-
1
-
-
63749125392
-
VEGFs and receptors involved in angiogenesis versus lymphangiogenesis
-
Lohela M, Bry M, Tammela T, and Alitalo K (2009). VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol 21, 154-165.
-
(2009)
Curr Opin Cell Biol
, vol.21
, pp. 154-165
-
-
Lohela, M.1
Bry, M.2
Tammela, T.3
Alitalo, K.4
-
2
-
-
77950675601
-
Targeting tumor lymphangiogenesis: An update
-
Raica M and Ribatti D (2010). Targeting tumor lymphangiogenesis: an update. Curr Med Chem 17, 698-708.
-
(2010)
Curr Med Chem
, vol.17
, pp. 698-708
-
-
Raica, M.1
Ribatti, D.2
-
3
-
-
79953166481
-
mTOR signalling in health and disease
-
Proud CG (2011). mTOR signalling in health and disease. Biochem Soc Trans 39, 431-436.
-
(2011)
Biochem Soc Trans
, vol.39
, pp. 431-436
-
-
Proud, C.G.1
-
4
-
-
78650510609
-
mTOR: From growth signal integration to cancer, diabetes and ageing
-
Zoncu R, Efeyan A, and Sabatini DM (2011). mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12, 21-35.
-
(2011)
Nat Rev Mol Cell Biol
, vol.12
, pp. 21-35
-
-
Zoncu, R.1
Efeyan, A.2
Sabatini, D.M.3
-
5
-
-
0036753494
-
Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control
-
Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, and Hall MN (2002). Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10, 457-468.
-
(2002)
Mol Cell
, vol.10
, pp. 457-468
-
-
Loewith, R.1
Jacinto, E.2
Wullschleger, S.3
Lorberg, A.4
Crespo, J.L.5
Bonenfant, D.6
Oppliger, W.7
Jenoe, P.8
Hall, M.N.9
-
6
-
-
0037178781
-
Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action
-
Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, Tokunaga C, Avruch J, and Yonezawa K (2002). Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110, 177-189.
-
(2002)
Cell
, vol.110
, pp. 177-189
-
-
Hara, K.1
Maruki, Y.2
Long, X.3
Yoshino, K.4
Oshiro, N.5
Hidayat, S.6
Tokunaga, C.7
Avruch, J.8
Yonezawa, K.9
-
7
-
-
0037178786
-
mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
-
Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, and Sabatini DM (2002). mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163-175.
-
(2002)
Cell
, vol.110
, pp. 163-175
-
-
Kim, D.H.1
Sarbassov, D.D.2
Ali, S.M.3
King, J.E.4
Latek, R.R.5
Erdjument-Bromage, H.6
Tempst, P.7
Sabatini, D.M.8
-
8
-
-
0037623417
-
GβL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR
-
Kim DH, Sarbassov DD, Ali SM, Latek RR, Guntur KV, Erdjument-Bromage H, Tempst P, and Sabatini DM (2003). GβL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 11, 895-904.
-
(2003)
Mol Cell
, vol.11
, pp. 895-904
-
-
Kim, D.H.1
Sarbassov, D.D.2
Ali, S.M.3
Latek, R.R.4
Guntur, K.V.5
Erdjument-Bromage, H.6
Tempst, P.7
Sabatini, D.M.8
-
9
-
-
33947264077
-
PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase
-
Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, Carr SA, and Sabatini DM (2007). PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 25, 903-915.
-
(2007)
Mol Cell
, vol.25
, pp. 903-915
-
-
Sancak, Y.1
Thoreen, C.C.2
Peterson, T.R.3
Lindquist, R.A.4
Kang, S.A.5
Spooner, E.6
Carr, S.A.7
Sabatini, D.M.8
-
10
-
-
33847397874
-
Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40
-
Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, and Kim DH (2007). Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 9, 316-323.
