schoenberg. Positive definite functions on spheres. Duke Mathematics Journal, 9:96-108, 1942.
    • (1942) Duke Mathematics Journal , vol.9 , pp. 96-108
    • Schoenberg, I.J.1
  • 47
    • 0036163572 scopus 로고    scopus 로고
    • Bayesian methods for support vector machines: Evidence and predictive class probabilities
    • Peter Sollich. Bayesian methods for support vector machines: Evidence and predictive class probabilities. Machine Learning, 46(1-3):21-52, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 21-52
    • Sollich, P.1
  • 48
    • 0001300994 scopus 로고
    • Solution of incorrectly formulated problems and the regularization method
    • Andrei Nikolaevich Tikhonov. Solution of incorrectly formulated problems and the regularization method. Soviet Doklady, 4:1035-1038, 1963.
    • (1963) Soviet Doklady , vol.4 , pp. 1035-1038
    • Nikolaevich Tikhonov, A.1
  • 49
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Michael E. Tipping. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res., 1:211-244, 2001.
    • (2001) J. Mach. Learn. Res , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 50
    • 61549092001 scopus 로고    scopus 로고
    • Discussion Paper 2006-08, Duke University ISDS, Durham, NC, URL
    • Chong Tu, Merlise A. Clyde, and Robert L. Wolpert. Lévy adaptive regression kernels. Discussion Paper 2006-08, Duke University ISDS, Durham, NC, 2006. URL http://www.stat.duke.edu/research/papers/.
    • (2006) Lévy adaptive regression kernels
    • Tu, C.1    Clyde, M.A.2    Wolpert, R.L.3
  • 52
    • 0003241883 scopus 로고
    • Splines Models for Observational Data
    • of, SIAM, Philadelphia, PA
    • Grace Wahba. Splines Models for Observational Data, volume 59 of Series in Applied Mathematics. SIAM, Philadelphia, PA, 1990.
    • (1990) Series in Applied Mathematics , vol.59
    • Wahba, G.1
  • 53
    • 0001873883 scopus 로고    scopus 로고
    • Support vector machines, reproducing kernel Hilbert spaces, and randomized GACV
    • Bernhard Schölkopf, Alexander J. Smola, Christopher J. C. Burges, and Rosanna Soentpiet, editors, MIT Press, Cambridge, MA
    • Grace Wahba. Support vector machines, reproducing kernel Hilbert spaces, and randomized GACV. In Bernhard Schölkopf, Alexander J. Smola, Christopher J. C. Burges, and Rosanna Soentpiet, editors, Advances in Kernel Methods: Support Vector Learning, pages 69-88. MIT Press, Cambridge, MA, 1999.
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 69-88
    • Wahba, G.1
  • 56
    • 10844257519 scopus 로고    scopus 로고
    • Reflecting uncertainty in inverse problems: A Bayesian solution using Lévy processes
    • Robert L. Wolpert and Katja Ickstadt. Reflecting uncertainty in inverse problems: A Bayesian solution using Lévy processes. Inverse Problems, 20(6):1759-1771, 2004.
    • (2004) Inverse Problems , vol.20 , Issue.6 , pp. 1759-1771
    • Wolpert, R.L.1    Ickstadt, K.2
  • 57
    • 34547923298 scopus 로고    scopus 로고
    • Robert L. Wolpert, Katja Ickstadt, and Martin Bøgsted Hansen. A nonparametric Bayesian approach to inverse problems (with discussion). In José Miguel Bernardo, Maria Jesus Bayarri, James O. Berger, A. Phillip Dawid, David Heckerman, Adrian F. M. Smith, and Mike West, editors, Bayesian Statistics 7, pages 403-418, Oxford, UK, 2003. Oxford Univ. Press. ISBN 0-19-852615-6.
    • Robert L. Wolpert, Katja Ickstadt, and Martin Bøgsted Hansen. A nonparametric Bayesian approach to inverse problems (with discussion). In José Miguel Bernardo, Maria Jesus Bayarri, James O. Berger, A. Phillip Dawid, David Heckerman, Adrian F. M. Smith, and Mike West, editors, Bayesian Statistics 7, pages 403-418, Oxford, UK, 2003. Oxford Univ. Press. ISBN 0-19-852615-6.
  • 59
    • 34250719220 scopus 로고    scopus 로고
    • Bayesian multi-population haplotype inference via a hierarchical Dirichlet process mixture
    • William Cohen and Andrew Moore, editors, Pittsburgh, PA, New York, NY, ACM Press. URL
    • rd International Conference (ICML 2006), Pittsburgh, PA, New York, NY, 2006. ACM Press. URL http://www.icml2006.org/icml2006/technical/accepted.html.
    • (2006) rd International Conference (ICML 2006)
    • Xing, E.P.1    Sohn, K.2    Jordan, M.I.3    Teh, Y.4
  • 60
    • 0038105204 scopus 로고    scopus 로고
    • Capacity of reproducing kernel spaces in learning theory
    • Ding-Xuan Zhou. Capacity of reproducing kernel spaces in learning theory. IEEE T. Inform. Theory, 49:1743-1752, 2003.
    • (2003) IEEE T. Inform. Theory , vol.49 , pp. 1743-1752
    • Zhou, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.