메뉴 건너뛰기




Volumn 3355, Issue , 2005, Pages 98-127

Analysis of some methods for Reduced Rank Gaussian Process Regression

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; CLASSIFICATION (OF INFORMATION); COMPUTATIONAL COMPLEXITY; LEARNING SYSTEMS;

EID: 24144465874     PISSN: 03029743     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1007/978-3-540-30560-6_4     Document Type: Conference Paper
Times cited : (23)

References (24)
  • 3
    • 0038891993 scopus 로고    scopus 로고
    • Sparse online gaussian processes
    • Csató, L. and Opper, M. (2002). Sparse online gaussian processes. Neural Computation, 14(3):641-669.
    • (2002) Neural Computation , vol.14 , Issue.3 , pp. 641-669
    • Csató, L.1    Opper, M.2
  • 4
    • 0037567878 scopus 로고    scopus 로고
    • Efficient implementation of gaussian processes
    • Cavendish Laboratory, Cambridge University, Cambridge, United Kingdom
    • Gibbs, M. and MacKay, D. J. C. (1997). Efficient implementation of gaussian processes. Technical report, Cavendish Laboratory, Cambridge University, Cambridge, United Kingdom.
    • (1997) Technical Report
    • Gibbs, M.1    MacKay, D.J.C.2
  • 5
    • 80053225881 scopus 로고    scopus 로고
    • Fast sparse gaussian process methods: The informative vector machine
    • Becker, S., Thrun, S., and Obermayer, K., editors, Cambridge, Massachusetts. MIT Press
    • Lawrence, N., Seeger, M., and Herbrich, R. (2003). Fast sparse gaussian process methods: The informative vector machine. In Becker, S., Thrun, S., and Obermayer, K., editors, Neural Information Processing Systems 15, pages 609-616, Cambridge, Massachusetts. MIT Press.
    • (2003) Neural Information Processing Systems , vol.15 , pp. 609-616
    • Lawrence, N.1    Seeger, M.2    Herbrich, R.3
  • 6
    • 0028698662 scopus 로고
    • Bayesian non-linear modelling for the energy prediction competition
    • MacKay, D. J. C. (1994). Bayesian non-linear modelling for the energy prediction competition. ASHRAE Transactions, 100(2): 1053-1062.
    • (1994) ASHRAE Transactions , vol.100 , Issue.2 , pp. 1053-1062
    • MacKay, D.J.C.1
  • 7
    • 0037905968 scopus 로고    scopus 로고
    • Gaussian Processes: A replacement for supervised Neural Networks?
    • Cavendish Laboratory, Cambridge University, Cambridge, United Kingdom. Lecture notes for a tutorial at NIPS 1997
    • Mackay, D. J. C. (1997). Gaussian Processes: A replacement for supervised Neural Networks? Technical report, Cavendish Laboratory, Cambridge University, Cambridge, United Kingdom. Lecture notes for a tutorial at NIPS 1997.
    • (1997) Technical Report
    • Mackay, D.J.C.1
  • 8
    • 0003301456 scopus 로고    scopus 로고
    • Bayesian learning for neural networks
    • Springer, Heidelberg, Germany
    • Neal, R. M. (1996). Bayesian Learning for Neural Networks, volume 118 of Lecture Notes in Statistics. Springer, Heidelberg, Germany.
    • (1996) Lecture Notes in Statistics , vol.118
    • Neal, R.M.1
  • 13
    • 84898940342 scopus 로고    scopus 로고
    • Transductive and inductive methods for approximate gaussian process regression
    • Becker, S., Thrun, S., and Obermayer, K., editors, Cambridge, Massachusetts. MIT Press
    • Schwaighofer, A. and Tresp, V. (2003). Transductive and inductive methods for approximate gaussian process regression. In Becker, S., Thrun, S., and Obermayer, K., editors, Advances in Neural Information Processing Systems 15, pages 953-960, Cambridge, Massachusetts. MIT Press.
    • (2003) Advances in Neural Information Processing Systems , vol.15 , pp. 953-960
    • Schwaighofer, A.1    Tresp, V.2
  • 15
    • 33745987673 scopus 로고    scopus 로고
    • Fast forward selection to speed up sparse gaussian process regression
    • Bishop, C. M. and Frey, B. J., editors, Society for Artificial Intelligence and Statistics
    • Seeger, M., Williams, C., and Lawrence, N. (2003). Fast forward selection to speed up sparse gaussian process regression. In Bishop, C. M. and Frey, B. J., editors, Ninth International Workshop on Artificial Intelligence and Statistics. Society for Artificial Intelligence and Statistics.
    • (2003) Ninth International Workshop on Artificial Intelligence and Statistics
    • Seeger, M.1    Williams, C.2    Lawrence, N.3
  • 16
    • 84899000575 scopus 로고    scopus 로고
    • Sparse greedy Gaussian process regression