-
(2007)
Nat Cell Biol
, vol.9
, pp. 316-323
-
-
Vander, H.E.1
Lee, S.I.2
Bandhakavi, S.3
Griffin, T.J.4
Kim, D.H.5
-
11
-
-
34548359244
-
PRAS40 is a target for mammalian target of rapamycin complex 1 and is required for signaling downstream of this complex
-
Fonseca BD, Smith EM, Lee VH, Mackintosh C, and Proud CG (2007). PRAS40 is a target for mammalian target of rapamycin complex 1 and is required for signaling downstream of this complex. J Biol Chem 282, 24514-24524.
-
(2007)
J Biol Chem
, vol.282
, pp. 24514-24524
-
-
Fonseca, B.D.1
Smith, E.M.2
Lee, V.H.3
Mackintosh, C.4
Proud, C.G.5
-
12
-
-
3342895823
-
Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton
-
Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, and Sabatini DM (2004). Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14, 1296-1302.
-
(2004)
Curr Biol
, vol.14
, pp. 1296-1302
-
-
Sarbassov, D.D.1
Ali, S.M.2
Kim, D.H.3
Guertin, D.A.4
Latek, R.R.5
Erdjument-Bromage, H.6
Tempst, P.7
Sabatini, D.M.8
-
13
-
-
7944235758
-
Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive
-
Jacinto E, Loewith R, Schmidt A, Lin S, Rüegg MA, Hall A, and Hall MN (2004). Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6, 1122-1128.
-
(2004)
Nat Cell Biol
, vol.6
, pp. 1122-1128
-
-
Jacinto, E.1
Loewith, R.2
Schmidt, A.3
Lin, S.4
Rüegg, M.A.5
Hall, A.6
Hall, M.N.7
-
14
-
-
13844312400
-
Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
-
Sarbassov DD, Guertin DA, Ali SM, and Sabatini DM (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098-1101.
-
(2005)
Science
, vol.307
, pp. 1098-1101
-
-
Sarbassov, D.D.1
Guertin, D.A.2
Ali, S.M.3
Sabatini, D.M.4
-
15
-
-
33748471980
-
mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s
-
Frias MA, Thoreen CC, Jaffe JD, Schroder W, Sculley T, Carr SA, and Sabatini DM (2006). mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol 16, 1865-1870.
-
(2006)
Curr Biol
, vol.16
, pp. 1865-1870
-
-
Frias, M.A.1
Thoreen, C.C.2
Jaffe, J.D.3
Schroder, W.4
Sculley, T.5
Carr, S.A.6
Sabatini, D.M.7
-
16
-
-
33749076673
-
SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity
-
Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY, Huang Q, Qin J, and Su B (2006). SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127, 125-137.
-
(2006)
Cell
, vol.127
, pp. 125-137
-
-
Jacinto, E.1
Facchinetti, V.2
Liu, D.3
Soto, N.4
Wei, S.5
Jung, S.Y.6
Huang, Q.7
Qin, J.8
Su, B.9
-
17
-
-
33751079895
-
Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity
-
Yang Q, Inoki K, Ikenoue T, and Guan KL (2006). Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity. Genes Dev 20, 2820-2832.
-
(2006)
Genes Dev
, vol.20
, pp. 2820-2832
-
-
Yang, Q.1
Inoki, K.2
Ikenoue, T.3
Guan, K.L.4
-
18
-
-
34347210090
-
Identification of Protor as a novel Rictor-binding component of mTOR complex-2
-
Pearce LR, Huang X, Boudeau J, Pawłowski R, Wullschleger S, Deak M, Ibrahim AF, Gourlay R, Magnuson MA, and Alessi DR (2007). Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem J 405, 513-522.
