메뉴 건너뛰기




Volumn , Issue , 2007, Pages 785-792

Modelling transcriptional regulation using Gaussian processes

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGICAL STUDIES; CONCENTRATION LEVELS; DATA SETS; DECAY RATE; EXPRESSION LEVELS; GAUSSIAN PROCESS PRIORS; GAUSSIAN PROCESSES; GENE EXPRESSION LEVELS; HYPERPARAMETERS; KNOWN TARGET GENES; LATENT FUNCTION; MRNA ABUNDANCES; PROTEIN CONCENTRATIONS; TARGET GENES; TRANSCRIPTIONAL REGULATION;

EID: 84864060452     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (81)

References (12)
  • 2
    • 1942421122 scopus 로고    scopus 로고
    • Solving noisy linear operator equations by Gaussian processes: Application to ordinary and partial differential equations
    • T. Fawcett and N. Mishra, editors. AAAI Press
    • T. Graepel. Solving noisy linear operator equations by Gaussian processes: Application to ordinary and partial differential equations. In T. Fawcett and N. Mishra, editors, Proceedings of the International Conference in Machine Learning, volume 20, pages 234-241. AAAI Press, 2003.
    • (2003) Proceedings of the International Conference in Machine Learning , vol.20 , pp. 234-241
    • Graepel, T.1
  • 4
    • 24644460573 scopus 로고    scopus 로고
    • A tractable probabilistic model for affymetrix probelevel analysis across multiple chips
    • X. Liu, M. Milo, N. D. Lawrence, and M. Rattray. A tractable probabilistic model for affymetrix probelevel analysis across multiple chips. Bioinformatics, 21(18):3637-3644, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.18 , pp. 3637-3644
    • Liu, X.1    Milo, M.2    Lawrence, N.D.3    Rattray, M.4
  • 6
    • 33646015688 scopus 로고    scopus 로고
    • Transformations of Gaussian process priors
    • J.Winkler, N. D. Lawrence, and M. Niranjan, editors, volume 3635 of Lecture Notes in Artificial Intelligence, Berlin. Springer-Verlag
    • R. Murray-Smith and B. A. Pearlmutter. Transformations of Gaussian process priors. In J.Winkler, N. D. Lawrence, and M. Niranjan, editors, Deterministic and Statistical Methods in Machine Learning, volume 3635 of Lecture Notes in Artificial Intelligence, pages 110-123, Berlin, 2005. Springer-Verlag.
    • (2005) Deterministic and Statistical Methods in Machine Learning , pp. 110-123
    • Murray-Smith, R.1    Pearlmutter, B.A.2
  • 7
    • 0003301456 scopus 로고    scopus 로고
    • Bayesian learning for neural networks
    • Springer
    • R. M. Neal. Bayesian Learning for Neural Networks. Springer, 1996. Lecture Notes in Statistics 118.
    • (1996) Lecture Notes in Statistics , vol.118
    • Neal, R.M.1
  • 10
    • 33645107349 scopus 로고    scopus 로고
    • Bayesian sparse hidden components analysis for transcription regulation networks
    • C. Sabatti and G. M. James. Bayesian sparse hidden components analysis for transcription regulation networks. Bioinformatics, 22(6):739-746, 2006.
    • (2006) Bioinformatics , vol.22 , Issue.6 , pp. 739-746
    • Sabatti, C.1    James, G.M.2
  • 11
    • 33747884281 scopus 로고    scopus 로고
    • A probabilistic dynamical model for quantitative inference of the regulatory mechanism of transcription
    • G. Sanguinetti, M. Rattray, and N. D. Lawrence. A probabilistic dynamical model for quantitative inference of the regulatory mechanism of transcription. Bioinformatics, 22(14):1753-1759, 2006.
    • (2006) Bioinformatics , vol.22 , Issue.14 , pp. 1753-1759
    • Sanguinetti, G.1    Rattray, M.2    Lawrence, N.D.3
  • 12
    • 0000704059 scopus 로고    scopus 로고
    • Computation with infinite neural networks
    • C. K. I. Williams. Computation with infinite neural networks. Neural Computation, 10(5):1203-1216, 1998.
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1203-1216
    • Williams, C.K.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.