    • Leen, T. K., Dietterich, T. G., and Tresp, V., editors, Cambridge, Massachusetts. MIT Press
    • Smola, A. J. and Bartlett, P. L. (2001). Sparse greedy Gaussian process regression. In Leen, T. K., Dietterich, T. G., and Tresp, V., editors, Advances in Neural Information Processing Systems 13, pages 619-625, Cambridge, Massachusetts. MIT Press.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 619-625
    • Smola, A.J.1    Bartlett, P.L.2
  • 17
    • 0002493574 scopus 로고    scopus 로고
    • Sparse greedy matrix approximation for machine learning
    • Langley, P., editor, San Francisco, California. Morgan Kaufmann Publishers
    • Smola, A. J. and Schölkopf, B. (2000). Sparse greedy matrix approximation for machine learning. In Langley, P., editor, International Conference on Machine Learning 17, pages 911-918, San Francisco, California. Morgan Kaufmann Publishers.
    • (2000) International Conference on Machine Learning , vol.17 , pp. 911-918
    • Smola, A.J.1    Schölkopf, B.2
  • 18
    • 0001224048 scopus 로고    scopus 로고
    • Sparse bayesian learning and the relevance vector machine
    • Tipping, M. E. (2001). Sparse bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1:211-244.
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 19
    • 0034320395 scopus 로고    scopus 로고
    • A bayesian committee machine
    • Tresp, V. (2000). A bayesian committee machine. Neural Computation, 12(11):2719-2741.
    • (2000) Neural Computation , vol.12 , Issue.11 , pp. 2719-2741
    • Tresp, V.1
  • 20
    • 84899000819 scopus 로고    scopus 로고
    • The biasvariance tradeoff and the randomized GACV
    • Kerns, M. S., Solla, S. A., and Cohn, D. A., editors, Cambridge, Massachussetts. MIT Press
    • Wahba, G., Lin, X., Gao, F., Xiang, D., Klein, R., and Klein, B. (1999). The biasvariance tradeoff and the randomized GACV. In Kerns, M. S., Solla, S. A., and Cohn, D. A., editors, Advances in Neural Information Processing Systems 11, pages 620-626, Cambridge, Massachussetts. MIT Press.
    • (1999) Advances in Neural Information Processing Systems , vol.11 , pp. 620-626
    • Wahba, G.1    Lin, X.2    Gao, F.3    Xiang, D.4    Klein, R.5    Klein, B.6
  • 21
    • 84898974226 scopus 로고    scopus 로고
    • Computation with infinite neural networks
    • Mozer, M. C., Jordan, M. I., and Petsche, T., editors, Cambridge, Massachussetts. MIT Press
    • Williams, C. (1997a). Computation with infinite neural networks. In Mozer, M. C., Jordan, M. I., and Petsche, T., editors, Advances in Neural Information Processing Systems 9, pages 295-301, Cambridge, Massachussetts. MIT Press.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 295-301
    • Williams, C.1
  • 22
    • 0038582147 scopus 로고    scopus 로고
    • Prediction with gaussian processes: From linear regression to linear prediction and beyond
    • Dept of Computer Science and Applied Mathematics, Aston University, Birmingham, United Kingdom
    • Williams, C. (1997b). Prediction with gaussian processes: From linear regression to linear prediction and beyond. Technical Report NCRG/97/012, Dept of Computer Science and Applied Mathematics, Aston University, Birmingham, United Kingdom.
    • (1997) Technical Report , vol.NCRG-97-012
    • Williams, C.1
  • 23
    • 26944431850 scopus 로고    scopus 로고
    • Observations of the nyström method for gaussiam process prediction
    • University of Edinburgh, Edinburgh, Scotland
    • Williams, C., Rasmussen, C. E., Schwaighofer, A., and Tresp, V. (2002). Observations of the nyström method for gaussiam process prediction. Technical report, University of Edinburgh, Edinburgh, Scotland.
    • (2002) Technical Report
    • Williams, C.1    Rasmussen, C.E.2    Schwaighofer, A.3    Tresp, V.4
  • 24
    • 84899010839 scopus 로고    scopus 로고
    • Using the Nyström method to speed up kernel machines
    • Leen, T. K., Dietterich, T. G., and Tresp, V., editors, Cambridge, Massachussetts. MIT Press
    • Williams, C. and Seeger, M. (2001). Using the Nyström method to speed up kernel machines. In Leen, T. K., Dietterich, T. G., and Tresp, V., editors, Advances in Neural Information Processing Systems 13, pages 682-688, Cambridge, Massachussetts. MIT Press.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 682-688
    • Williams, C.1    Seeger, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.