-
(2007)
Biochem J
, vol.405
, pp. 513-522
-
-
Pearce, L.R.1
Huang, X.2
Boudeau, J.3
Pawłowski, R.4
Wullschleger, S.5
Deak, M.6
Ibrahim, A.F.7
Gourlay, R.8
Magnuson, M.A.9
Alessi, D.R.10
-
19
-
-
34548509880
-
PRR5, a novel component of mTOR complex 2, regulates platelet-derived growth factor receptor β expression and signaling
-
Woo SY, Kim DH, Jun CB, Kim YM, Haar EV, Lee SI, Hegg JW, Bandhakavi S, Griffin TJ, and Kim DH (2007). PRR5, a novel component of mTOR complex 2, regulates platelet-derived growth factor receptor β expression and signaling. J Biol Chem 282, 25604-25612.
-
(2007)
J Biol Chem
, vol.282
, pp. 25604-25612
-
-
Woo, S.Y.1
Kim, D.H.2
Jun, C.B.3
Kim, Y.M.4
Haar, E.V.5
Lee, S.I.6
Hegg, J.W.7
Bandhakavi, S.8
Griffin, T.J.9
Kim, D.H.10
-
20
-
-
58649092475
-
mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum and glucocorticoid-induced protein kinase 1 (SGK1)
-
García-Martínez JM and Alessi DR (2008). mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J 416, 375-385.
-
(2008)
Biochem J
, vol.416
, pp. 375-385
-
-
García-Martínez, J.M.1
Alessi, D.R.2
-
21
-
-
67349241955
-
DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival
-
Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM, Gray NS, and Sabatini DM (2009). DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137, 873-886.
-
(2009)
Cell
, vol.137
, pp. 873-886
-
-
Peterson, T.R.1
Laplante, M.2
Thoreen, C.C.3
Sancak, Y.4
Kang, S.A.5
Kuehl, W.M.6
Gray, N.S.7
Sabatini, D.M.8
-
22
-
-
79953183694
-
Differing effects of rapamycin and mTOR kinase inhibitors on protein synthesis
-
Huo Y, Iadevaia V, and Proud CG (2011). Differing effects of rapamycin and mTOR kinase inhibitors on protein synthesis. Biochem Soc Trans 39, 446-450.
-
(2011)
Biochem Soc Trans
, vol.39
, pp. 446-450
-
-
Huo, Y.1
Iadevaia, V.2
Proud, C.G.3
-
23
-
-
34247279338
-
Inhibition of the mammalian target of rapamycin impedes lymphangiogenesis
-
Huber S, Bruns CJ, Schmid G, Hermann PC, Conrad C, Niess H, Huss R, Graeb C, Jauch KW, Heeschen C, et al. (2007). Inhibition of the mammalian target of rapamycin impedes lymphangiogenesis. Kidney Int 71, 771-777.
-
(2007)
Kidney Int
, vol.71
, pp. 771-777
-
-
Huber, S.1
Bruns, C.J.2
Schmid, G.3
Hermann, P.C.4
Conrad, C.5
Niess, H.6
Huss, R.7
Graeb, C.8
Jauch, K.W.9
Heeschen, C.10
-
24
-
-
34147121375
-
Rapamycin, a specific inhibitor of the mammalian target of rapamycin, suppresses lymphangiogenesis and lymphatic metastasis
-
Kobayashi S, Kishimoto T, Kamata S, Otsuka M, Miyazaki M, and Ishikura H (2007). Rapamycin, a specific inhibitor of the mammalian target of rapamycin, suppresses lymphangiogenesis and lymphatic metastasis. Cancer Sci 98, 726-733.
-
(2007)
Cancer Sci
, vol.98
, pp. 726-733
-
-
Kobayashi, S.1
Kishimoto, T.2
Kamata, S.3
Otsuka, M.4
Miyazaki, M.5
Ishikura, H.6
-
25
-
-
67349226686
-
IL-20 activates human lymphatic endothelial cells causing cell signalling and tube formation
-
Hammer T, Tritsaris K, Hübschmann MV, Gibson J, Nisato RE, Pepper MS, and Dissing S (2009). IL-20 activates human lymphatic endothelial cells causing cell signalling and tube formation. Microvasc Res 78, 25-32.
