-
1
-
-
33845973782
-
Lévy Processes and Stochasitic Calculus
-
Cambridge Univ. Press, Cambridge, UK
-
David Applebaum. Lévy Processes and Stochasitic Calculus. Cambridge Studies in Advanced Mathematics. Cambridge Univ. Press, Cambridge, UK, 2004.
-
(2004)
Cambridge Studies in Advanced Mathematics
-
-
Applebaum, D.1
-
2
-
-
5844297152
-
Theory of reproducing kernels
-
Nachman Aronszajn. Theory of reproducing kernels. T. Am. Math. Soc., 686:337-404, 1950.
-
(1950)
T. Am. Math. Soc
, vol.686
, pp. 337-404
-
-
Aronszajn, N.1
-
3
-
-
3142725535
-
Semi-supervised learning on Riemannian manifolds
-
Mikhail Belkin and Partha Niyogi. Semi-supervised learning on Riemannian manifolds. Machine Learning, 56(1-3):209-239, 2004.
-
(2004)
Machine Learning
, vol.56
, Issue.1-3
, pp. 209-239
-
-
Belkin, M.1
Niyogi, P.2
-
4
-
-
33750729556
-
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
-
Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res., 7:2399-2434, 2006.
-
(2006)
J. Mach. Learn. Res
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
5
-
-
84867186048
-
Variational inference for Dirichlet process mixtures
-
121-143 electronic
-
David M. Blei and Michael I. Jordan. Variational inference for Dirichlet process mixtures. Bayesian Anal., 1(1):121-143 (electronic), 2006.
-
(2006)
Bayesian Anal
, vol.1
, Issue.1
-
-
Blei, D.M.1
Jordan, M.I.2
-
7
-
-
34547882872
-
Bayesian non-linear regression for large p small n problems
-
Under revision
-
Sounak Chakraborty, Malay Ghosh, and Bani K. Mallick. Bayesian non-linear regression for large p small n problems. J. Am. Stat. Assoc., 2005. Under revision.
-
(2005)
J. Am. Stat. Assoc
-
-
Chakraborty, S.1
Ghosh, M.2
Mallick, B.K.3
-
8
-
-
34249753618
-
Support-vector networks
-
Corinna Cortes and Vladimir N. Vapnik. Support-vector networks. Machine Learning, 20(3):273-297, 1995.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.N.2
-
10
-
-
34547863634
-
-
Carl de Boor and Robert E. Lynch. On splines and their minimum properties. J. Math. Mech., 15:953-969, 1966.
-
Carl de Boor and Robert E. Lynch. On splines and their minimum properties. J. Math. Mech., 15:953-969, 1966.
-
-
-
-
12
-
-
0000087886
-
Bayesian numerical analysis
-
Shanti S. Gupta and James O. Berger, editors, Springer-Verlag, New York, NY
-
Persi Diaconis. Bayesian numerical analysis. In Shanti S. Gupta and James O. Berger, editors, Statistical decision theory and related topics, IV, volume 1, pages 163-175. Springer-Verlag, New York, NY, 1988.
-
(1988)
Statistical decision theory and related topics, IV
, vol.1
, pp. 163-175
-
-
Diaconis, P.1
-
13
-
-
84950937290
-
Bayesian density estimation and inference using mixtures
-
Michael D. Escobar and Mike West. Bayesian density estimation and inference using mixtures. J. Am. Stat. Assoc., 90:577-588, 1995.
-
(1995)
J. Am. Stat. Assoc
, vol.90
, pp. 577-588
-
-
Escobar, M.D.1
West, M.2
-
15
-
-
0000780135
-
Prior distributions on spaces of probability measures
-
Thomas S. Ferguson. Prior distributions on spaces of probability measures. Ann. Stat., 2:615-629, 1974.
-
(1974)
Ann. Stat
, vol.2
, pp. 615-629
-
-
Ferguson, T.S.1
-
16
-
-
0001120413
-
Bayesian analysis of some nonparametric problems
-
Thomas S. Ferguson. A Bayesian analysis of some nonparametric problems. Ann. Stat., 1:209-230, 1973.
