메뉴 건너뛰기




Volumn 3, Issue 2, 2012, Pages 96-106

Glucose-dependent insulinotropic polypeptide signaling in pancreatic β-cells and adipocytes

Author keywords

Apoptosis; Glucose dependent insulinotropic polypeptide; Incretin

Indexed keywords

APOPTOSIS SIGNAL REGULATING KINASE 1; CYCLIC AMP; CYCLIC AMP DEPENDENT PROTEIN KINASE; EXCHANGE PROTEIN DIRECTLY ACTIVATED BY CYCLIC ADENOSINE MONOPHOSPHATE 2; G PROTEIN COUPLED RECEPTOR; GASTRIC INHIBITORY POLYPEPTIDE; GLUCAGON LIKE PEPTIDE 1; GLUCOSE DEPENDENT INSULINOTROPIC POLYPEPTIDE RECEPTOR; INCRETIN; INSULIN; LIPOPROTEIN LIPASE; MESSENGER RNA; PROTEIN BCL 2; PROTEIN KINASE B; RESISTIN; UNCLASSIFIED DRUG; VOLTAGE GATED POTASSIUM CHANNEL;

EID: 84859124238     PISSN: 20401116     EISSN: 20401124     Source Type: Journal    
DOI: 10.1111/j.2040-1124.2012.00196.x     Document Type: Review
Times cited : (43)

References (123)
  • 1
    • 33746467477 scopus 로고    scopus 로고
    • The glucagon-like peptides: pleiotropic regulators of nutrient homeostasis
    • Brubaker PL. The glucagon-like peptides: pleiotropic regulators of nutrient homeostasis. Ann N Y Acad Sci 2006; 1070: 10-26.
    • (2006) Ann N Y Acad Sci , vol.1070 , pp. 10-26
    • Brubaker, P.L.1
  • 2
    • 33846006173 scopus 로고    scopus 로고
    • The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type2 diabetes
    • Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type2 diabetes. Lancet 2006; 368: 1696-1705.
    • (2006) Lancet , vol.368 , pp. 1696-1705
    • Drucker, D.J.1    Nauck, M.A.2
  • 3
    • 61349172037 scopus 로고    scopus 로고
    • Glucose-dependent insulinotropic polypeptide (Gastric Inhibitory Polypeptide; GIP)
    • McIntosh CHS, Widenmaier S, Kim S-J. Glucose-dependent insulinotropic polypeptide (Gastric Inhibitory Polypeptide; GIP). Vitam Horm 2009; 80: 409-471.
    • (2009) Vitam Horm , vol.80 , pp. 409-471
    • McIntosh, C.H.S.1    Widenmaier, S.2    Kim, S.-J.3
  • 5
    • 57649234120 scopus 로고    scopus 로고
    • The incretin system and its role in type2 diabetes mellitus
    • Holst JJ, Vilsbøll T, Deacon CF. The incretin system and its role in type2 diabetes mellitus. Mol Cell Endocrinol 2009; 297: 127-136.
    • (2009) Mol Cell Endocrinol , vol.297 , pp. 127-136
    • Holst, J.J.1    Vilsbøll, T.2    Deacon, C.F.3
  • 6
    • 38449113836 scopus 로고    scopus 로고
    • Dipeptidyl peptidase IV inhibitors and diabetes therapy
    • McIntosh CHS. Dipeptidyl peptidase IV inhibitors and diabetes therapy. Front Biosci 2008; 13: 1753-1773.
    • (2008) Front Biosci , vol.13 , pp. 1753-1773
    • McIntosh, C.H.S.1
  • 7
    • 67349171365 scopus 로고    scopus 로고
    • Molecular evolution of mammalian incretin hormone genes
    • Irwin D. Molecular evolution of mammalian incretin hormone genes. Regul Pept 2009; 155: 121-130.
    • (2009) Regul Pept , vol.155 , pp. 121-130
    • Irwin, D.1
  • 8
    • 0028945815 scopus 로고
    • Effects of glucose-dependent insulinotropic polypeptide and glucagon-like peptide-I-(7-36) on insulin secretion
    • Jia X, Brown JC, Ma P, et al. Effects of glucose-dependent insulinotropic polypeptide and glucagon-like peptide-I-(7-36) on insulin secretion. Am J Physiol 1995; 268: E645-E651.
    • (1995) Am J Physiol , vol.268
    • Jia, X.1    Brown, J.C.2    Ma, P.3
  • 9
    • 0017189728 scopus 로고
    • The insulinotropic action of gastric inhibitory polypeptide in the perfused isolated rat pancreas
    • Pederson RA, Brown JC. The insulinotropic action of gastric inhibitory polypeptide in the perfused isolated rat pancreas. Endocrinology 1976; 99: 780-785.
    • (1976) Endocrinology , vol.99 , pp. 780-785
    • Pederson, R.A.1    Brown, J.C.2
  • 10
    • 0038121744 scopus 로고    scopus 로고
    • Both GLP-1 and GIP are insulinotropic at basal and postprandial glucose levels and contribute nearly equally to the incretin effect of a meal in healthy subjects
    • Vilsbøll T, Krarup T, Madsbad S, et al. Both GLP-1 and GIP are insulinotropic at basal and postprandial glucose levels and contribute nearly equally to the incretin effect of a meal in healthy subjects. Regul Pept 2003; 114: 115-121.
    • (2003) Regul Pept , vol.114 , pp. 115-121
    • Vilsbøll, T.1    Krarup, T.2    Madsbad, S.3
  • 11
    • 33644618433 scopus 로고    scopus 로고
    • The biology of incretin hormones
    • Drucker DJ. The biology of incretin hormones. Cell Metab 2006; 3: 153-165.
    • (2006) Cell Metab , vol.3 , pp. 153-165
    • Drucker, D.J.1
  • 12
    • 34248223285 scopus 로고    scopus 로고
    • Biology of incretins: GLP-1 and GIP
    • Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007; 132: 2131-2157.
    • (2007) Gastroenterology , vol.132 , pp. 2131-2157
    • Baggio, L.L.1    Drucker, D.J.2
  • 13
    • 33847617011 scopus 로고    scopus 로고
    • Mechanisms of action of glucagon-like peptide 1 in the pancreas
    • Doyle ME, Egan JM. Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol Ther 2007; 113: 546-593.
    • (2007) Pharmacol Ther , vol.113 , pp. 546-593
    • Doyle, M.E.1    Egan, J.M.2
  • 14
    • 70350077089 scopus 로고    scopus 로고
    • New insights into the role of cAMP in the production and function of the incretin hormone glucagon-like peptide-1 (GLP-1)
    • Yu Z, Jin T. New insights into the role of cAMP in the production and function of the incretin hormone glucagon-like peptide-1 (GLP-1). Cell Signal 2010; 22: 1-8.
    • (2010) Cell Signal , vol.22 , pp. 1-8
    • Yu, Z.1    Jin, T.2
  • 15
    • 78649358628 scopus 로고    scopus 로고
    • Epac2-dependent rap1 activation and the control of islet insulin secretion by glucagon-like peptide-1
    • Leech CA, Chepurny OG, Holz GG. Epac2-dependent rap1 activation and the control of islet insulin secretion by glucagon-like peptide-1. Vitam Horm 2010; 84: 279-302.
