메뉴 건너뛰기




Volumn 3355, Issue , 2005, Pages 128-139

Filtered Gaussian processes for learning with large data-sets

Author keywords

Filtering transformation; Gaussian process regression model; Karhunen Loeve expansion; Kernel based non parametric models; Principal component analysis

Indexed keywords

COMPUTATIONAL COMPLEXITY; DATA REDUCTION; PRINCIPAL COMPONENT ANALYSIS; PROBLEM SOLVING; REGRESSION ANALYSIS;

EID: 24144438211     PISSN: 03029743     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1007/978-3-540-30560-6_5     Document Type: Conference Paper
Times cited : (7)

References (13)
  • 4
    • 0002978835 scopus 로고
    • On curve fitting and optimal design for regression (with discussion)
    • O'Hagan, A. (1978). On curve fitting and optimal design for regression (with discussion). Journal of the Royal Statistical Society B, 40, 1-42.
    • (1978) Journal of the Royal Statistical Society B , vol.40 , pp. 1-42
    • O'Hagan, A.1
  • 5
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio, T. and Girosi, F. (1990). Networks for approximation and learning. Proceedings of IEEE, 78, 1481-1497.
    • (1990) Proceedings of IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 8
    • 33645592437 scopus 로고    scopus 로고
    • Hierarchical Gaussian process mixtures for regression
    • DCS Technical Report TR-2002-107 University of Glasgow, Scotland
    • Shi, J. Q., Murray-Smith, R. and Titterington, D. M. (2002). Hierarchical Gaussian Process Mixtures for Regression, DCS Technical Report TR-2002-107/Dept. Statistics Tech. Report 02-7, University of Glasgow, Scotland.
    • (2002) Dept. Statistics Tech. Report , vol.2 , Issue.7
    • Shi, J.Q.1    Murray-Smith, R.2    Titterington, D.M.3
  • 9
    • 0034320395 scopus 로고    scopus 로고
    • The Bayesian committee machine
    • Tresp, V. (2000). The Bayesian committee machine. Neural Computation, 12, 27192741.
    • (2000) Neural Computation , vol.12 , pp. 27192741
    • Tresp, V.1
  • 11
    • 33645594866 scopus 로고
    • SIAM, Philadelphia, PA. CBMS_NSF Regional Conference series in applied mathematics
    • Wahba, G. (1990). Spline Models for Observational Data. SIAM, Philadelphia, PA. CBMS_NSF Regional Conference series in applied mathematics.
    • (1990) Spline Models for Observational Data
    • Wahba, G.1
  • 13
    • 84899010839 scopus 로고    scopus 로고
    • Using the Nyström method to speed up kernel machines
    • Eds T. K. Leen, T. G. Diettrich and V. Tresp. MIT Press
    • Williams, C. K. I. and Seeger, M. (2001). Using the Nyström method to speed up kernel machines. Advances in Neural Information Processing Systems, 13. Eds T. K. Leen, T. G. Diettrich and V. Tresp. MIT Press.
    • (2001) Advances in Neural Information Processing Systems , vol.13
    • Williams, C.K.I.1    Seeger, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.