-
(2009)
Microvasc Res
, vol.78
, pp. 25-32
-
-
Hammer, T.1
Tritsaris, K.2
Hübschmann, M.V.3
Gibson, J.4
Nisato, R.E.5
Pepper, M.S.6
Dissing, S.7
-
26
-
-
0028938746
-
Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development
-
Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH, Dumont D, Breitman M, and Alitalo K (1995). Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 92, 3566-3570.
-
(1995)
Proc Natl Acad Sci USA
, vol.92
, pp. 3566-3570
-
-
Kaipainen, A.1
Korhonen, J.2
Mustonen, T.3
van Hinsbergh, V.W.4
Fang, G.H.5
Dumont, D.6
Breitman, M.7
Alitalo, K.8
-
27
-
-
0030453355
-
VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development
-
Kukk E, Lymboussaki A, Taira S, Kaipainen A, Jeltsch M, Joukov V, and Alitalo K (1996). VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development 122, 3829-3837.
-
(1996)
Development
, vol.122
, pp. 3829-3837
-
-
Kukk, E.1
Lymboussaki, A.2
Taira, S.3
Kaipainen, A.4
Jeltsch, M.5
Joukov, V.6
Alitalo, K.7
-
28
-
-
0242624291
-
Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/ D receptor VEGFR-3
-
Mäkinen T, Veikkola T, Mustjoki S, Karpanen T, Catimel B, Nice EC, Wise L, Mercer A, Kowalski H, Kerjaschki D, et al. (2001). Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/ D receptor VEGFR-3. EMBO J 20, 4762-4773.
-
(2001)
EMBO J
, vol.20
, pp. 4762-4773
-
-
Mäkinen, T.1
Veikkola, T.2
Mustjoki, S.3
Karpanen, T.4
Catimel, B.5
Nice, E.C.6
Wise, L.7
Mercer, A.8
Kowalski, H.9
Kerjaschki, D.10
-
29
-
-
0035122695
-
Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3
-
Mäkinen T, Jussila L, Veikkola T, Karpanen T, Kettunen MI, Pulkkanen KJ, Kauppinen R, Jackson DG, Kubo H, Nishikawa S, et al. (2001). Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat Med 7, 199-205.
-
(2001)
Nat Med
, vol.7
, pp. 199-205
-
-
Mäkinen, T.1
Jussila, L.2
Veikkola, T.3
Karpanen, T.4
Kettunen, M.I.5
Pulkkanen, K.J.6
Kauppinen, R.7
Jackson, D.G.8
Kubo, H.9
Nishikawa, S.10
-
30
-
-
0037024472
-
Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling
-
He Y, Kozaki K, Karpanen T, Koshikawa K, Yla-Herttuala S, Takahashi T, and Alitalo K (2002). Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst 94, 819-825.
-
(2002)
J Natl Cancer Inst
, vol.94
, pp. 819-825
-
-
He, Y.1
Kozaki, K.2
Karpanen, T.3
Koshikawa, K.4
Yla-Herttuala, S.5
Takahashi, T.6
Alitalo, K.7
-
31
-
-
0037310399
-
Differential in vivo and in vitro expression of vascular endothelial growth factor (VEGF)-C and VEGF-D in tumors and its relationship to lymphatic metastasis in immunocompetent rats
-
Krishnan J, Kirkin V, Steffen A, Hegen M, Weih D, Tomarev S, Wilting J, and Sleeman JP (2003). Differential in vivo and in vitro expression of vascular endothelial growth factor (VEGF)-C and VEGF-D in tumors and its relationship to lymphatic metastasis in immunocompetent rats. Cancer Res 63, 713-722.