    • (2010) Vitam Horm , vol.84 , pp. 279-302
    • Leech, C.A.1    Chepurny, O.G.2    Holz, G.G.3
  • 16
    • 3543022707 scopus 로고    scopus 로고
    • Molecular defects in insulin secretion in type-2 diabetes
    • Ashcroft F, Rorsman P. Molecular defects in insulin secretion in type-2 diabetes. Rev Endocr Metab Disord 2004; 4: 135-142.
    • (2004) Rev Endocr Metab Disord , vol.4 , pp. 135-142
    • Ashcroft, F.1    Rorsman, P.2
  • 17
    • 4344664674 scopus 로고    scopus 로고
    • Plasticity of the beta cell insulin secretory competence: preparing the pancreatic beta cell for the next meal
    • Hinke SA, Hellemans K, Schuit FC. Plasticity of the beta cell insulin secretory competence: preparing the pancreatic beta cell for the next meal. J Physiol (Lond) 2004; 558: 369-380.
    • (2004) J Physiol (Lond) , vol.558 , pp. 369-380
    • Hinke, S.A.1    Hellemans, K.2    Schuit, F.C.3
  • 18
    • 57349170894 scopus 로고    scopus 로고
    • Channel regulation of glucose sensing in the pancreatic beta-cell
    • Hiriart M, Aguilar-Bryan L. Channel regulation of glucose sensing in the pancreatic beta-cell. Am J Physiol Endocrinol Metab 2008; 295: 1298-1306.
    • (2008) Am J Physiol Endocrinol Metab , vol.295 , pp. 1298-1306
    • Hiriart, M.1    Aguilar-Bryan, L.2
  • 19
    • 0042879894 scopus 로고    scopus 로고
    • + channels in pancreatic beta cells: role, regulation and potential as therapeutic targets
    • + channels in pancreatic beta cells: role, regulation and potential as therapeutic targets. Diabetologia 2003; 46: 1046-1062.
    • (2003) Diabetologia , vol.46 , pp. 1046-1062
    • MacDonald, P.1    Wheeler, M.B.2
  • 20
    • 0035824548 scopus 로고    scopus 로고
    • Critical role of cAMP-GEFII--Rim2 complex in incretin-potentiated insulin secretion
    • Kashima Y, Miki T, Shibasaki T, et al. Critical role of cAMP-GEFII--Rim2 complex in incretin-potentiated insulin secretion. J Biol Chem 2001; 276: 46046-46053.
    • (2001) J Biol Chem , vol.276 , pp. 46046-46053
    • Kashima, Y.1    Miki, T.2    Shibasaki, T.3
  • 21
    • 25444520038 scopus 로고    scopus 로고
    • PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis
    • Seino S, Shibasaki T. PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis. Physiol Rev 2005; 85: 1303-1342.
    • (2005) Physiol Rev , vol.85 , pp. 1303-1342
    • Seino, S.1    Shibasaki, T.2
  • 22
    • 0034118750 scopus 로고    scopus 로고
    • Role of glucose in chronic desensitization of isolated rat islets and mouse insulinoma (betaTC-3) cells to glucose-dependent insulinotropic polypeptide
    • Hinke SA, Pauly RP, Ehses J, et al. Role of glucose in chronic desensitization of isolated rat islets and mouse insulinoma (betaTC-3) cells to glucose-dependent insulinotropic polypeptide. J Endocrinol 2000; 165: 281-291.
    • (2000) J Endocrinol , vol.165 , pp. 281-291
    • Hinke, S.A.1    Pauly, R.P.2    Ehses, J.3
  • 23
    • 0037020242 scopus 로고    scopus 로고
    • Glucose-dependent insulinotropic polypeptide activates the Raf-Mek1/2-ERK1/2 module via a cyclic AMP/cAMP-dependent protein kinase/Rap1-mediated pathway
    • Ehses JA, Pelech SL, Pederson RA, et al. Glucose-dependent insulinotropic polypeptide activates the Raf-Mek1/2-ERK1/2 module via a cyclic AMP/cAMP-dependent protein kinase/Rap1-mediated pathway. J Biol Chem 2002; 277: 37088-37097.
    • (2002) J Biol Chem , vol.277 , pp. 37088-37097
    • Ehses, J.A.1    Pelech, S.L.2    Pederson, R.A.3
  • 24
    • 38349134789 scopus 로고    scopus 로고
    • 2+ and cAMP oscillations in pancreatic beta-cells: a role for glucose metabolism and GLP-1 receptors?
    • 2+ and cAMP oscillations in pancreatic beta-cells: a role for glucose metabolism and GLP-1 receptors? Am J Physiol Cell Physiol 2008; 294: C4-C6.
    • (2008) Am J Physiol Cell Physiol , vol.294
    • Holz, G.G.1    Heart, E.2    Leech, C.A.3
  • 25
    • 34447510936 scopus 로고    scopus 로고
    • 2+ regulation of adenylyl cyclase in cAMP microdomains
    • 2+ regulation of adenylyl cyclase in cAMP microdomains. Physiol Rev 2007; 87: 965-1010.
    • (2007) Physiol Rev , vol.87 , pp. 965-1010
    • Willoughby, D.1    Cooper, D.2
  • 26
    • 37149054439 scopus 로고    scopus 로고
    • 2+ and G protein-coupled receptors in the pancreatic beta-cell: a computational approach
    • 2+ and G protein-coupled receptors in the pancreatic beta-cell: a computational approach. Am J Physiol Cell Physiol 2007; 294: C1924-C1933.
    • (2007) Am J Physiol Cell Physiol , vol.294
    • Fridlyand, L.E.1    Harbeck, M.C.2    Roe, M.W.3
  • 27
    • 12244305595 scopus 로고    scopus 로고
    • New insights concerning the glucose-dependent insulin secretagogue action of glucagon-like peptide-1 in pancreatic beta-cells
    • Holz GG. New insights concerning the glucose-dependent insulin secretagogue action of glucagon-like peptide-1 in pancreatic beta-cells. Horm Metab Res 2004; 36: 787-794.
    • (2004) Horm Metab Res , vol.36 , pp. 787-794
    • Holz, G.G.1
  • 28
    • 70350310990 scopus 로고    scopus 로고
    • Roles of cAMP signaling in insulin granule exocytosis
    • Seino S, Takahashi H, Fujimoto W, et al. Roles of cAMP signaling in insulin granule exocytosis. Diabetes Obes Metab 2009; 11(Suppl 4): 180-188.
    • (2009) Diabetes Obes Metab , vol.11 , Issue.SUPPL. 4 , pp. 180-188
    • Seino, S.1    Takahashi, H.2    Fujimoto, W.3
  • 29
    • 0347990624 scopus 로고    scopus 로고
    • Epac: A new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic beta-cell
    • Holz GG. Epac: A new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic beta-cell. Diabetes 2004; 53: 5-13.
    • (2004) Diabetes , vol.53 , pp. 5-13
    • Holz, G.G.1
  • 30
    • 33750730215 scopus 로고    scopus 로고
    • Cell physiology of cAMP sensor Epac
    • Holz GG, Kang G, Harbeck M, et al. Cell physiology of cAMP sensor Epac. J Physiol (Lond) 2006; 577: 5-15.
