메뉴 건너뛰기




Volumn 5, Issue , 2004, Pages 1363-1390

Some properties of regularized kernel methods

Author keywords

Convex analysis; Regularization theory; Representer theorem; Reproducing kernel Hilbert spaces; Statistical learning

Indexed keywords

LEARNING ALGORITHMS; VECTOR SPACES;

EID: 23244462944     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (75)

References (31)
  • 6
    • 0242320492 scopus 로고    scopus 로고
    • Uniqueness theorems for kernel methods
    • C. Burges and D. Crisp. Uniqueness theorems for kernel methods. Neurocomputing, 55:187-220, 2003.
    • (2003) Neurocomputing , vol.55 , pp. 187-220
    • Burges, C.1    Crisp, D.2
  • 7
    • 0000541146 scopus 로고
    • Asymptotic analysis of penalized likelihood and related estimators
    • D. Cox and F. O'Sullivan. Asymptotic analysis of penalized likelihood and related estimators. Ann. Stat., 18:1676-1695, 1990.
    • (1990) Ann. Stat. , vol.18 , pp. 1676-1695
    • Cox, D.1    O'Sullivan, F.2
  • 9
    • 0036436325 scopus 로고    scopus 로고
    • Best choices for regularization parameters in learning theory: On the bias-variance problem
    • F. Cucker and S. Smale. Best choices for regularization parameters in learning theory: on the bias-variance problem. Foundations of Computationals Mathematics, 2:413-428, 2002.
    • (2002) Foundations of Computationals Mathematics , vol.2 , pp. 413-428
    • Cucker, F.1    Smale, S.2
  • 12
    • 0034419669 scopus 로고    scopus 로고
    • Regularization networks and support vector machines
    • T. Evgeniou, Pontil M., and T. Poggio. Regularization networks and support vector machines. Adv. Comp. Math., 13:1-50, 2000.
    • (2000) Adv. Comp. Math. , vol.13 , pp. 1-50
    • Evgeniou, T.1    Pontil, M.2    Poggio, T.3
  • 13
    • 0000249788 scopus 로고    scopus 로고
    • An equivalence between sparse approximation and support vector machines
    • F. Girosi. An equivalence between sparse approximation and support vector machines. Neural Computation, 10:1455-1480, 1998.
    • (1998) Neural Computation , vol.10 , pp. 1455-1480
    • Girosi, F.1
  • 14
    • 0029227635 scopus 로고
    • Prior knowledge and the creation of virtual examples for rbf networks
    • Cambridge, MA, IEEE Signal Processing Society
    • F. Girosi and N. Chan. Prior knowledge and the creation of virtual examples for rbf networks. In Proceedings of the IEEE-SP Workshop on Neural Networks Signal Processing, pages 201-210, Cambridge, MA, 1995. IEEE Signal Processing Society.
    • (1995) Proceedings of the IEEE-SP Workshop on Neural Networks Signal Processing , pp. 201-210
    • Girosi, F.1    Chan, N.2
  • 15
    • 0000406385 scopus 로고
    • A correspondence between Bayesian estimation of stochastic processes and smoothing by splines
    • G. Kimeldorf and G. Wahba. A correspondence between Bayesian estimation of stochastic processes and smoothing by splines. Ann. Math. Stat., 41:495-502, 1970.
    • (1970) Ann. Math. Stat. , vol.41 , pp. 495-502
    • Kimeldorf, G.1    Wahba, G.2
  • 16
    • 14544276091 scopus 로고    scopus 로고
    • On learning vector-valued functions
    • Dept of Computer Science, UCL
    • C. A. Micchelli and M. Pontil. On learning vector-valued functions. Research Note RN/03/08, Dept of Computer Science, UCL, 2003.
    • (2003) Research Note RN/03/08
    • Micchelli, C.A.1    Pontil, M.2
  • 18
    • 0033480745 scopus 로고    scopus 로고
    • Generalization bounds for function approximation from scattered data
    • P. Niyogi and F. Girosi. Generalization bounds for function approximation from scattered data. Adv. Comp. Math., 10:51-80, 1999.
    • (1999) Adv. Comp. Math. , vol.10 , pp. 51-80
    • Niyogi, P.1    Girosi, F.2
  • 19
    • 0042049518 scopus 로고
    • A theory of networks for approximation and learning
    • C. Lau, editor, IEEE Press, Piscataway, New Jersey
    • T. Poggio and F. Girosi. A theory of networks for approximation and learning. In C. Lau, editor, Foundation of Neural Networks, pages 91-106. IEEE Press, Piscataway, New Jersey, 1992.
    • (1992) Foundation of Neural Networks , pp. 91-106
    • Poggio, T.1    Girosi, F.2
  • 22
    • 84865131152 scopus 로고    scopus 로고
    • A generalized representer theorem
    • D. Helmbold and B. Williamson, editors, Springer, Berlin, Germany
    • B. Schölkopf, R. Herbrich, and A. J. Smola. A generalized representer theorem. In D. Helmbold and B. Williamson, editors, Neural Networks and Computational Learning Theory, number 81, pages 416-426. Springer, Berlin, Germany, 2001.
    • (2001) Neural Networks and Computational Learning Theory , Issue.81 , pp. 416-426
    • Schölkopf, B.1    Herbrich, R.2    Smola, A.J.3
  • 24
    • 51649141644 scopus 로고
    • Sous-espaces hilbertiens d'espaces vectorials topologiques and noyaux associès
    • L. Schwartz. Sous-espaces hilbertiens d'espaces vectorials topologiques and noyaux associès. Journal d'Analyse Mathematique, 13:115-256, 1964.
    • (1964) Journal d'Analyse Mathematique , vol.13 , pp. 115-256
    • Schwartz, L.1
  • 31
    • 4644227178 scopus 로고    scopus 로고
    • Convergence of large margin separable linear classification
    • T. G. Len, T. K. Dietterich and V. Tresp, editors, MIT Press
    • T. Zhang. Convergence of large margin separable linear classification. In T. G. Len, T. K. Dietterich and V. Tresp, editors, Advances in Neural Information Processing Systems 13, pages 357-363. MIT Press, 2001.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 357-363
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.