-
(2003)
Cancer Res
, vol.63
, pp. 713-722
-
-
Krishnan, J.1
Kirkin, V.2
Steffen, A.3
Hegen, M.4
Weih, D.5
Tomarev, S.6
Wilting, J.7
Sleeman, J.P.8
-
32
-
-
27344431724
-
Insulin-like growth factors 1 and 2 induce lymphangiogenesis in vivo
-
Björndahl M, Cao R, Nissen LJ, Clasper S, Johnson LA, Xue Y, Zhou Z, Jackson D, Hansen AJ, and Cao Y (2005). Insulin-like growth factors 1 and 2 induce lymphangiogenesis in vivo. Proc Natl Acad Sci USA 102, 15593-15598.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 15593-15598
-
-
Björndahl, M.1
Cao, R.2
Nissen, L.J.3
Clasper, S.4
Johnson, L.A.5
Xue, Y.6
Zhou, Z.7
Jackson, D.8
Hansen, A.J.9
Cao, Y.10
-
33
-
-
77951879658
-
Inhibition of cancer cell proliferation and metastasis by insulin receptor down regulation
-
Zhang H, Fagan DH, Zeng X, Freeman KT, Sachdev D, and Yee D (2010). Inhibition of cancer cell proliferation and metastasis by insulin receptor down regulation. Oncogene 29, 2517-2527.
-
(2010)
Oncogene
, vol.29
, pp. 2517-2527
-
-
Zhang, H.1
Fagan, D.H.2
Zeng, X.3
Freeman, K.T.4
Sachdev, D.5
Yee, D.6
-
34
-
-
79955633342
-
The fungicide ciclopirox inhibits lymphatic endothelial cell tube formation by suppressing VEGFR-3-mediated ERK signaling pathway
-
Luo Y, Zhou H, Liu L, Shen T, Chen W, Xu B, Han X, Zhang F, Scott RS, Alexander JS, et al. (2011). The fungicide ciclopirox inhibits lymphatic endothelial cell tube formation by suppressing VEGFR-3-mediated ERK signaling pathway. Oncogene 30, 2098-2107.
-
(2011)
Oncogene
, vol.30
, pp. 2098-2107
-
-
Luo, Y.1
Zhou, H.2
Liu, L.3
Shen, T.4
Chen, W.5
Xu, B.6
Han, X.7
Zhang, F.8
Scott, R.S.9
Alexander, J.S.10
-
35
-
-
27744465992
-
Homogeneity of mesothelial cells with lymphatic endothelium: Expression of lymphatic endothelial markers by mesothelial cells
-
Ando T, Jordan P, Wang Y, Jennings MH, Harper MH, Houghton J, Elrod J, and Alexander JS (2005). Homogeneity of mesothelial cells with lymphatic endothelium: expression of lymphatic endothelial markers by mesothelial cells. Lymphat Res Biol 3, 117-125.
-
(2005)
Lymphat Res Biol
, vol.3
, pp. 117-125
-
-
Ando, T.1
Jordan, P.2
Wang, Y.3
Jennings, M.H.4
Harper, M.H.5
Houghton, J.6
Elrod, J.7
Alexander, J.S.8
-
36
-
-
78049512724
-
The antitumor activity of the fungicide ciclopirox
-
Zhou H, Shen T, Luo Y, Liu L, Chen W, Xu B, Han X, Pang J, Rivera CA, and Huang S (2010). The antitumor activity of the fungicide ciclopirox. Int J Cancer 127, 2467-2477.
-
(2010)
Int J Cancer
, vol.127
, pp. 2467-2477
-
-
Zhou, H.1
Shen, T.2
Luo, Y.3
Liu, L.4
Chen, W.5
Xu, B.6
Han, X.7
Pang, J.8
Rivera, C.A.9
Huang, S.10
-
37
-
-
78649637235
-
Rapamycin inhibits cytoskeleton reorganization and cell motility by suppressing RhoA expression and activity
-
Liu L, Luo Y, Chen L, Shen T, Xu B, Chen W, Zhou H, Han X, and Huang S (2010). Rapamycin inhibits cytoskeleton reorganization and cell motility by suppressing RhoA expression and activity. J Biol Chem 285, 38362-38373.