    • (2006) J Physiol (Lond) , vol.577 , pp. 5-15
    • Holz, G.G.1    Kang, G.2    Harbeck, M.3
  • 31
    • 77349096383 scopus 로고    scopus 로고
    • PKA-dependent potentiation of glucose-stimulated insulin secretion by Epac activator 8-pCPT-2′-O-Me-cAMP-AM in human islets of Langerhans
    • Chepurny OG, Kelley GG, Dzhura I, et al. PKA-dependent potentiation of glucose-stimulated insulin secretion by Epac activator 8-pCPT-2′-O-Me-cAMP-AM in human islets of Langerhans. Am J Physiol Endocrinol Metab 2010; 298: E622-E633.
    • (2010) Am J Physiol Endocrinol Metab , vol.298
    • Chepurny, O.G.1    Kelley, G.G.2    Dzhura, I.3
  • 32
    • 79957900616 scopus 로고    scopus 로고
    • Dynamics of insulin secretion and the clinical implications for obesity and diabetes
    • Seino S, Shibasaki T, Minami K. Dynamics of insulin secretion and the clinical implications for obesity and diabetes. J Clin Invest 2011; 121: 2118-2125.
    • (2011) J Clin Invest , vol.121 , pp. 2118-2125
    • Seino, S.1    Shibasaki, T.2    Minami, K.3
  • 33
    • 0031965604 scopus 로고    scopus 로고
    • Glucagon-like peptide 1 (7-36) amide stimulates exocytosis in human pancreatic beta-cells by both proximal and distal regulatory steps in stimulus-secretion coupling
    • Gromada J, Bokvist K, Ding WG, et al. Glucagon-like peptide 1 (7-36) amide stimulates exocytosis in human pancreatic beta-cells by both proximal and distal regulatory steps in stimulus-secretion coupling. Diabetes 1998; 47: 57-65.
    • (1998) Diabetes , vol.47 , pp. 57-65
    • Gromada, J.1    Bokvist, K.2    Ding, W.G.3
  • 34
    • 0036718447 scopus 로고    scopus 로고
    • Glucagon-like peptide-1 inhibits pancreatic ATP-sensitive potassium channels via a protein kinase A- and ADP-dependent mechanism
    • Light PE, Manning Fox JE, Riedel MJ, et al. Glucagon-like peptide-1 inhibits pancreatic ATP-sensitive potassium channels via a protein kinase A- and ADP-dependent mechanism. Mol Endocrinol 2002; 16: 2135-2144.
    • (2002) Mol Endocrinol , vol.16 , pp. 2135-2144
    • Light, P.E.1    Manning Fox, J.E.2    Riedel, M.J.3
  • 36
    • 64549105338 scopus 로고    scopus 로고
    • Critical role of the N-terminal cyclic AMP-binding domain of Epac2 in its subcellular localization and function
    • Niimura M, Miki T, Shibasaki T, et al. Critical role of the N-terminal cyclic AMP-binding domain of Epac2 in its subcellular localization and function. J Cell Physiol 2009; 219: 652-658.
    • (2009) J Cell Physiol , vol.219 , pp. 652-658
    • Niimura, M.1    Miki, T.2    Shibasaki, T.3
  • 37
    • 33744939752 scopus 로고    scopus 로고
    • cAMP sensor Epac as a determinant of ATP-sensitive potassium channel activity in human pancreatic beta cells and rat INS-1 cells
    • Kang G, Chepurny OG, Malester B, et al. cAMP sensor Epac as a determinant of ATP-sensitive potassium channel activity in human pancreatic beta cells and rat INS-1 cells. J Physiol (Lond) 2006; 573: 595-609.
    • (2006) J Physiol (Lond) , vol.573 , pp. 595-609
    • Kang, G.1    Chepurny, O.G.2    Malester, B.3
  • 39
    • 37649002935 scopus 로고    scopus 로고
    • Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP
    • Shibasaki T, Takahashi H, Miki T, et al. Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP. Proc Natl Acad Sci USA 2007; 104: 19333-19338.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 19333-19338
    • Shibasaki, T.1    Takahashi, H.2    Miki, T.3
  • 40
    • 79955793555 scopus 로고    scopus 로고
    • Phospholipase C-epsilon links Epac2 activation to the potentiation of glucose-stimulated insulin secretion from mouse islets of Langerhans
    • Dzhura I, Chepurny OG, Leech CA, et al. Phospholipase C-epsilon links Epac2 activation to the potentiation of glucose-stimulated insulin secretion from mouse islets of Langerhans. Islets 2011; 3: 121-128.
    • (2011) Islets , vol.3 , pp. 121-128
    • Dzhura, I.1    Chepurny, O.G.2    Leech, C.A.3
  • 41
    • 0032491319 scopus 로고    scopus 로고
    • PIP2 and PIP as determinants for ATP inhibition of KATP channels
    • Baukrowitz T, Schulte U, Oliver D, et al. PIP2 and PIP as determinants for ATP inhibition of KATP channels. Science 1998; 282: 1141-1144.
    • (1998) Science , vol.282 , pp. 1141-1144
    • Baukrowitz, T.1    Schulte, U.2    Oliver, D.3
  • 42
    • 0032491439 scopus 로고    scopus 로고
    • Membrane phospholipid control of nucleotide sensitivity of KATP channels
    • Shyng S-L, Nichols C. Membrane phospholipid control of nucleotide sensitivity of KATP channels. Science 1998; 282: 1138-1141.
    • (1998) Science , vol.282 , pp. 1138-1141
    • Shyng, S.-L.1    Nichols, C.2
  • 43
    • 0027869752 scopus 로고
    • Stimulation of insulin secretion and insulin gene expression by gastric inhibitory polypeptide
    • Lu M, Wheeler MB, Leng XH, et al. Stimulation of insulin secretion and insulin gene expression by gastric inhibitory polypeptide. Trans Assoc Am Phys 1993; 106: 42-53.
    • (1993) Trans Assoc Am Phys , vol.106 , pp. 42-53
    • Lu, M.1    Wheeler, M.B.2    Leng, X.H.3
  • 44
    • 0029082308 scopus 로고
    • Functional expression of the rat pancreatic islet glucose-dependent insulinotropic polypeptide receptor: ligand binding and intracellular signaling properties
    • Wheeler MB, Gelling RW, McIntosh CHS, et al. Functional expression of the rat pancreatic islet glucose-dependent insulinotropic polypeptide receptor: ligand binding and intracellular signaling properties. Endocrinology 1995; 136: 4629-4639.
    • (1995) Endocrinology , vol.136 , pp. 4629-4639
    • Wheeler, M.B.1    Gelling, R.W.2    McIntosh, C.H.S.3
  • 45
    • 15944419821 scopus 로고    scopus 로고
    • Distinct effects of glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 on insulin secretion and gut motility
    • Miki T, Minami K, Shinozaki H, et al. Distinct effects of glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 on insulin secretion and gut motility. Diabetes 2005; 54: 1056-1063.
    • (2005) Diabetes , vol.54 , pp. 1056-1063
    • Miki, T.1    Minami, K.2    Shinozaki, H.3
  • 46
    • 77949538387 scopus 로고    scopus 로고
    • Epac: defining a new mechanism for cAMP action
    • Gloerich M, Bos JL. Epac: defining a new mechanism for cAMP action. Annu Rev Pharmacol Toxicol 2010; 50: 355-375.