-
(1973)
Ann. Stat
, vol.1
, pp. 209-230
-
-
Thomas, S.1
Ferguson, A.2
-
18
-
-
33847339319
-
Posterior consistency of Gaussian process prior for nonparametric binary regression
-
Subhashis Ghosal and Anindya Roy. Posterior consistency of Gaussian process prior for nonparametric binary regression. Ann. Statist., 34(5):2413-2429, 2006.
-
(2006)
Ann. Statist
, vol.34
, Issue.5
, pp. 2413-2429
-
-
Ghosal, S.1
Roy, A.2
-
19
-
-
0002500486
-
Sur les problèmes aux dérivées partielles et leur signification physique
-
Jacques Hadamard. Sur les problèmes aux dérivées partielles et leur signification physique. Princeton University Bulletin, pages 49-52, 1902.
-
(1902)
Princeton University Bulletin
, pp. 49-52
-
-
Hadamard, J.1
-
20
-
-
0000716144
-
On linear statistical problems in stochastic processes
-
Jaroslav Hájek. On linear statistical problems in stochastic processes. Czechoslovak Math. J., 12(87):404-444, 1962.
-
(1962)
Czechoslovak Math. J
, vol.12
, Issue.87
, pp. 404-444
-
-
Hájek, J.1
-
21
-
-
34547892758
-
On a property of normal distributions of any stochastic process
-
Jaroslv Hájek. On a property of normal distributions of any stochastic process. Select. Transl. Math. Statist, and Probability, 1:245-252, 1961.
-
(1961)
Select. Transl. Math. Statist, and Probability
, vol.1
, pp. 245-252
-
-
Hájek, J.1
-
23
-
-
33645066123
-
Conjugacy as a distinctive feature of the Dirichlet process
-
Lancelot F. James, Antonio Lijoa, and Igor Prünster. Conjugacy as a distinctive feature of the Dirichlet process. Scand. J. Stat., 33:105-120, 2005.
-
(2005)
Scand. J. Stat
, vol.33
, pp. 105-120
-
-
James, L.F.1
Lijoa, A.2
Prünster, I.3
-
24
-
-
33746111348
-
Function estimation in Gaussian noise: Sequence models
-
Iain Johnstone. Function estimation in Gaussian noise: sequence models. Draft of a monograph, 1998.
-
(1998)
Draft of a monograph
-
-
Johnstone, I.1
-
25
-
-
0041086220
-
The role of reproducing kernel Hilbert spaces in the study of Gaussian processes
-
Gopinath Kallianpur. The role of reproducing kernel Hilbert spaces in the study of Gaussian processes. Advances in Probability and Related Topics, 2:49-83, 1970.
-
(1970)
Advances in Probability and Related Topics
, vol.2
, pp. 49-83
-
-
Kallianpur, G.1
-
27
-
-
0000406385
-
A correspondence between Bayesian estimation on stochastic processes and smoothing by splines
-
George S. Kimeldorf and Grace Wahba. A correspondence between Bayesian estimation on stochastic processes and smoothing by splines. Ann. Math. Statist., 41(2):495-502, 1971.
-
(1971)
Ann. Math. Statist
, vol.41
, Issue.2
, pp. 495-502
-
-
Kimeldorf, G.S.1
Wahba, G.2
-
28
-
-
34547855609
-
Understanding the use of unlabelled data in predictive modeling
-
To appear
-
Feng Liang, Sayan Mukherjee, and Mike West. Understanding the use of unlabelled data in predictive modeling. Stat. Sci., 2006. To appear.
-
(2006)
Stat. Sci
-
-
Liang, F.1
Mukherjee, S.2
West, M.3
-
29
-
-
34547922908
-
-
Feng Liang, Ming Liao, Kai Mao, Sayan Mukherjee, and Mike West. Non-parametric Bayesian kernel models. Discussion Paper 2007-10, Duke University ISDS, Durham, NC, 2007. URL {emwww.stat.duke.edu/research/papers/}.
-
Feng Liang, Ming Liao, Kai Mao, Sayan Mukherjee, and Mike West. Non-parametric Bayesian kernel models. Discussion Paper 2007-10, Duke University ISDS, Durham, NC, 2007. URL {emwww.stat.duke.edu/research/papers/}.