-
(2010)
J Biol Chem
, vol.285
, pp. 38362-38373
-
-
Liu, L.1
Luo, Y.2
Chen, L.3
Shen, T.4
Xu, B.5
Chen, W.6
Zhou, H.7
Han, X.8
Huang, S.9
-
38
-
-
79551488995
-
Cadmium induction of reactive oxygen species activates the mTOR pathway, leading to neuronal cell death
-
Chen L, Xu B, Liu L, Luo Y, Zhou H, Chen W, Shen T, Han X, Kontos CD, and Huang S (2011). Cadmium induction of reactive oxygen species activates the mTOR pathway, leading to neuronal cell death. Free Radic Biol Med 50, 624-632.
-
(2011)
Free Radic Biol Med
, vol.50
, pp. 624-632
-
-
Chen, L.1
Xu, B.2
Liu, L.3
Luo, Y.4
Zhou, H.5
Chen, W.6
Shen, T.7
Han, X.8
Kontos, C.D.9
Huang, S.10
-
39
-
-
0035965295
-
The mammalian target of rapamycin regulates C2C12 myogenesis via a kinase-independent mechanism
-
Erbay E and Chen J (2001). The mammalian target of rapamycin regulates C2C12 myogenesis via a kinase-independent mechanism. J Biol Chem 276, 36079-36082.
-
(2001)
J Biol Chem
, vol.276
, pp. 36079-36082
-
-
Erbay, E.1
Chen, J.2
-
40
-
-
0034654174
-
Modulation of hypoxia-inducible factor 1α expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/ FRAP pathway in human prostate cancer cells: Implications for tumor angiogenesis and therapeutics
-
Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, Georgescu MM, Simons JW, and Semenza GL (2000). Modulation of hypoxia-inducible factor 1α expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/ FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 60, 1541-1545.
-
(2000)
Cancer Res
, vol.60
, pp. 1541-1545
-
-
Zhong, H.1
Chiles, K.2
Feldser, D.3
Laughner, E.4
Hanrahan, C.5
Georgescu, M.M.6
Simons, J.W.7
Semenza, G.L.8
-
41
-
-
0036174289
-
Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: Involvement of vascular endothelial growth factor
-
Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M, Bruns CJ, Zuelke C, Farkas S, Anthuber M, et al. (2002). Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 8, 128-135.
-
(2002)
Nat Med
, vol.8
, pp. 128-135
-
-
Guba, M.1
von Breitenbuch, P.2
Steinbauer, M.3
Koehl, G.4
Flegel, S.5
Hornung, M.6
Bruns, C.J.7
Zuelke, C.8
Farkas, S.9
Anthuber, M.10
-
42
-
-
0035266283
-
Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth
-
Karpanen T, Egeblad M, Karkkainen MJ, Kubo H, Ylä-Herttuala S, Jäättelä M, and Alitalo K (2001). Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res 61, 1786-1790.
-
(2001)
Cancer Res
, vol.61
, pp. 1786-1790
-
-
Karpanen, T.1
Egeblad, M.2
Karkkainen, M.J.3
Kubo, H.4
Ylä-Herttuala, S.5
Jäättelä, M.6
Alitalo, K.7
-
43
-
-
33746633329
-
Lymphangiogenic growth factor responsiveness is modulated by postnatal lymphatic vessel maturation
-
Karpanen T, Wirzenius M, Mäkinen T, Veikkola T, Haisma HJ, Achen MG, Stacker SA, Pytowski B, Ylä-Herttuala S, and Alitalo K (2006). Lymphangiogenic growth factor responsiveness is modulated by postnatal lymphatic vessel maturation. Am J Pathol 169, 708-718.