    • (2010) Annu Rev Pharmacol Toxicol , vol.50 , pp. 355-375
    • Gloerich, M.1    Bos, J.L.2
  • 47
    • 0035968291 scopus 로고    scopus 로고
    • A new pathway for glucose-dependent insulinotropic polypeptide (GIP) receptor signaling: evidence for the involvement of phospholipase A2 in GIP-stimulated insulin secretion
    • Ehses JA, Lee SS, Pederson RA, et al. A new pathway for glucose-dependent insulinotropic polypeptide (GIP) receptor signaling: evidence for the involvement of phospholipase A2 in GIP-stimulated insulin secretion. J Biol Chem 2001; 276: 23667-23673.
    • (2001) J Biol Chem , vol.276 , pp. 23667-23673
    • Ehses, J.A.1    Lee, S.S.2    Pederson, R.A.3
  • 48
    • 0036894315 scopus 로고    scopus 로고
    • The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion
    • MacDonald PE, El-Kholy W, Riedel MJ, et al. The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes 2002; 51(Suppl 3): S434-S442.
    • (2002) Diabetes , vol.51 , Issue.SUPPL. 3
    • MacDonald, P.E.1    El-Kholy, W.2    Riedel, M.J.3
  • 49
    • 23344449395 scopus 로고    scopus 로고
    • A novel mechanism for the suppression of a voltage-gated potassium channel by glucose-dependent insulinotropic polypeptide: protein kinase A-dependent endocytosis
    • Kim S-J, Choi WS, Han JSM, et al. A novel mechanism for the suppression of a voltage-gated potassium channel by glucose-dependent insulinotropic polypeptide: protein kinase A-dependent endocytosis. J Biol Chem 2005; 280: 28692-28700.
    • (2005) J Biol Chem , vol.280 , pp. 28692-28700
    • Kim, S.-J.1    Choi, W.S.2    Han, J.S.M.3
  • 50
    • 0036896712 scopus 로고    scopus 로고
    • + currents in beta-cells: a possible glucose-dependent insulinotropic mechanism
    • + currents in beta-cells: a possible glucose-dependent insulinotropic mechanism. Diabetes 2002; 51(Suppl 3): S443-S447.
    • (2002) Diabetes , vol.51 , Issue.SUPPL. 3
    • MacDonald, P.E.1    Salapatek, A.M.F.2    Wheeler, M.B.3
  • 51
    • 84855685549 scopus 로고    scopus 로고
    • Pancreatic β-cell prosurvival effects of the incretin hormones involve post-translational modification of Kv2.1 delayed rectifier channels
    • Kim S-J, Widenmaier SB, Choi WS, et al. Pancreatic β-cell prosurvival effects of the incretin hormones involve post-translational modification of Kv2.1 delayed rectifier channels. Cell Death Differ 2012; 19: 333-344.
    • (2012) Cell Death Differ , vol.19 , pp. 333-344
    • Kim, S.-J.1    Widenmaier, S.B.2    Choi, W.S.3
  • 52
    • 34147114221 scopus 로고    scopus 로고
    • Modulation of the pancreatic islet β-cell-delayed rectifier potassium channel Kv2.1 by the polyunsaturated fatty acid arachidonate
    • Jacobson DA, Weber CR, Bao S, et al. Modulation of the pancreatic islet β-cell-delayed rectifier potassium channel Kv2.1 by the polyunsaturated fatty acid arachidonate. J Biol Chem 2007; 282: 7442-7449.
    • (2007) J Biol Chem , vol.282 , pp. 7442-7449
    • Jacobson, D.A.1    Weber, C.R.2    Bao, S.3
  • 53
    • 0030945044 scopus 로고    scopus 로고
    • Protein kinase A-dependent stimulation of exocytosis in mouse pancreatic beta-cells by glucose-dependent insulinotropic polypeptide
    • Ding WG, Gromada J. Protein kinase A-dependent stimulation of exocytosis in mouse pancreatic beta-cells by glucose-dependent insulinotropic polypeptide. Diabetes 1997; 46: 615-621.
    • (1997) Diabetes , vol.46 , pp. 615-621
    • Ding, W.G.1    Gromada, J.2
  • 54
    • 0037337832 scopus 로고    scopus 로고
    • SUR1 regulates PKA-independent cAMP-induced granule priming in mouse pancreatic B-cells
    • Eliasson L, Ma X, Renstrom E, et al. SUR1 regulates PKA-independent cAMP-induced granule priming in mouse pancreatic B-cells. J Gen Physiol 2003; 121: 181-197.
    • (2003) J Gen Physiol , vol.121 , pp. 181-197
    • Eliasson, L.1    Ma, X.2    Renstrom, E.3
  • 55
    • 79957904659 scopus 로고    scopus 로고
    • Rim2alpha determines docking and priming states in insulin granule exocytosis
    • Yasuda T, Shibasaki T, Minami K, et al. Rim2alpha determines docking and priming states in insulin granule exocytosis. Cell Metab 2010; 12: 117-129.
    • (2010) Cell Metab , vol.12 , pp. 117-129
    • Yasuda, T.1    Shibasaki, T.2    Minami, K.3
  • 56
    • 79952126838 scopus 로고    scopus 로고
    • Snapin mediates incretin action and augments glucose-dependent insulin secretion
    • Song W-J, Seshadri M, Ashraf U, et al. Snapin mediates incretin action and augments glucose-dependent insulin secretion. Cell Metab 2011; 13: 308-319.
    • (2011) Cell Metab , vol.13 , pp. 308-319
    • Song, W.-J.1    Seshadri, M.2    Ashraf, U.3
  • 57
    • 67449102908 scopus 로고    scopus 로고
    • Noncanonical activation of Akt/protein kinase B in β-cells by the incretin hormone glucose-dependent insulinotropic polypeptide
    • Widenmaier SB, Sampaio AV, Underhill TM, et al. Noncanonical activation of Akt/protein kinase B in β-cells by the incretin hormone glucose-dependent insulinotropic polypeptide. J Biol Chem 2009; 284: 10764-10773.
    • (2009) J Biol Chem , vol.284 , pp. 10764-10773
    • Widenmaier, S.B.1    Sampaio, A.V.2    Underhill, T.M.3
  • 58
    • 0442305381 scopus 로고    scopus 로고
    • Apoptotic signal transduction pathways in diabetes
    • Mandrup-Poulsen T. Apoptotic signal transduction pathways in diabetes. Biochem Pharmacol 2003; 66: 1433-1440.
    • (2003) Biochem Pharmacol , vol.66 , pp. 1433-1440
    • Mandrup-Poulsen, T.1
  • 59
    • 12344323484 scopus 로고    scopus 로고
    • Type2 diabetes-a matter of beta-cell life and death?
    • Rhodes CJ. Type2 diabetes-a matter of beta-cell life and death? Science 2005; 307: 380-384.
    • (2005) Science , vol.307 , pp. 380-384
    • Rhodes, C.J.1
  • 60
    • 77957787230 scopus 로고    scopus 로고
    • Significant human beta-cell turnover is limited to the first three decades of life as determined by in vivo thymidine analog incorporation and radiocarbon dating
    • Perl S, Kushner JA, Buchholz BA, et al. Significant human beta-cell turnover is limited to the first three decades of life as determined by in vivo thymidine analog incorporation and radiocarbon dating. J Clin Endocrinol Metab 2010; 95: E234-E249.
