메뉴 건너뛰기




Volumn 5, Issue , 2009, Pages 9-16

Latent force models

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL BIOLOGY; DATA DRIVEN MODELLING; DATA-DRIVEN APPROACH; FORCE MODEL; GAUSSIAN PROCESSES; GEO-STATISTICS; HYBRID APPROACH; KERNEL FUNCTION; MOTION CAPTURE; PHYSICAL MODEL; UNDERLYING SYSTEMS;

EID: 80053151379     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (171)

References (11)
  • 1
    • 84858759793 scopus 로고    scopus 로고
    • Sparse convolved gaussian processes for multi-output regression
    • MIT Press
    • Mauricio Alvarez and Neil D. Lawrence. Sparse convolved gaussian processes for multi-output regression. In Advances in Neural Information Processing Systems 21, pages 57-64. MIT Press, 2009.
    • (2009) Advances in Neural Information Processing Systems , vol.21 , pp. 57-64
    • Alvarez, M.1    Lawrence, N.D.2
  • 2
    • 33745038921 scopus 로고    scopus 로고
    • Ranked prediction of p53 targets using hidden variable dynamic modeling
    • Martino Barenco, Daniela Tomescu, Daniel Brewer, Robin Callard, Jaroslav Stark, and Michael Hubank. Ranked prediction of p53 targets using hidden variable dynamic modeling. Genome Biology, 7(3):R25, 2006.
    • (2006) Genome Biology , vol.7 , Issue.3
    • Barenco, M.1    Tomescu, D.2    Brewer, D.3    Callard, R.4    Stark, J.5    Hubank, M.6
  • 3
    • 84898973907 scopus 로고    scopus 로고
    • Dependent Gaussian processes
    • Lawrence Saul, Yair Weiss, and Léon Bouttou, editors, Cambridge, MA, MIT Press
    • Phillip Boyle and Marcus Frean. Dependent Gaussian processes. In Lawrence Saul, Yair Weiss, and Léon Bouttou, editors, Advances in Neural Information Processing Systems, volume 17, pages 217-224, Cambridge, MA, 2005. MIT Press.
    • (2005) Advances in Neural Information Processing Systems , vol.17 , pp. 217-224
    • Boyle, P.1    Frean, M.2
  • 4
    • 49549105346 scopus 로고    scopus 로고
    • Gaussian process modelling of latent chemical species: Applications to inferring transcription factor activities
    • Pei Gao, Antti Honkela, Magnus Rattray, and Neil D. Lawrence. Gaussian process modelling of latent chemical species: Applications to inferring transcription factor activities. Bioinformatics, 24:i70-i75, 2008.
    • (2008) Bioinformatics , vol.24
    • Gao, P.1    Honkela, A.2    Rattray, M.3    Lawrence, N.D.4
  • 6
    • 2942619617 scopus 로고    scopus 로고
    • Space and space-time modelling using process convolutions
    • C. Anderson, V. Barnett, P. Chatwin, and A. El-Shaarawi, editors, Springer-Verlag
    • David M. Higdon. Space and space-time modelling using process convolutions. In C. Anderson, V. Barnett, P. Chatwin, and A. El-Shaarawi, editors, Quantitative methods for current environmental issues, pages 37-56. Springer-Verlag, 2002.
    • (2002) Quantitative Methods for Current Environmental IsSues , pp. 37-56
    • Higdon, D.M.1
  • 7
    • 84864060452 scopus 로고    scopus 로고
    • Modelling transcriptional regulation using Gaussian processes
    • Bernhard Schölkopf, John C. Platt, and Thomas Hofmann, editors, Cambridge, MA, MIT Press
    • Neil D. Lawrence, Guido Sanguinetti, and Magnus Rattray. Modelling transcriptional regulation using Gaussian processes. In Bernhard Schölkopf, John C. Platt, and Thomas Hofmann, editors, Advances in Neural Information Processing Systems, volume 19, pages 785-792, Cambridge, MA, 2007. MIT Press.
    • (2007) Advances in Neural Information Processing Systems , vol.19 , pp. 785-792
    • Lawrence, N.D.1    Sanguinetti, G.2    Rattray, M.3
  • 8
    • 27844605876 scopus 로고    scopus 로고
    • Probabilistic non-linear principal component analysis with Gaussian process latent variable models
    • Nov.
    • Neil D. Lawrence. Probabilistic non-linear principal component analysis with Gaussian process latent variable models. Journal of Machine Learning Research, 6:1783-1816, Nov. 2005.
    • (2005) Journal of Machine Learning ReSearch , vol.6 , pp. 1783-1816
    • Lawrence, N.D.1
  • 10
    • 29144453489 scopus 로고    scopus 로고
    • A unifying view of sparse approximate Gaussian process regression
    • Joaquin Quin~onero Candela and Carl Edward Rasmussen. A unifying view of sparse approximate Gaussian process regression. Journal of Machine Learning Research, 6:1939-1959, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1939-1959
    • Candela, J.Q.1    Rasmussen, C.E.2
  • 11
    • 84862602372 scopus 로고    scopus 로고
    • Semiparametric latent factor models
    • Robert G. Cowell and Zoubin Ghahramani, editors, Barbados, 6-8 January, Society for Artificial Intelligence and Statistics
    • Yee Whye Teh, Matthias Seeger, and Michael I. Jordan. Semiparametric latent factor models. In Robert G. Cowell and Zoubin Ghahramani, editors, Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics, pages 333-340, Barbados, 6-8 January 2005. Society for Artificial Intelligence and Statistics.
    • (2005) Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics , pp. 333-340
    • Teh, Y.W.1    Seeger, M.2    Jordan, M.I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.