메뉴 건너뛰기




Volumn , Issue , 2009, Pages 279-287

Generalization errors and learning curves for regression with multi-task Gaussian processes

Author keywords

[No Author keywords available]

Indexed keywords

ERRORS; GAUSSIAN DISTRIBUTION;

EID: 78349302239     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (28)

References (18)
  • 2
    • 84862602372 scopus 로고    scopus 로고
    • Semiparametric latent factor models
    • Robert G. Cowell and Zoubin Ghahramani, editors Society for Artificial Intelligence and Statistics, January
    • Yee Whye Teh, Matthias Seeger, and Michael I. Jordan. Semiparametric latent factor models. In Robert G. Cowell and Zoubin Ghahramani, editors, Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics, pages 333-340. Society for Artificial Intelligence and Statistics, January 2005.
    • (2005) Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics , pp. 333-340
    • Teh, Y.W.1    Seeger, M.2    Jordan, M.I.3
  • 4
    • 84864069510 scopus 로고    scopus 로고
    • Stochastic relational models for discriminative link prediction
    • B. Schölkopf, J. Platt, and T. Hofmann, editors Cambridge, MA MIT Press
    • Kai Yu, Wei Chu, Shipeng Yu, Volker Tresp, and Zhao Xu. Stochastic Relational Models for Discriminative Link Prediction. In B. Schölkopf, J. Platt, and T. Hofmann, editors, Advances in Neural Information Processing Systems 19, Cambridge, MA, 2007. MIT Press.
    • (2007) Advances in Neural Information Processing Systems , vol.19
    • Yu, K.1    Chu, W.2    Yu, S.3    Tresp, V.4    Xu, Z.5
  • 5
    • 85161977902 scopus 로고    scopus 로고
    • Multi-task Gaussian process prediction
    • J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors MIT Press, Cambridge, MA
    • Edwin V. Bonilla, Kian Ming A. Chai, and Christopher K.I. Williams. Multi-task Gaussian process prediction. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20. MIT Press, Cambridge, MA, 2008.
    • (2008) Advances in Neural Information Processing Systems , vol.20
    • Bonilla, E.V.1    Chai, K.M.A.2    Williams, C.K.I.3
  • 7
    • 30744438843 scopus 로고    scopus 로고
    • Bounds for linear multi-task learning
    • January
    • Andreas Maurer. Bounds for linear multi-task learning. Journal of Machine Learning Research, 7:117-139, January 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 117-139
    • Maurer, A.1
  • 8
    • 55149085224 scopus 로고    scopus 로고
    • A notion of task relatedness yielding provable multiple-task learning guarantees
    • Shai Ben-David and Reba Schuller Borbely. A notion of task relatedness yielding provable multiple-task learning guarantees. Machine Learning, 73(3):273-287, 2008.
    • (2008) Machine Learning , vol.73 , Issue.3 , pp. 273-287
    • Ben-David, S.1    Borbely, R.S.2
  • 9
    • 0033686947 scopus 로고    scopus 로고
    • Upper and lower bounds on the learning curve for Gaussian processes
    • Christopher K. I. Williams and Francesco Vivarelli. Upper and lower bounds on the learning curve for Gaussian processes. Machine Learning, 40(1):77-102, 2000.
    • (2000) Machine Learning , vol.40 , Issue.1 , pp. 77-102
    • Williams, C.K.I.1    Vivarelli, F.2
  • 10
    • 33846487387 scopus 로고    scopus 로고
    • Multi-task learning for classification with dirichlet process prior
    • January
    • Ya Xue, Xuejun Liao, Lawrence Carin, and Balaji Krishnapuram. Multi-task learning for classification with Dirichlet process prior. Journal of Machine Learning Research, 8:35-63, January 2007.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 35-63
    • Xue, Y.1    Liao, X.2    Carin, L.3    Krishnapuram, B.4
  • 13
    • 0039489976 scopus 로고    scopus 로고
    • Learning curves for Gaussian process regression: Approximations and bounds
    • Peter Sollich and Anason Halees. Learning curves for Gaussian process regression: Approximations and bounds. Neural Computation, 14(6):1393-1428, 2002.
    • (2002) Neural Computation , vol.14 , Issue.6 , pp. 1393-1428
    • Sollich, P.1    Halees, A.2
  • 17
    • 0039813137 scopus 로고    scopus 로고
    • Gaussian regression and optimal finite dimensional linear models
    • Christopher M. Bishop, editor of NATO ASI Series F: Computer and Systems Sciences Springer-Verlag, Berlin
    • Huaiyu Zhu, Christopher K. I. Williams, Richard Rohwer, and Michal Morciniec. Gaussian regression and optimal finite dimensional linear models. In Christopher M. Bishop, editor, Neural Networks and Machine Learning, volume 168 of NATO ASI Series F: Computer and Systems Sciences, pages 167-184. Springer-Verlag, Berlin, 1998.
    • (1998) Neural Networks and Machine Learning , vol.168 , pp. 167-184
    • Zhu, H.1    Williams, C.K.I.2    Rohwer, R.3    Morciniec, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.