-
1
-
-
85162020657
-
-
volume 59 of CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia
-
G. Wahba. Spline Models for Observational Data, volume 59 of CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, 1990.
-
(1990)
Spline Models for Observational Data
-
-
Wahba, G.1
-
2
-
-
0001219859
-
Regularization theory and neural networks architectures
-
F. Girosi, M. Jones, and T. Poggio. Regularization Theory and Neural Networks Architectures. Neural Comput., 7(2):219-269, 1995.
-
(1995)
Neural Comput.
, vol.7
, Issue.2
, pp. 219-269
-
-
Girosi, F.1
Jones, M.2
Poggio, T.3
-
3
-
-
0001287271
-
Regression shrinkage and selection via the lasso
-
R. Tibshirani. Regression shrinkage and selection via the lasso. J. Royal. Stat. Soc. B., 58:267-288, 1996.
-
(1996)
J. Royal. Stat. Soc. B.
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
4
-
-
0346238931
-
Task clustering and gating for bayesian multitask learning
-
B. Bakker and T. Heskes. Task clustering and gating for bayesian multitask learning. J. Mach. Learn. Res., 4:83-99, 2003.
-
(2003)
J. Mach. Learn. Res.
, vol.4
, pp. 83-99
-
-
Bakker, B.1
Heskes, T.2
-
6
-
-
34547990286
-
-
Technical Report cs/0611124, arXiv
-
J. Abernethy, F. Bach, T. Evgeniou, and J.-P. Vert. Low-rankmatrix factorization with attributes. Technical Report cs/0611124, arXiv, 2006.
-
(2006)
Low-rankmatrix Factorization with Attributes
-
-
Abernethy, J.1
Bach, F.2
Evgeniou, T.3
Vert, J.-P.4
-
7
-
-
84864063089
-
Multi-task feature learning
-
B. Schölkopf, J. Platt, and T. Hoffman, editors, Cambridge, MA. MIT Press
-
A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task feature learning. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Adv. NIPS 19, pages 41-48, Cambridge, MA, 2007. MIT Press.
-
(2007)
Adv. NIPS
, vol.19
, pp. 41-48
-
-
Argyriou, A.1
Evgeniou, T.2
Pontil, M.3
-
8
-
-
8844278523
-
Learning the kernel matrix with semidefinite programming
-
G.R.G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M.I. Jordan. Learning the Kernel Matrix with Semidefinite Programming. J. Mach. Learn. Res., 5:27-72, 2004.
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 27-72
-
-
Lanckriet, G.R.G.1
Cristianini, N.2
Bartlett, P.3
El Ghaoui, L.4
Jordan, M.I.5
-
10
-
-
33745584371
-
A community resource benchmarking predictions of peptide binding to MHC-I molecules
-
B. Peters, H.-H Bui, S. Frankild, M. Nielson, C. Lundegaard, E. Kostem, D. Basch, K. Lamberth, M. Harndahl, W. Fleri, S. S Wilson, J. Sidney, O. Lund, S. Buus, and A. Sette. A community resource benchmarking predictions of peptide binding to MHC-I molecules. PLoS Comput Biol, 2(6):e65, 2006.
-
(2006)
PLoS Comput Biol
, vol.2
, Issue.6
-
-
Peters, B.1
Bui, H.-H.2
Frankild, S.3
Nielson, M.4
Lundegaard, C.5
Kostem, E.6
Basch, D.7
Lamberth, K.8
Harndahl, M.9
Fleri, W.10
Wilson, S.S.11
Sidney, J.12
Lund, O.13
Buus, S.14
Sette, A.15
-
11
-
-
34547653712
-
Leveraging information across HLA alleles/supertypes improves epitope prediction
-
DOI 10.1089/cmb.2007.R013
-
D. Heckerman, D. Kadie, and J. Listgarten. Leveraging information across HLA alleles/supertypes improves epitope prediction. J. Comput. Biol., 14(6):736-746, 2007. (Pubitemid 47221814)
-
(2007)
Journal of Computational Biology
, vol.14
, Issue.6
, pp. 736-746
-
-
Heckerman, D.1
Kadie, C.2
Listgarten, J.3
-
12
-
-
38849139819
-
Efficient peptide-MHC-I binding prediction for alleles with few known binders
-
DOI 10.1093/bioinformatics/btm611
-
L. Jacob and J.-P. Vert. Efficient peptide-MHC-I binding prediction for alleles with few known binders. Bioinformatics, 24(3):358-366, Feb 2008. (Pubitemid 351189011)
-
(2008)
Bioinformatics
, vol.24
, Issue.3
, pp. 358-366
-
-
Jacob, L.1
Vert, J.-P.2
|