-
2
-
-
84862602372
-
Semiparametric latent factor models
-
Robert G. Cowell and Zoubin Ghahramani, editors Society for Artificial Intelligence and Statistics, January
-
Yee Whye Teh, Matthias Seeger, and Michael I. Jordan. Semiparametric latent factor models. In Robert G. Cowell and Zoubin Ghahramani, editors, Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics, pages 333-340. Society for Artificial Intelligence and Statistics, January 2005.
-
(2005)
Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics
, pp. 333-340
-
-
Teh, Y.W.1
Seeger, M.2
Jordan, M.I.3
-
3
-
-
56449091254
-
Kernel multi-task learning using task-specific features
-
Marina Meila and Xiaotong Shen, editors Omni Press, March
-
Edwin V. Bonilla, Felix V. Agakov, and Christopher K. I. Williams. Kernel Multi-task Learning using Task-specific Features. In Marina Meila and Xiaotong Shen, editors, Proceedings of the 11th International Conference on Artificial Intelligence and Statistics. Omni Press, March 2007.
-
(2007)
Proceedings of the 11th International Conference on Artificial Intelligence and Statistics
-
-
Bonilla, E.V.1
Agakov, F.V.2
Williams, C.K.I.3
-
4
-
-
84864069510
-
Stochastic relational models for discriminative link prediction
-
B. Schölkopf, J. Platt, and T. Hofmann, editors Cambridge, MA MIT Press
-
Kai Yu, Wei Chu, Shipeng Yu, Volker Tresp, and Zhao Xu. Stochastic Relational Models for Discriminative Link Prediction. In B. Schölkopf, J. Platt, and T. Hofmann, editors, Advances in Neural Information Processing Systems 19, Cambridge, MA, 2007. MIT Press.
-
(2007)
Advances in Neural Information Processing Systems
, vol.19
-
-
Yu, K.1
Chu, W.2
Yu, S.3
Tresp, V.4
Xu, Z.5
-
5
-
-
85161977902
-
Multi-task Gaussian process prediction
-
J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors MIT Press, Cambridge, MA
-
Edwin V. Bonilla, Kian Ming A. Chai, and Christopher K.I. Williams. Multi-task Gaussian process prediction. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20. MIT Press, Cambridge, MA, 2008.
-
(2008)
Advances in Neural Information Processing Systems
, vol.20
-
-
Bonilla, E.V.1
Chai, K.M.A.2
Williams, C.K.I.3
-
7
-
-
30744438843
-
Bounds for linear multi-task learning
-
January
-
Andreas Maurer. Bounds for linear multi-task learning. Journal of Machine Learning Research, 7:117-139, January 2006.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 117-139
-
-
Maurer, A.1
-
8
-
-
55149085224
-
A notion of task relatedness yielding provable multiple-task learning guarantees
-
Shai Ben-David and Reba Schuller Borbely. A notion of task relatedness yielding provable multiple-task learning guarantees. Machine Learning, 73(3):273-287, 2008.
-
(2008)
Machine Learning
, vol.73
, Issue.3
, pp. 273-287
-
-
Ben-David, S.1
Borbely, R.S.2
-
9
-
-
0033686947
-
Upper and lower bounds on the learning curve for Gaussian processes
-
Christopher K. I. Williams and Francesco Vivarelli. Upper and lower bounds on the learning curve for Gaussian processes. Machine Learning, 40(1):77-102, 2000.
-
(2000)
Machine Learning
, vol.40
, Issue.1
, pp. 77-102
-
-
Williams, C.K.I.1
Vivarelli, F.2
-
10
-
-
33846487387
-
Multi-task learning for classification with dirichlet process prior
-
January
-
Ya Xue, Xuejun Liao, Lawrence Carin, and Balaji Krishnapuram. Multi-task learning for classification with Dirichlet process prior. Journal of Machine Learning Research, 8:35-63, January 2007.
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 35-63
-
-
Xue, Y.1
Liao, X.2
Carin, L.3
Krishnapuram, B.4
-
13
-
-
0039489976
-
Learning curves for Gaussian process regression: Approximations and bounds
-
Peter Sollich and Anason Halees. Learning curves for Gaussian process regression: Approximations and bounds. Neural Computation, 14(6):1393-1428, 2002.
-
(2002)
Neural Computation
, vol.14
, Issue.6
, pp. 1393-1428
-
-
Sollich, P.1
Halees, A.2
-
17
-
-
0039813137
-
Gaussian regression and optimal finite dimensional linear models
-
Christopher M. Bishop, editor of NATO ASI Series F: Computer and Systems Sciences Springer-Verlag, Berlin
-
Huaiyu Zhu, Christopher K. I. Williams, Richard Rohwer, and Michal Morciniec. Gaussian regression and optimal finite dimensional linear models. In Christopher M. Bishop, editor, Neural Networks and Machine Learning, volume 168 of NATO ASI Series F: Computer and Systems Sciences, pages 167-184. Springer-Verlag, Berlin, 1998.
-
(1998)
Neural Networks and Machine Learning
, vol.168
, pp. 167-184
-
-
Zhu, H.1
Williams, C.K.I.2
Rohwer, R.3
Morciniec, M.4
|