-
-
-
-
30
-
-
33644940148
-
Stochasitic processes with sample paths in reproducing kernel Hilbert spaces
-
Milan N. Lukić and Jay H. Beder. Stochasitic processes with sample paths in reproducing kernel Hilbert spaces. T. Am. Math. Soc., 353(10):3945-3969, 2001.
-
(2001)
T. Am. Math. Soc
, vol.353
, Issue.10
, pp. 3945-3969
-
-
Lukić, M.N.1
Beder, J.H.2
-
31
-
-
0032221058
-
Estimating mixture of Dirichlet process models
-
Stephen MacEachern and Peter Müller. Estimating mixture of Dirichlet process models. J. Comput. Graph. Stat., pages 223-238, 1998.
-
(1998)
J. Comput. Graph. Stat
, pp. 223-238
-
-
MacEachern, S.1
Müller, P.2
-
32
-
-
0003796632
-
-
Springer-Verlag, New York, NY
-
Vladimir G. Mazja. Sobolev Spaces. Springer-Verlag, New York, NY, 1985.
-
(1985)
Sobolev Spaces
-
-
Mazja, V.G.1
-
33
-
-
3543010206
-
A method for combining inference across related nonparametric Bayesian models
-
Peter Müller, Fernando Quintana, and Gary Rosner. A method for combining inference across related nonparametric Bayesian models. J. Am. Stat. Assoc., pages 735-749, 2004.
-
(2004)
J. Am. Stat. Assoc
, pp. 735-749
-
-
Müller, P.1
Quintana, F.2
Rosner, G.3
-
34
-
-
0001500115
-
Functions of positive and negative type and their connection with the theory of integral equations
-
James Mercer. Functions of positive and negative type and their connection with the theory of integral equations. Philosophical Transactions of the Royal Society, London A, 209:415-446, 1909.
-
(1909)
Philosophical Transactions of the Royal Society, London A
, vol.209
, pp. 415-446
-
-
Mercer, J.1
-
35
-
-
0002417069
-
Design problems for optimal surface interpolation. In Zvi Ziegler, editor
-
Charles A. Micchelli and Grace Wahba. Design problems for optimal surface interpolation. In Zvi Ziegler, editor, Approximation Theory and Applications, pages 329-348, 1981.
-
(1981)
Approximation Theory and Applications
, pp. 329-348
-
-
Micchelli, C.A.1
Wahba, G.2
-
36
-
-
0038237368
-
Estimating dataset size requirements for classifying DNA Microarray data
-
Sayan Mukherjee, Pablo Tamayo, Simon Rogers, Ryan M. Rifkin, Anna Engle, Colin Campbell, Todd R. Golub, and Jill P. Mesirov. Estimating dataset size requirements for classifying DNA Microarray data. Journal of Computational Biology, 10:119-143, 2003.
-
(2003)
Journal of Computational Biology
, vol.10
, pp. 119-143
-
-
Mukherjee, S.1
Tamayo, P.2
Rogers, S.3
Rifkin, R.M.4
Engle, A.5
Campbell, C.6
Golub, T.R.7
Mesirov, J.P.8
-
37
-
-
0003301456
-
Bayesian Learning for Neural Networks
-
Springer, New York
-
Neal, R. M. Bayesian Learning for Neural Networks. Springer, New York, 1996. Lecture Notes in Statistics 118.
-
(1996)
Lecture Notes in Statistics
, vol.118
-
-
Neal, R.M.1
-
38
-
-
34547859378
-
-
Emanuel Parzen. Probability density functionals and reproducing kernel Hilbert spaces. In Murray Rosenblatt, editor, Proceedings of the Symposium on Time Series Analysis, pages 155-169, New York, NY, 1963. John Wiley & Sons.
-
Emanuel Parzen. Probability density functionals and reproducing kernel Hilbert spaces. In Murray Rosenblatt, editor, Proceedings of the Symposium on Time Series Analysis, pages 155-169, New York, NY, 1963. John Wiley & Sons.
-
-
-
-
39
-
-
0025056697
-
Regularization algorithms for learning that are equivalent to multilayer networks
-
Tomaso Poggio and Federico Girosi. Regularization algorithms for learning that are equivalent to multilayer networks. Science, 247:978-982, 1990.