    • (2010) J Clin Endocrinol Metab , vol.95
    • Perl, S.1    Kushner, J.A.2    Buchholz, B.A.3
  • 61
    • 79961205550 scopus 로고    scopus 로고
    • Longevity of human islha- and beta-cells
    • Cnop M, Igoillo-Esteve M, Hughes SJ, et al. Longevity of human islet alpha- and beta-cells. Diabetes Obes Metab 2011; 13(Suppl 1): 39-46.
    • (2011) Diabetes Obes Metab , vol.13 , Issue.SUPPL. 1 , pp. 39-46
    • Cnop, M.1    Igoillo-Esteve, M.2    Hughes, S.J.3
  • 62
    • 0037414781 scopus 로고    scopus 로고
    • Glucagon-like peptide-1 receptor signaling modulates beta cell apoptosis
    • Li Y, Hansotia T, Yusta B, et al. Glucagon-like peptide-1 receptor signaling modulates beta cell apoptosis. J Biol Chem 2003; 278: 471-478.
    • (2003) J Biol Chem , vol.278 , pp. 471-478
    • Li, Y.1    Hansotia, T.2    Yusta, B.3
  • 63
    • 0036381989 scopus 로고    scopus 로고
    • Glucagon-like peptide-1 treatment delays the onset of diabetes in 8week-old db/db mice
    • Wang Q, Brubaker PL. Glucagon-like peptide-1 treatment delays the onset of diabetes in 8week-old db/db mice. Diabetologia 2002; 45: 1263-1273.
    • (2002) Diabetologia , vol.45 , pp. 1263-1273
    • Wang, Q.1    Brubaker, P.L.2
  • 64
    • 0036828227 scopus 로고    scopus 로고
    • Glucagon-like peptide-1 promotes islet cell growth and inhibits apoptosis in Zucker diabetic rats
    • Farilla L, Hui H, Bertolotto C, et al. Glucagon-like peptide-1 promotes islet cell growth and inhibits apoptosis in Zucker diabetic rats. Endocrinology 2002; 143: 4397-4408.
    • (2002) Endocrinology , vol.143 , pp. 4397-4408
    • Farilla, L.1    Hui, H.2    Bertolotto, C.3
  • 65
    • 20444491588 scopus 로고    scopus 로고
    • Glucose-dependent insulinotropic polypeptide (GIP) stimulation of pancreatic beta-cell survival is dependent upon phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling, inactivation of the forkhead transcription factor Foxo1, and down-regulation of bax expression
    • Kim S-J, Winter K, Nian C, et al. Glucose-dependent insulinotropic polypeptide (GIP) stimulation of pancreatic beta-cell survival is dependent upon phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling, inactivation of the forkhead transcription factor Foxo1, and down-regulation of bax expression. J Biol Chem 2005; 280: 22297-22307.
    • (2005) J Biol Chem , vol.280 , pp. 22297-22307
    • Kim, S.-J.1    Winter, K.2    Nian, C.3
  • 66
    • 70649094346 scopus 로고    scopus 로고
    • Differential importance of glucose-dependent insulinotropic polypeptide vs glucagon-like peptide 1 receptor signaling for beta cell survival in mice
    • Maida A, Hansotia T, Longuet C, et al. Differential importance of glucose-dependent insulinotropic polypeptide vs glucagon-like peptide 1 receptor signaling for beta cell survival in mice. Gastroenterology 2009; 137: 2146-2157.
    • (2009) Gastroenterology , vol.137 , pp. 2146-2157
    • Maida, A.1    Hansotia, T.2    Longuet, C.3
  • 67
    • 77949693550 scopus 로고    scopus 로고
    • A GIP receptor agonist exhibits beta-cell anti-apoptotic actions in rat models of diabetes resulting in improved beta-cell function and glycemic control
    • Widenmaier SB, Kim S-J, Yang GK, et al. A GIP receptor agonist exhibits beta-cell anti-apoptotic actions in rat models of diabetes resulting in improved beta-cell function and glycemic control. PLoS One 2010; 5: e9590.
    • (2010) PLoS One , vol.5
    • Widenmaier, S.B.1    Kim, S.-J.2    Yang, G.K.3
  • 68
    • 71049146229 scopus 로고    scopus 로고
    • Suppression of p38 MAPK and JNK via Akt-mediated inhibition of apoptosis signal-regulating kinase 1 constitutes a core component of the beta-cell pro-survival effects of glucose-dependent insulinotropic polypeptide
    • Widenmaier SB, Ao Z, Kim S-J, et al. Suppression of p38 MAPK and JNK via Akt-mediated inhibition of apoptosis signal-regulating kinase 1 constitutes a core component of the beta-cell pro-survival effects of glucose-dependent insulinotropic polypeptide. J Biol Chem 2009; 284: 30372-30382.
    • (2009) J Biol Chem , vol.284 , pp. 30372-30382
    • Widenmaier, S.B.1    Ao, Z.2    Kim, S.-J.3
  • 69
    • 0141785429 scopus 로고    scopus 로고
    • Glucose-dependent insulinotropic polypeptide promotes beta-(INS-1) cell survival via cyclic adenosine monophosphate-mediated caspase-3 inhibition and regulation of p38 mitogen-activated protein kinase
    • Ehses JA, Casilla VR, Doty T, et al. Glucose-dependent insulinotropic polypeptide promotes beta-(INS-1) cell survival via cyclic adenosine monophosphate-mediated caspase-3 inhibition and regulation of p38 mitogen-activated protein kinase. Endocrinology 2003; 144: 4433-4445.
    • (2003) Endocrinology , vol.144 , pp. 4433-4445
    • Ehses, J.A.1    Casilla, V.R.2    Doty, T.3
  • 70
    • 40749157994 scopus 로고    scopus 로고
    • Glucose-dependent insulinotropic polypeptide-mediated up-regulation of beta-cell antiapoptotic Bcl-2 gene expression is coordinated by cyclic AMP (cAMP) response element binding protein (CREB) and cAMP-responsive CREB coactivator 2
    • Kim S-J, Nian C, Widenmaier S, et al. Glucose-dependent insulinotropic polypeptide-mediated up-regulation of beta-cell antiapoptotic Bcl-2 gene expression is coordinated by cyclic AMP (cAMP) response element binding protein (CREB) and cAMP-responsive CREB coactivator 2. Mol Cell Biol 2008; 28: 1644-1656.
    • (2008) Mol Cell Biol , vol.28 , pp. 1644-1656
    • Kim, S.-J.1    Nian, C.2    Widenmaier, S.3
  • 71
    • 0037386156 scopus 로고    scopus 로고
    • Glucagon-like peptide-1 inhibits apoptosis of insulin-secreting cells via a cyclic 5′-adenosine monophosphate-dependent protein kinase A- and a phosphatidylinositol 3-kinase-dependent pathway
    • Hui H, Nourparvar A, Zhao X, et al. Glucagon-like peptide-1 inhibits apoptosis of insulin-secreting cells via a cyclic 5′-adenosine monophosphate-dependent protein kinase A- and a phosphatidylinositol 3-kinase-dependent pathway. Endocrinology 2003; 144: 1444-1455.
    • (2003) Endocrinology , vol.144 , pp. 1444-1455
    • Hui, H.1    Nourparvar, A.2    Zhao, X.3
  • 72
    • 0038339191 scopus 로고    scopus 로고
    • cAMP promotes pancreatic beta-cell survival via CREB-mediated induction of IRS2
    • Jhala US, Canettieri G, Screaton RA, et al. cAMP promotes pancreatic beta-cell survival via CREB-mediated induction of IRS2. Genes Dev 2003; 17: 1575-1580.
