-
3
-
-
1542367492
-
-
Technical, Department of Statistics, U. C. Berkeley
-
Peter L. Bartlett, Michael I. Jordan, and Jon D. McAuliffe. Convexity, classification, and risk bounds. Technical Report 638, Department of Statistics, U. C. Berkeley, 2003.
-
(2003)
Convexity, Classification, and Risk Bounds
-
-
Bartlett, P.L.1
Jordan, M.I.2
McAuliffe, J.D.3
-
6
-
-
0242320492
-
Uniqueness theorems for kernel methods
-
C. Burges and D. Crisp. Uniqueness theorems for kernel methods. Neurocomputing, 55:187-220, 2003.
-
(2003)
Neurocomputing
, vol.55
, pp. 187-220
-
-
Burges, C.1
Crisp, D.2
-
7
-
-
0000541146
-
Asymptotic analysis of penalized likelihood and related estimators
-
D. Cox and F. O'Sullivan. Asymptotic analysis of penalized likelihood and related estimators. Ann. Stat., 18:1676-1695, 1990.
-
(1990)
Ann. Stat.
, vol.18
, pp. 1676-1695
-
-
Cox, D.1
O'Sullivan, F.2
-
9
-
-
0036436325
-
Best choices for regularization parameters in learning theory: On the bias-variance problem
-
F. Cucker and S. Smale. Best choices for regularization parameters in learning theory: on the bias-variance problem. Foundations of Computationals Mathematics, 2:413-428, 2002.
-
(2002)
Foundations of Computationals Mathematics
, vol.2
, pp. 413-428
-
-
Cucker, F.1
Smale, S.2
-
12
-
-
0034419669
-
Regularization networks and support vector machines
-
T. Evgeniou, Pontil M., and T. Poggio. Regularization networks and support vector machines. Adv. Comp. Math., 13:1-50, 2000.
-
(2000)
Adv. Comp. Math.
, vol.13
, pp. 1-50
-
-
Evgeniou, T.1
Pontil, M.2
Poggio, T.3
-
13
-
-
0000249788
-
An equivalence between sparse approximation and support vector machines
-
F. Girosi. An equivalence between sparse approximation and support vector machines. Neural Computation, 10:1455-1480, 1998.
-
(1998)
Neural Computation
, vol.10
, pp. 1455-1480
-
-
Girosi, F.1
-
14
-
-
0029227635
-
Prior knowledge and the creation of virtual examples for rbf networks
-
Cambridge, MA, IEEE Signal Processing Society
-
F. Girosi and N. Chan. Prior knowledge and the creation of virtual examples for rbf networks. In Proceedings of the IEEE-SP Workshop on Neural Networks Signal Processing, pages 201-210, Cambridge, MA, 1995. IEEE Signal Processing Society.
-
(1995)
Proceedings of the IEEE-SP Workshop on Neural Networks Signal Processing
, pp. 201-210
-
-
Girosi, F.1
Chan, N.2
-
15
-
-
0000406385
-
A correspondence between Bayesian estimation of stochastic processes and smoothing by splines
-
G. Kimeldorf and G. Wahba. A correspondence between Bayesian estimation of stochastic processes and smoothing by splines. Ann. Math. Stat., 41:495-502, 1970.
-
(1970)
Ann. Math. Stat.
, vol.41
, pp. 495-502
-
-
Kimeldorf, G.1
Wahba, G.2
-
16
-
-
14544276091
-
On learning vector-valued functions
-
Dept of Computer Science, UCL
-
C. A. Micchelli and M. Pontil. On learning vector-valued functions. Research Note RN/03/08, Dept of Computer Science, UCL, 2003.
-
(2003)
Research Note RN/03/08
-
-
Micchelli, C.A.1
Pontil, M.2
-
17
-
-
1842515655
-
-
C. B. C. L. Paper 223, Massachusetts Institute of Technology - Artificial Intelligence Laboratory, December
-
S. Mukherjee, P. Niyogi, T. Poggio, and R. Rifkin. Statistical learning: Stability is sufficient for generalization and necessary and sufficient for consistency for empirical risk minimization. C. B. C. L. Paper 223, Massachusetts Institute of Technology - Artificial Intelligence Laboratory, December 2002.
-
(2002)
Statistical Learning: Stability Is Sufficient for Generalization and Necessary and Sufficient for Consistency for Empirical Risk Minimization
-
-
Mukherjee, S.1
Niyogi, P.2
Poggio, T.3
Rifkin, R.4
-
18
-
-
0033480745
-
Generalization bounds for function approximation from scattered data
-
P. Niyogi and F. Girosi. Generalization bounds for function approximation from scattered data. Adv. Comp. Math., 10:51-80, 1999.
-
(1999)
Adv. Comp. Math.
, vol.10
, pp. 51-80
-
-
Niyogi, P.1
Girosi, F.2
-
19
-
-
0042049518
-
A theory of networks for approximation and learning
-
C. Lau, editor, IEEE Press, Piscataway, New Jersey
-
T. Poggio and F. Girosi. A theory of networks for approximation and learning. In C. Lau, editor, Foundation of Neural Networks, pages 91-106. IEEE Press, Piscataway, New Jersey, 1992.
-
(1992)
Foundation of Neural Networks
, pp. 91-106
-
-
Poggio, T.1
Girosi, F.2
-
20
-
-
33845540199
-
-
J. Winkler and M. Niranjan, editors, Kluwer Academic Publishers
-
T. Poggio, S. Mukherjee, R. Rifkin, A. Rakhlin, and A. Verri. B. In J. Winkler and M. Niranjan, editors, Uncertainty in Geometric Computations, pages 131-141. Kluwer Academic Publishers, 2002.
-
(2002)
Uncertainty in Geometric Computations
, pp. 131-141
-
-
Poggio, T.1
Mukherjee, S.2
Rifkin, R.3
Rakhlin, A.4
Verri, A.B.5
-
22
-
-
84865131152
-
A generalized representer theorem
-
D. Helmbold and B. Williamson, editors, Springer, Berlin, Germany
-
B. Schölkopf, R. Herbrich, and A. J. Smola. A generalized representer theorem. In D. Helmbold and B. Williamson, editors, Neural Networks and Computational Learning Theory, number 81, pages 416-426. Springer, Berlin, Germany, 2001.
-
(2001)
Neural Networks and Computational Learning Theory
, Issue.81
, pp. 416-426
-
-
Schölkopf, B.1
Herbrich, R.2
Smola, A.J.3
-
24
-
-
51649141644
-
Sous-espaces hilbertiens d'espaces vectorials topologiques and noyaux associès
-
L. Schwartz. Sous-espaces hilbertiens d'espaces vectorials topologiques and noyaux associès. Journal d'Analyse Mathematique, 13:115-256, 1964.
-
(1964)
Journal d'Analyse Mathematique
, vol.13
, pp. 115-256
-
-
Schwartz, L.1
-
31
-
-
4644227178
-
Convergence of large margin separable linear classification
-
T. G. Len, T. K. Dietterich and V. Tresp, editors, MIT Press
-
T. Zhang. Convergence of large margin separable linear classification. In T. G. Len, T. K. Dietterich and V. Tresp, editors, Advances in Neural Information Processing Systems 13, pages 357-363. MIT Press, 2001.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 357-363
-
-
Zhang, T.1
|