-
1
-
-
84858759793
-
Sparse convolved gaussian processes for multi-output regression
-
MIT Press
-
Mauricio Alvarez and Neil D. Lawrence. Sparse convolved gaussian processes for multi-output regression. In Advances in Neural Information Processing Systems 21, pages 57-64. MIT Press, 2009.
-
(2009)
Advances in Neural Information Processing Systems
, vol.21
, pp. 57-64
-
-
Alvarez, M.1
Lawrence, N.D.2
-
2
-
-
33745038921
-
Ranked prediction of p53 targets using hidden variable dynamic modeling
-
Martino Barenco, Daniela Tomescu, Daniel Brewer, Robin Callard, Jaroslav Stark, and Michael Hubank. Ranked prediction of p53 targets using hidden variable dynamic modeling. Genome Biology, 7(3):R25, 2006.
-
(2006)
Genome Biology
, vol.7
, Issue.3
-
-
Barenco, M.1
Tomescu, D.2
Brewer, D.3
Callard, R.4
Stark, J.5
Hubank, M.6
-
3
-
-
84898973907
-
Dependent Gaussian processes
-
Lawrence Saul, Yair Weiss, and Léon Bouttou, editors, Cambridge, MA, MIT Press
-
Phillip Boyle and Marcus Frean. Dependent Gaussian processes. In Lawrence Saul, Yair Weiss, and Léon Bouttou, editors, Advances in Neural Information Processing Systems, volume 17, pages 217-224, Cambridge, MA, 2005. MIT Press.
-
(2005)
Advances in Neural Information Processing Systems
, vol.17
, pp. 217-224
-
-
Boyle, P.1
Frean, M.2
-
4
-
-
49549105346
-
Gaussian process modelling of latent chemical species: Applications to inferring transcription factor activities
-
Pei Gao, Antti Honkela, Magnus Rattray, and Neil D. Lawrence. Gaussian process modelling of latent chemical species: Applications to inferring transcription factor activities. Bioinformatics, 24:i70-i75, 2008.
-
(2008)
Bioinformatics
, vol.24
-
-
Gao, P.1
Honkela, A.2
Rattray, M.3
Lawrence, N.D.4
-
6
-
-
2942619617
-
Space and space-time modelling using process convolutions
-
C. Anderson, V. Barnett, P. Chatwin, and A. El-Shaarawi, editors, Springer-Verlag
-
David M. Higdon. Space and space-time modelling using process convolutions. In C. Anderson, V. Barnett, P. Chatwin, and A. El-Shaarawi, editors, Quantitative methods for current environmental issues, pages 37-56. Springer-Verlag, 2002.
-
(2002)
Quantitative Methods for Current Environmental IsSues
, pp. 37-56
-
-
Higdon, D.M.1
-
7
-
-
84864060452
-
Modelling transcriptional regulation using Gaussian processes
-
Bernhard Schölkopf, John C. Platt, and Thomas Hofmann, editors, Cambridge, MA, MIT Press
-
Neil D. Lawrence, Guido Sanguinetti, and Magnus Rattray. Modelling transcriptional regulation using Gaussian processes. In Bernhard Schölkopf, John C. Platt, and Thomas Hofmann, editors, Advances in Neural Information Processing Systems, volume 19, pages 785-792, Cambridge, MA, 2007. MIT Press.
-
(2007)
Advances in Neural Information Processing Systems
, vol.19
, pp. 785-792
-
-
Lawrence, N.D.1
Sanguinetti, G.2
Rattray, M.3
-
8
-
-
27844605876
-
Probabilistic non-linear principal component analysis with Gaussian process latent variable models
-
Nov.
-
Neil D. Lawrence. Probabilistic non-linear principal component analysis with Gaussian process latent variable models. Journal of Machine Learning Research, 6:1783-1816, Nov. 2005.
-
(2005)
Journal of Machine Learning ReSearch
, vol.6
, pp. 1783-1816
-
-
Lawrence, N.D.1
-
10
-
-
29144453489
-
A unifying view of sparse approximate Gaussian process regression
-
Joaquin Quin~onero Candela and Carl Edward Rasmussen. A unifying view of sparse approximate Gaussian process regression. Journal of Machine Learning Research, 6:1939-1959, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1939-1959
-
-
Candela, J.Q.1
Rasmussen, C.E.2
-
11
-
-
84862602372
-
Semiparametric latent factor models
-
Robert G. Cowell and Zoubin Ghahramani, editors, Barbados, 6-8 January, Society for Artificial Intelligence and Statistics
-
Yee Whye Teh, Matthias Seeger, and Michael I. Jordan. Semiparametric latent factor models. In Robert G. Cowell and Zoubin Ghahramani, editors, Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics, pages 333-340, Barbados, 6-8 January 2005. Society for Artificial Intelligence and Statistics.
-
(2005)
Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics
, pp. 333-340
-
-
Teh, Y.W.1
Seeger, M.2
Jordan, M.I.3
|