    • (2003) Genes Dev , vol.17 , pp. 1575-1580
    • Jhala, U.S.1    Canettieri, G.2    Screaton, R.A.3
  • 73
    • 80054772950 scopus 로고    scopus 로고
    • mTOR links incretin signaling to HIF induction in pancreatic beta cells
    • Van de Velde S, Hogan MF, Montminy M. mTOR links incretin signaling to HIF induction in pancreatic beta cells. Proc Natl Acad Sci USA 2011; 108: 16876-16882.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 16876-16882
    • Van de Velde, S.1    Hogan, M.F.2    Montminy, M.3
  • 74
    • 0034505107 scopus 로고    scopus 로고
    • Integrative mitogenic role of protein kinase B/Akt in beta-cells
    • Trümper K, Trümper A, Trusheim H, et al. Integrative mitogenic role of protein kinase B/Akt in beta-cells. Ann N Y Acad Sci 2000; 921: 242-250.
    • (2000) Ann N Y Acad Sci , vol.921 , pp. 242-250
    • Trümper, K.1    Trümper, A.2    Trusheim, H.3
  • 75
    • 0034838323 scopus 로고    scopus 로고
    • Glucose-dependent insulinotropic polypeptide is a growth factor for beta (INS-1) cells by pleiotropic signaling
    • Trümper A, Trümper K, Trusheim H, et al. Glucose-dependent insulinotropic polypeptide is a growth factor for beta (INS-1) cells by pleiotropic signaling. Mol Endocrinol 2001; 15: 1559-1570.
    • (2001) Mol Endocrinol , vol.15 , pp. 1559-1570
    • Trümper, A.1    Trümper, K.2    Trusheim, H.3
  • 76
    • 0036193169 scopus 로고    scopus 로고
    • Activation of Apoptosis Signal-Regulating Kinase 1 by the stress-induced activating phosphorylation of pre-formed oligomer
    • Tobiume T, Saitoh M, Ichijo H. Activation of Apoptosis Signal-Regulating Kinase 1 by the stress-induced activating phosphorylation of pre-formed oligomer. J Cell Physiol 2002; 191: 95-104.
    • (2002) J Cell Physiol , vol.191 , pp. 95-104
    • Tobiume, T.1    Saitoh, M.2    Ichijo, H.3
  • 77
    • 41149097725 scopus 로고    scopus 로고
    • Apoptosis signal-regulating kinase 1 in stress and immune response
    • Takeda K, Noguchi T, Naguro I, et al. Apoptosis signal-regulating kinase 1 in stress and immune response. Annu Rev Pharmacol Toxicol 2008; 48: 199-225.
    • (2008) Annu Rev Pharmacol Toxicol , vol.48 , pp. 199-225
    • Takeda, K.1    Noguchi, T.2    Naguro, I.3
  • 78
    • 67649710879 scopus 로고    scopus 로고
    • Glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 modulate beta-cell chromatin structure
    • Kim S-J, Nian C, McIntosh CHS. Glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 modulate beta-cell chromatin structure. J Biol Chem 2009; 284: 12896-12904.
    • (2009) J Biol Chem , vol.284 , pp. 12896-12904
    • Kim, S.-J.1    Nian, C.2    McIntosh, C.H.S.3
  • 79
    • 73249116246 scopus 로고    scopus 로고
    • Glucagon-like peptide-1 agonists protect pancreatic beta-cells from lipotoxic endoplasmic reticulum stress through upregulation of BiP and JunB
    • Cunha DA, Ladriere L, Ortis F, et al. Glucagon-like peptide-1 agonists protect pancreatic beta-cells from lipotoxic endoplasmic reticulum stress through upregulation of BiP and JunB. Diabetes 2009; 58: 2851-2862.
    • (2009) Diabetes , vol.58 , pp. 2851-2862
    • Cunha, D.A.1    Ladriere, L.2    Ortis, F.3
  • 80
    • 33750448469 scopus 로고    scopus 로고
    • GLP-1 receptor activation improves beta cell function and survival following induction of endoplasmic reticulum stress
    • Yusta B, Baggio LL, Estall JL, et al. GLP-1 receptor activation improves beta cell function and survival following induction of endoplasmic reticulum stress. Cell Metab 2006; 4: 391-406.
    • (2006) Cell Metab , vol.4 , pp. 391-406
    • Yusta, B.1    Baggio, L.L.2    Estall, J.L.3
  • 82
    • 0023767583 scopus 로고
    • The postprandial response of gastric inhibitory polypeptide to various dietary fats in man
    • Lardinois CK, Starich GH, Mazzaferri EL. The postprandial response of gastric inhibitory polypeptide to various dietary fats in man. J Am Coll Nutr 1988; 7: 241-247.
    • (1988) J Am Coll Nutr , vol.7 , pp. 241-247
    • Lardinois, C.K.1    Starich, G.H.2    Mazzaferri, E.L.3
  • 83
    • 0002632811 scopus 로고
    • Gastric inhibitory polypeptide
    • Walsh JH, Dockray GJ (eds). Raven Press, New York
    • Pederson RA. Gastric inhibitory polypeptide. In: Walsh JH, Dockray GJ (eds). Gut Peptides: Biochemistry and Physiology. Raven Press, New York, 1994; 217-259.
    • (1994) Gut Peptides: Biochemistry and Physiology , pp. 217-259
    • Pederson, R.A.1
  • 84
    • 0019407932 scopus 로고
    • Effect of gastric inhibitory polypeptide on plasma levels of chylomicron triglycerides in dogs
    • Wasada T, McCorkle K, Harris V, et al. Effect of gastric inhibitory polypeptide on plasma levels of chylomicron triglycerides in dogs. J Clin Invest 1981; 68: 1106-1107.
    • (1981) J Clin Invest , vol.68 , pp. 1106-1107
    • Wasada, T.1    McCorkle, K.2    Harris, V.3
  • 85
    • 0025750777 scopus 로고
    • Effect of exogenous or endogenous gastric inhibitory polypeptide (GIP) on plasma triglyceride responses in rats
    • Ebert R, Nauck M, Creutzfeldt W. Effect of exogenous or endogenous gastric inhibitory polypeptide (GIP) on plasma triglyceride responses in rats. Horm Metab Res 1991; 23: 517-521.
    • (1991) Horm Metab Res , vol.23 , pp. 517-521
    • Ebert, R.1    Nauck, M.2    Creutzfeldt, W.3
  • 86
    • 0021191961 scopus 로고
    • Lack of effect of exogenous or endogenous gastric inhibitory polypeptide on the elimination rate of Intralipid in man
    • Jorde R, Pettersen JE, Burhol PG. Lack of effect of exogenous or endogenous gastric inhibitory polypeptide on the elimination rate of Intralipid in man. Acta Med Scand 1984; 216: 19-23.
    • (1984) Acta Med Scand , vol.216 , pp. 19-23
    • Jorde, R.1    Pettersen, J.E.2    Burhol, P.G.3
  • 87
    • 0036068322 scopus 로고    scopus 로고
    • Inhibition of gastric inhibitory polypeptide signaling prevents obesity
    • Miyawaki K, Yamada Y, Ban N, et al. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat Med 2002; 8: 738-742.