-
(1990)
Science
, vol.247
, pp. 978-982
-
-
Poggio, T.1
Girosi, F.2
-
40
-
-
1842420581
-
General conditions for predictivity in learning theory
-
Tomaso Poggio, Ryan M. Rifkin, Sayan Mukherjee, and Partha Niyogi. General conditions for predictivity in learning theory. Nature, 428:419-422, 2004.
-
(2004)
Nature
, vol.428
, pp. 419-422
-
-
Poggio, T.1
Rifkin, R.M.2
Mukherjee, S.3
Niyogi, P.4
-
41
-
-
0347201147
-
Multiclass cancer diagnosis using tumor gene expression signatures
-
Sridhar Ramaswamy, Pablo Tamayo, Ryan M. Rifkin, Sayan Mukherjee, Chen-Hsiang Yeang, Michael Angelo, Christine Ladd, Michael Reich, Eva Latulippe, Jill P. Mesirov, Tomaso Poggio, William Gerald, Massimo Loda, Eric S. Lander, and Todd R. Golub. Multiclass cancer diagnosis using tumor gene expression signatures. Proc Nat. Aca. Sci., 98:149-54, 2001.
-
(2001)
Proc Nat. Aca. Sci
, vol.98
, pp. 149-154
-
-
Ramaswamy, S.1
Tamayo, P.2
Rifkin, R.M.3
Mukherjee, S.4
Yeang, C.5
Angelo, M.6
Ladd, C.7
Reich, M.8
Latulippe, E.9
Mesirov, J.P.10
Poggio, T.11
Gerald, W.12
Loda, M.13
Lander, E.S.14
Golub, T.R.15
-
43
-
-
0003617670
-
-
John Wiley & Sons, New York, NY, ISBN 0-471-91482-7
-
L. Chris G. Rogers and David Williams. Diffusions, Markov Processes, and Martingales, volume 2. John Wiley & Sons, New York, NY, 1987. ISBN 0-471-91482-7.
-
(1987)
Diffusions, Markov Processes, and Martingales
, vol.2
-
-
Chris, L.1
Rogers, G.2
Williams, D.3
-
44
-
-
0003408420
-
-
MIT Press, Cambridge, MA
-
Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, 2001.
-
(2001)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
-
-
Schölkopf, B.1
Smola, A.J.2
-
45
-
-
0001878701
-
Positive definite functions on spheres
-
Isaac J. Schoenberg. Positive definite functions on spheres. Duke Mathematics Journal, 9:96-108, 1942.
-
(1942)
Duke Mathematics Journal
, vol.9
, pp. 96-108
-
-
Schoenberg, I.J.1
-
47
-
-
0036163572
-
Bayesian methods for support vector machines: Evidence and predictive class probabilities
-
Peter Sollich. Bayesian methods for support vector machines: Evidence and predictive class probabilities. Machine Learning, 46(1-3):21-52, 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 21-52
-
-
Sollich, P.1
-
48
-
-
0001300994
-
Solution of incorrectly formulated problems and the regularization method
-
Andrei Nikolaevich Tikhonov. Solution of incorrectly formulated problems and the regularization method. Soviet Doklady, 4:1035-1038, 1963.
-
(1963)
Soviet Doklady
, vol.4
, pp. 1035-1038
-
-
Nikolaevich Tikhonov, A.1
-
49
-
-
0001224048
-
Sparse Bayesian learning and the relevance vector machine
-
Michael E. Tipping. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res., 1:211-244, 2001.
-
(2001)
J. Mach. Learn. Res
, vol.1
, pp. 211-244
-
-
Tipping, M.E.1
-
50
-
-
61549092001
-
-
Discussion Paper 2006-08, Duke University ISDS, Durham, NC, URL
-
Chong Tu, Merlise A. Clyde, and Robert L. Wolpert. Lévy adaptive regression kernels. Discussion Paper 2006-08, Duke University ISDS, Durham, NC, 2006. URL http://www.stat.duke.edu/research/papers/.
