-
2
-
-
0032673331
-
Analytic framework for blended multiple model systems using linear local models
-
Leith, D. and Leithead, W. (1999). Analytic framework for blended multiple model systems using linear local models. International Journal of Control, 72(7/8):605-619.
-
(1999)
International Journal of Control
, vol.72
, Issue.7-8
, pp. 605-619
-
-
Leith, D.1
Leithead, W.2
-
4
-
-
0002978835
-
On curve fitting and optimal design for regression (with discussion)
-
O'Hagan, A. (1978). On curve fitting and optimal design for regression (with discussion). Journal of the Royal Statistical Society B, 40:1-42.
-
(1978)
Journal of the Royal Statistical Society B
, vol.40
, pp. 1-42
-
-
O'Hagan, A.1
-
7
-
-
33645588530
-
Fast forward selection to speed up sparse Gaussian process regression
-
Bishop, C. M. and Frey, B. J., editors
-
Seeger, M., Williams, C. K. I., and Lawrence, N. D. (2003). Fast forward selection to speed up sparse Gaussian process regression. In Bishop, C. M. and Frey, B. J., editors, Proceedings of the Ninth International Workshop on AI and Statistics.
-
(2003)
Proceedings of the Ninth International Workshop on AI and Statistics
-
-
Seeger, M.1
Williams, C.K.I.2
Lawrence, N.D.3
-
8
-
-
24144438211
-
Learning with large data sets using filtered gaussian process priors
-
Murray-Smith, R. and Shorten, R., editors, Proceedings of the Hamilton Summer School on Switching and Learning in Feedback systems, Springer-Verlag
-
Shi, J., Murray-Smith, R., Titterington, D., and Pearlmutter, B. (2005). Learning with large data sets using filtered gaussian process priors. In Murray-Smith, R. and Shorten, R., editors, Proceedings of the Hamilton Summer School on Switching and Learning in Feedback systems, volume 3355 of Lecture Notes in Computing Science, pages 128-139. Springer-Verlag.
-
(2005)
Lecture Notes in Computing Science
, vol.3355
, pp. 128-139
-
-
Shi, J.1
Murray-Smith, R.2
Titterington, D.3
Pearlmutter, B.4
-
9
-
-
4243735198
-
Hierarchical Gaussian process mixtures for regression
-
University of Glasgow, Scotland, UK
-
Shi, J. Q., Murray-Smith, R., and Titterington, D. M. (2002). Hierarchical Gaussian process mixtures for regression. Technical Report TR-2002-107, University of Glasgow, Scotland, UK.
-
(2002)
Technical Report
, vol.TR-2002-107
-
-
Shi, J.Q.1
Murray-Smith, R.2
Titterington, D.M.3
-
10
-
-
84898995949
-
Derivative observations in Gaussian process models of dynamic systems
-
S. Becker, S. T. and Obermayer, K., editors, MIT Press, Cambridge, MA
-
Solak, E., Murray-Smith, R., Leithead, W. E., Leith, D. J., and Rasmussen, C. E. (2003). Derivative observations in Gaussian process models of dynamic systems. In S. Becker, S. T. and Obermayer, K., editors, Advances in Neural Information Processing Systems 15, pages 1033-1040. MIT Press, Cambridge, MA.
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
, pp. 1033-1040
-
-
Solak, E.1
Murray-Smith, R.2
Leithead, W.E.3
Leith, D.J.4
Rasmussen, C.E.5
-
11
-
-
85156260487
-
Bayesian image super-resolution
-
Becker, S., Thrun, S., and Obermeyer, K., editors
-
Tipping, M. and Bishop, C. M. (2002). Bayesian image super-resolution. In Becker, S., Thrun, S., and Obermeyer, K., editors, Neural Information Processing Systems, volume 12, pages 1303-1310.
-
(2002)
Neural Information Processing Systems
, vol.12
, pp. 1303-1310
-
-
Tipping, M.1
Bishop, C.M.2
-
12
-
-
0034320395
-
A Bayesian committee machine
-
Tresp, V. (2000). A Bayesian committee machine. Neural. Computation, 12:2719-2741.
-
(2000)
Neural. Computation
, vol.12
, pp. 2719-2741
-
-
Tresp, V.1
-
14
-
-
0000704059
-
Computation with infinite neural networks
-
Williams, C. K. I. (1998a). Computation with infinite neural networks. Neural Computation, 10:1203-1216.
-
(1998)
Neural Computation
, vol.10
, pp. 1203-1216
-
-
Williams, C.K.I.1
-
15
-
-
0003017575
-
Prediction with Gaussian processes: From linear regression to linear prediction and beyond
-
Jordan, M. I., editor, Kluwer
-
Williams, C. K. I. (1998b). Prediction with Gaussian processes: From linear regression to linear prediction and beyond. In Jordan, M. I., editor, Learning and Inference in Graphical Models, pages 599-621. Kluwer.
-
(1998)
Learning and Inference in Graphical Models
, pp. 599-621
-
-
Williams, C.K.I.1
-
16
-
-
84899010839
-
Using the Nyström method to speed up kernel machines
-
T. K. Leen, T. G. Diettrich, V. T., editor, MIT Press
-
Williams, C. K. I. and Seeger, M. (2001). Using the Nyström method to speed up kernel machines. In T. K. Leen, T. G. Diettrich, V. T., editor, Advances in Neural Information Processing Systems 13, MIT Press.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
-
-
Williams, C.K.I.1
Seeger, M.2
|