    • (2002) Nat Med , vol.8 , pp. 738-742
    • Miyawaki, K.1    Yamada, Y.2    Ban, N.3
  • 89
    • 52649128760 scopus 로고    scopus 로고
    • Vaccination against GIP for the treatment of obesity
    • Fulurija A, Lutz TA, Sladko K, et al. Vaccination against GIP for the treatment of obesity. PLoS One 2008; 3: e3163.
    • (2008) PLoS One , vol.3
    • Fulurija, A.1    Lutz, T.A.2    Sladko, K.3
  • 90
    • 49649125933 scopus 로고    scopus 로고
    • Targeted ablation of glucose-dependent insulinotropic polypeptide-producing cells in transgenic mice reduces obesity and insulin resistance induced by a high fat diet
    • Althage MC, Ford EL, Wang S, et al. Targeted ablation of glucose-dependent insulinotropic polypeptide-producing cells in transgenic mice reduces obesity and insulin resistance induced by a high fat diet. J Biol Chem 2008; 283: 18365-18376.
    • (2008) J Biol Chem , vol.283 , pp. 18365-18376
    • Althage, M.C.1    Ford, E.L.2    Wang, S.3
  • 91
    • 0025808278 scopus 로고
    • Effect of the entero-pancreatic hormones, gastric inhibitory polypeptide and glucagon-like polypeptide-1(7-36) amide, on fatty acid synthesis in explants of rat adipose tissue
    • Oben J, Morgan L, Fletcher J, et al. Effect of the entero-pancreatic hormones, gastric inhibitory polypeptide and glucagon-like polypeptide-1(7-36) amide, on fatty acid synthesis in explants of rat adipose tissue. J Endocrinol 1991; 130: 267-272.
    • (1991) J Endocrinol , vol.130 , pp. 267-272
    • Oben, J.1    Morgan, L.2    Fletcher, J.3
  • 92
    • 0024271044 scopus 로고
    • Effects of gastric inhibitory polypeptide on glucose and lipid metabolism of isolated rat adipocytes
    • Hauner H, Glatting G, Kaminska D, et al. Effects of gastric inhibitory polypeptide on glucose and lipid metabolism of isolated rat adipocytes. Ann Nutr Metab 1988; 32: 282-288.
    • (1988) Ann Nutr Metab , vol.32 , pp. 282-288
    • Hauner, H.1    Glatting, G.2    Kaminska, D.3
  • 93
    • 0022612639 scopus 로고
    • Direct metabolic effects of gastric inhibitory polypeptide (GIP): dissociation at physiological levels of effects on insulin-stimulated fatty acid and glucose incorporation in rat adipose tissue
    • Beck B, Max JP. Direct metabolic effects of gastric inhibitory polypeptide (GIP): dissociation at physiological levels of effects on insulin-stimulated fatty acid and glucose incorporation in rat adipose tissue. Diabetologia 1986; 29: 68.
    • (1986) Diabetologia , vol.29 , pp. 68
    • Beck, B.1    Max, J.P.2
  • 94
    • 0018672563 scopus 로고
    • Gastric inhibitory polypeptide enhanced lipoprotein lipase activity in cultured preadipocytes
    • Eckel RH, Fujimoto WY, Brunzell JD. Gastric inhibitory polypeptide enhanced lipoprotein lipase activity in cultured preadipocytes. Diabetes 1979; 28: 1141-1142.
    • (1979) Diabetes , vol.28 , pp. 1141-1142
    • Eckel, R.H.1    Fujimoto, W.Y.2    Brunzell, J.D.3
  • 95
    • 34247880256 scopus 로고    scopus 로고
    • Activation of lipoprotein lipase by glucose-dependent insulinotropic polypeptide in adipocytes. A role for a protein kinase B, LKB1, and AMP-activated protein kinase cascade
    • Kim S-J, Nian C, McIntosh CHS. Activation of lipoprotein lipase by glucose-dependent insulinotropic polypeptide in adipocytes. A role for a protein kinase B, LKB1, and AMP-activated protein kinase cascade. J Biol Chem 2007; 282: 8557-8567.
    • (2007) J Biol Chem , vol.282 , pp. 8557-8567
    • Kim, S.-J.1    Nian, C.2    McIntosh, C.H.S.3
  • 96
    • 36349012043 scopus 로고    scopus 로고
    • Resistin is a key mediator of glucose-dependent insulinotropic polypeptide (GIP) stimulation of lipoprotein lipase (LPL) activity in adipocytes
    • Kim S-J, Nian C, McIntosh CHS. Resistin is a key mediator of glucose-dependent insulinotropic polypeptide (GIP) stimulation of lipoprotein lipase (LPL) activity in adipocytes. J Biol Chem 2007; 282: 34139-34147.
    • (2007) J Biol Chem , vol.282 , pp. 34139-34147
    • Kim, S.-J.1    Nian, C.2    McIntosh, C.H.S.3
  • 97
    • 0029352151 scopus 로고
    • Postprandial lipid and hormone responses to meals of varying fat contents: modulatory role of lipoprotein lipase?
    • Murphy MC, Isherwood SG, Sethi S, et al. Postprandial lipid and hormone responses to meals of varying fat contents: modulatory role of lipoprotein lipase? Eur J Clin Nutr 1995; 49: 578-588.
    • (1995) Eur J Clin Nutr , vol.49 , pp. 578-588
    • Murphy, M.C.1    Isherwood, S.G.2    Sethi, S.3
  • 98
    • 0029934415 scopus 로고    scopus 로고
    • The metabolic role of GIP: physiology and pathology
    • Morgan LM. The metabolic role of GIP: physiology and pathology. Biochem Soc Trans 1996; 24: 585-591.
    • (1996) Biochem Soc Trans , vol.24 , pp. 585-591
    • Morgan, L.M.1
  • 99
    • 0036092239 scopus 로고    scopus 로고
    • Dysregulation of fatty acid metabolism in the etiology of type2 diabetes
    • McGarry J. Dysregulation of fatty acid metabolism in the etiology of type2 diabetes. Diabetes 2002; 51: 7-18.
    • (2002) Diabetes , vol.51 , pp. 7-18
    • McGarry, J.1
  • 100
    • 0032895556 scopus 로고    scopus 로고
    • Glucose-dependent insulinotropic polypeptide stimulation of lipolysis in differentiated 3T3-L1 cells: wortmannin-sensitive inhibition by insulin
    • McIntosh CHS, Bremsak I, Lynn FC, et al. Glucose-dependent insulinotropic polypeptide stimulation of lipolysis in differentiated 3T3-L1 cells: wortmannin-sensitive inhibition by insulin. Endocrinology 1999; 140: 398-404.
    • (1999) Endocrinology , vol.140 , pp. 398-404
    • McIntosh, C.H.S.1    Bremsak, I.2    Lynn, F.C.3
  • 101
    • 0031730586 scopus 로고    scopus 로고
    • Functional GIP receptors are present on adipocytes
    • Yip RG, Boylan MO, Kieffer TJ, et al. Functional GIP receptors are present on adipocytes. Endocrinology 1998; 139: 4004-4007.