-
(2006)
Lévy adaptive regression kernels
-
-
Tu, C.1
Clyde, M.A.2
Wolpert, R.L.3
-
52
-
-
0003241883
-
Splines Models for Observational Data
-
of, SIAM, Philadelphia, PA
-
Grace Wahba. Splines Models for Observational Data, volume 59 of Series in Applied Mathematics. SIAM, Philadelphia, PA, 1990.
-
(1990)
Series in Applied Mathematics
, vol.59
-
-
Wahba, G.1
-
53
-
-
0001873883
-
Support vector machines, reproducing kernel Hilbert spaces, and randomized GACV
-
Bernhard Schölkopf, Alexander J. Smola, Christopher J. C. Burges, and Rosanna Soentpiet, editors, MIT Press, Cambridge, MA
-
Grace Wahba. Support vector machines, reproducing kernel Hilbert spaces, and randomized GACV. In Bernhard Schölkopf, Alexander J. Smola, Christopher J. C. Burges, and Rosanna Soentpiet, editors, Advances in Kernel Methods: Support Vector Learning, pages 69-88. MIT Press, Cambridge, MA, 1999.
-
(1999)
Advances in Kernel Methods: Support Vector Learning
, pp. 69-88
-
-
Wahba, G.1
-
56
-
-
10844257519
-
Reflecting uncertainty in inverse problems: A Bayesian solution using Lévy processes
-
Robert L. Wolpert and Katja Ickstadt. Reflecting uncertainty in inverse problems: A Bayesian solution using Lévy processes. Inverse Problems, 20(6):1759-1771, 2004.
-
(2004)
Inverse Problems
, vol.20
, Issue.6
, pp. 1759-1771
-
-
Wolpert, R.L.1
Ickstadt, K.2
-
57
-
-
34547923298
-
-
Robert L. Wolpert, Katja Ickstadt, and Martin Bøgsted Hansen. A nonparametric Bayesian approach to inverse problems (with discussion). In José Miguel Bernardo, Maria Jesus Bayarri, James O. Berger, A. Phillip Dawid, David Heckerman, Adrian F. M. Smith, and Mike West, editors, Bayesian Statistics 7, pages 403-418, Oxford, UK, 2003. Oxford Univ. Press. ISBN 0-19-852615-6.
-
Robert L. Wolpert, Katja Ickstadt, and Martin Bøgsted Hansen. A nonparametric Bayesian approach to inverse problems (with discussion). In José Miguel Bernardo, Maria Jesus Bayarri, James O. Berger, A. Phillip Dawid, David Heckerman, Adrian F. M. Smith, and Mike West, editors, Bayesian Statistics 7, pages 403-418, Oxford, UK, 2003. Oxford Univ. Press. ISBN 0-19-852615-6.
-
-
-
-
58
-
-
14344265816
-
Bayesian haplotype inference via the Dirichlet process
-
Carla E. Brodley, editor, New York, NY, ACM Press. URL
-
st International Conference (ICML 2004), Banff, Canada, New York, NY, 2004. ACM Press. URL http://www.aicml.cs.ualberta.ca/_banff04/icml/pages/accepted.htm.
-
(2004)
st International Conference (ICML 2004), Banff, Canada
-
-
Xing, E.P.1
Sharan, R.2
Jordan, M.I.3
-
59
-
-
34250719220
-
Bayesian multi-population haplotype inference via a hierarchical Dirichlet process mixture
-
William Cohen and Andrew Moore, editors, Pittsburgh, PA, New York, NY, ACM Press. URL
-
rd International Conference (ICML 2006), Pittsburgh, PA, New York, NY, 2006. ACM Press. URL http://www.icml2006.org/icml2006/technical/accepted.html.
-
(2006)
rd International Conference (ICML 2006)
-
-
Xing, E.P.1
Sohn, K.2
Jordan, M.I.3
Teh, Y.4
-
60
-
-
0038105204
-
Capacity of reproducing kernel spaces in learning theory
-
Ding-Xuan Zhou. Capacity of reproducing kernel spaces in learning theory. IEEE T. Inform. Theory, 49:1743-1752, 2003.
-
(2003)
IEEE T. Inform. Theory
, vol.49
, pp. 1743-1752
-
-
Zhou, D.1
|