-
(2006)
Am J Pathol
, vol.169
, pp. 708-718
-
-
Karpanen, T.1
Wirzenius, M.2
Mäkinen, T.3
Veikkola, T.4
Haisma, H.J.5
Achen, M.G.6
Stacker, S.A.7
Pytowski, B.8
Ylä-Herttuala, S.9
Alitalo, K.10
-
44
-
-
23044501991
-
Inhibition of lymphogenous metastasis using adeno-associated virus-mediated gene transfer of a soluble VEGFR-3 decoy receptor
-
Lin J, Lalani AS, Harding TC, Gonzalez M, Wu WW, Luan B, Tu GH, Koprivnikar K, VanRoey MJ, He Y, et al. (2005). Inhibition of lymphogenous metastasis using adeno-associated virus-mediated gene transfer of a soluble VEGFR-3 decoy receptor. Cancer Res 65, 6901-6909.
-
(2005)
Cancer Res
, vol.65
, pp. 6901-6909
-
-
Lin, J.1
Lalani, A.S.2
Harding, T.C.3
Gonzalez, M.4
Wu, W.W.5
Luan, B.6
Tu, G.H.7
Koprivnikar, K.8
Vanroey, M.J.9
He, Y.10
-
45
-
-
21144437844
-
Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels
-
He Y, Rajantie I, Pajusola K, Jeltsch M, Holopainen T, Yla-Herttuala S, Harding T, Jooss K, Takahashi T, and Alitalo K (2005). Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels. Cancer Res 65, 4739-4746.
-
(2005)
Cancer Res
, vol.65
, pp. 4739-4746
-
-
He, Y.1
Rajantie, I.2
Pajusola, K.3
Jeltsch, M.4
Holopainen, T.5
Yla-Herttuala, S.6
Harding, T.7
Jooss, K.8
Takahashi, T.9
Alitalo, K.10
-
46
-
-
0141842637
-
CEP-7055: A novel, orally active pan inhibitor of vascular endothelial growth factor receptor tyrosine kinases with potent antiangiogenic activity and antitumor efficacy in preclinical models
-
Ruggeri B, Singh J, Gingrich D, Angeles T, Albom M, Yang S, Chang H, Robinson C, Hunter K, Dobrzanski P, et al. (2003). CEP-7055: a novel, orally active pan inhibitor of vascular endothelial growth factor receptor tyrosine kinases with potent antiangiogenic activity and antitumor efficacy in preclinical models. Cancer Res 63, 5978-5991.
-
(2003)
Cancer Res
, vol.63
, pp. 5978-5991
-
-
Ruggeri, B.1
Singh, J.2
Gingrich, D.3
Angeles, T.4
Albom, M.5
Yang, S.6
Chang, H.7
Robinson, C.8
Hunter, K.9
Dobrzanski, P.10
-
47
-
-
0037172970
-
Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea
-
Kubo H, Cao R, Brakenhielm E, Mäkinen T, Cao Y, and Alitalo K (2002). Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea. Proc Natl Acad Sci USA 99, 8868-8873.
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, pp. 8868-8873
-
-
Kubo, H.1
Cao, R.2
Brakenhielm, E.3
Mäkinen, T.4
Cao, Y.5
Alitalo, K.6
-
48
-
-
4143121247
-
Dose-dependent response of FGF-2 for lymphangiogenesis
-
Chang LK, Garcia-Cardeña G, Farnebo F, Fannon M, Chen EJ, Butterfield C, Moses MA, Mulligan RC, Folkman J, and Kaipainen A (2004). Dose-dependent response of FGF-2 for lymphangiogenesis. Proc Natl Acad Sci USA 101, 11658-11663.
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, pp. 11658-11663
-
-
Chang, L.K.1
Garcia-Cardeña, G.2
Farnebo, F.3
Fannon, M.4
Chen, E.J.5
Butterfield, C.6
Moses, M.A.7
Mulligan, R.C.8
Folkman, J.9
Kaipainen, A.10
-
49
-
-
5444266254
-
PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis
-
Cao R, Björndahl MA, Religa P, Clasper S, Garvin S, Galter D, Meister B, Ikomi F, Tritsaris K, Dissing S, et al. (2004). PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell 6, 333-345.
-
(2004)
Cancer Cell
, vol.6
, pp. 333-345
-
-
Cao, R.1
Björndahl, M.A.2
Religa, P.3
Clasper, S.4
Garvin, S.5
Galter, D.6
Meister, B.7
Ikomi, F.8
Tritsaris, K.9
Dissing, S.10
-
50
-
-
30544452034
-
Hepatocyte growth factor promotes lymphatic vessel formation and function
-
Kajiya K, Hirakawa S, Ma B, Drinnenberg I, and Detmar M (2005). Hepatocyte growth factor promotes lymphatic vessel formation and function. EMBO J 24, 2885-2895.
-
(2005)
EMBO J
, vol.24
, pp. 2885-2895
-
-
Kajiya, K.1
Hirakawa, S.2
Ma, B.3
Drinnenberg, I.4
Detmar, M.5
-
51
-
-
0030006574
-
Enhanced expression of vascular endothelial growth factor in human SaOS-2 osteoblast-like cells and murine osteoblasts induced by insulin-like growth factor I
-
Goad DL, Rubin J, Wang H, Tashjian AH Jr, and Patterson C (1996). Enhanced expression of vascular endothelial growth factor in human SaOS-2 osteoblast-like cells and murine osteoblasts induced by insulin-like growth factor I. Endocrinology 137, 2262-2268.
-
(1996)
Endocrinology
, vol.137
, pp. 2262-2268
-
-
Goad, D.L.1
Rubin, J.2
Wang, H.3
Tashjian Jr., A.H.4
Patterson, C.5
-
52
-
-
81855181738
-
mTOR drives its own activation via SCF (βTrCP)-dependent degradation of the mTOR inhibitor DEPTOR
-
Gao D, Inuzuka H, Tan MK, Fukushima H, Locasale JW, Liu P, Wan L, Zhai B, Chin YR, Shaik S, et al. (2011). mTOR drives its own activation via SCF (βTrCP)-dependent degradation of the mTOR inhibitor DEPTOR. Mol Cell 44, 290-303.
-
(2011)
Mol Cell
, vol.44
, pp. 290-303
-
-
Gao, D.1
Inuzuka, H.2
Tan, M.K.3
Fukushima, H.4
Locasale, J.W.5
Liu, P.6
Wan, L.7
Zhai, B.8
Chin, Y.R.9
Shaik, S.10
-
53
-
-
81855167585
-
DEPTOR, an mTOR inhibitor, is a physiological substrate of SCF(βTrCP) E3 ubiquitin ligase and regulates survival and autophagy
-
Zhao Y, Xiong X, and Sun Y (2011). DEPTOR, an mTOR inhibitor, is a physiological substrate of SCF(βTrCP) E3 ubiquitin ligase and regulates survival and autophagy. Mol Cell 44, 304-316.
-
(2011)
Mol Cell
, vol.44
, pp. 304-316
-
-
Zhao, Y.1
Xiong, X.2
Sun, Y.3
-
54
-
-
81855228182
-
mTOR generates an auto-amplification loop by triggering the βTrCP and CK1α-dependent degradation of DEPTOR
-
Duan S, Skaar JR, Kuchay S, Toschi A, Kanarek N, Ben-Neriah Y, and Pagano M (2011). mTOR generates an auto-amplification loop by triggering the βTrCP and CK1α-dependent degradation of DEPTOR. Mol Cell 44, 317-324.
-
(2011)
Mol Cell
, vol.44
, pp. 317-324
-
-
Duan, S.1
Skaar, J.R.2
Kuchay, S.3
Toschi, A.4
Kanarek, N.5
Ben-Neriah, Y.6
Pagano, M.7
|