    • (1998) Endocrinology , vol.139 , pp. 4004-4007
    • Yip, R.G.1    Boylan, M.O.2    Kieffer, T.J.3
  • 102
    • 33846893661 scopus 로고    scopus 로고
    • Glucose-dependent insulinotropic polypeptide modulates adipocyte lipolysis and reesterification
    • Getty-Kaushik L, Song DH, Boylan MO, et al. Glucose-dependent insulinotropic polypeptide modulates adipocyte lipolysis and reesterification. Obesity (Silver Spring) 2006; 14: 1124-1131.
    • (2006) Obesity (Silver Spring) , vol.14 , pp. 1124-1131
    • Getty-Kaushik, L.1    Song, D.H.2    Boylan, M.O.3
  • 103
    • 36549010103 scopus 로고    scopus 로고
    • Glucose-dependent insulinotropic polypeptide enhances adipocyte development and glucose uptake in part through Akt activation
    • Song DH, Getty-Kaushik L, Tseng E, et al. Glucose-dependent insulinotropic polypeptide enhances adipocyte development and glucose uptake in part through Akt activation. Gastroenterology 2007; 133: 1796-1805.
    • (2007) Gastroenterology , vol.133 , pp. 1796-1805
    • Song, D.H.1    Getty-Kaushik, L.2    Tseng, E.3
  • 104
    • 77956371183 scopus 로고    scopus 로고
    • Glucose-dependent insulinotropic polypeptide may enhance fatty acid re-esterification in subcutaneous abdominal adipose tissue in lean humans
    • Asmar M, Simonsen L, Madsbad S, et al. Glucose-dependent insulinotropic polypeptide may enhance fatty acid re-esterification in subcutaneous abdominal adipose tissue in lean humans. Diabetes 2010; 59: 2160-2163.
    • (2010) Diabetes , vol.59 , pp. 2160-2163
    • Asmar, M.1    Simonsen, L.2    Madsbad, S.3
  • 105
    • 0026725629 scopus 로고
    • Gastric inhibitory polypeptide stimulates pancreatic lipase and colipase synthesis in rats
    • Duan RD, Erlanson-Albertsson C. Gastric inhibitory polypeptide stimulates pancreatic lipase and colipase synthesis in rats. Am J Physiol 1992; 262: G779-G784.
    • (1992) Am J Physiol , vol.262
    • Duan, R.D.1    Erlanson-Albertsson, C.2
  • 106
  • 107
    • 56549112113 scopus 로고    scopus 로고
    • Functional expression of glucose-dependent insulinotropic polypeptide receptors is coupled to differentiation in a human adipocyte model
    • Weaver RE, Donnelly D, Wabitsch M, et al. Functional expression of glucose-dependent insulinotropic polypeptide receptors is coupled to differentiation in a human adipocyte model. Int J Obes (Lond) 2008; 32: 1705-1711.
    • (2008) Int J Obes (Lond) , vol.32 , pp. 1705-1711
    • Weaver, R.E.1    Donnelly, D.2    Wabitsch, M.3
  • 108
    • 79953307026 scopus 로고    scopus 로고
    • Adipocyte expression of the glucose-dependent insulinotropic polypeptide receptor involves gene regulation by PPARgamma and histone acetylation
    • Kim S-J, Nian C, McIntosh CHS. Adipocyte expression of the glucose-dependent insulinotropic polypeptide receptor involves gene regulation by PPARgamma and histone acetylation. J Lipid Res 2011; 52: 759-770.
    • (2011) J Lipid Res , vol.52 , pp. 759-770
    • Kim, S.-J.1    Nian, C.2    McIntosh, C.H.S.3
  • 109
    • 0035041250 scopus 로고    scopus 로고
    • Defective glucose-dependent insulinotropic polypeptide receptor expression in diabetic fatty Zucker rats
    • Lynn FC, Pamir N, Ng EH, et al. Defective glucose-dependent insulinotropic polypeptide receptor expression in diabetic fatty Zucker rats. Diabetes 2001; 50: 1004-1011.
    • (2001) Diabetes , vol.50 , pp. 1004-1011
    • Lynn, F.C.1    Pamir, N.2    Ng, E.H.3
  • 110
    • 0037268159 scopus 로고    scopus 로고
    • A novel pathway for regulation of glucose-dependent insulinotropic polypeptide (GIP) receptor expression in beta cells
    • Lynn FC, Thompson SA, Pospisilik JA, et al. A novel pathway for regulation of glucose-dependent insulinotropic polypeptide (GIP) receptor expression in beta cells. FASEB J 2003; 17: 91-93.
    • (2003) FASEB J , vol.17 , pp. 91-93
    • Lynn, F.C.1    Thompson, S.A.2    Pospisilik, J.A.3
  • 111
    • 77953177935 scopus 로고    scopus 로고
    • Physiologic and pharmacologic modulation of glucose-dependent insulinotropic polypeptide (GIP) receptor expression in beta-cells by peroxisome proliferator-activated receptor (PPAR)-gamma signaling: possible mechanism for the GIP resistance in type2 diabetes
    • Gupta D, Peshavaria M, Monga N, et al. Physiologic and pharmacologic modulation of glucose-dependent insulinotropic polypeptide (GIP) receptor expression in beta-cells by peroxisome proliferator-activated receptor (PPAR)-gamma signaling: possible mechanism for the GIP resistance in type2 diabetes. Diabetes 2010; 59: 1445-1450.
    • (2010) Diabetes , vol.59 , pp. 1445-1450
    • Gupta, D.1    Peshavaria, M.2    Monga, N.3
  • 112
    • 34249724553 scopus 로고    scopus 로고
    • Downregulation of GLP-1 and GIP receptor expression by hyperglycemia: possible contribution to impaired incretin effects in diabetes
    • Xu G, Kaneto H, Laybutt DR, et al. Downregulation of GLP-1 and GIP receptor expression by hyperglycemia: possible contribution to impaired incretin effects in diabetes. Diabetes 2007; 56: 1551-1558.
    • (2007) Diabetes , vol.56 , pp. 1551-1558
    • Xu, G.1    Kaneto, H.2    Laybutt, D.R.3
  • 113
    • 34250195756 scopus 로고    scopus 로고
    • GIP receptor mRNA expression in different fat tissue depots in postmenopausal non-diabetic women
    • Rudovich N, Kaiser S, Engeli S, et al. GIP receptor mRNA expression in different fat tissue depots in postmenopausal non-diabetic women. Regul Pept 2007; 142: 138-145.
    • (2007) Regul Pept , vol.142 , pp. 138-145
    • Rudovich, N.1    Kaiser, S.2    Engeli, S.3
  • 114
    • 78149350158 scopus 로고    scopus 로고
    • GIP increases human adipocyte LPL expression through CREB and TORC2-mediated trans-activation of the LPL gene
    • Kim S-J, Nian C, McIntosh CHS. GIP increases human adipocyte LPL expression through CREB and TORC2-mediated trans-activation of the LPL gene. J Lipid Res 2010; 51: 3145-3157.
    • (2010) J Lipid Res , vol.51 , pp. 3145-3157
    • Kim, S.-J.1    Nian, C.2    McIntosh, C.H.S.3
  • 115
    • 48249109104 scopus 로고    scopus 로고
    • Glucose controls CREB activity in islet cells via regulated phosphorylation of TORC2
    • Jansson D, Ng AC-H, Fu A, et al. Glucose controls CREB activity in islet cells via regulated phosphorylation of TORC2. Proc Natl Acad Sci USA 2008; 105: 10161-10166.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 10161-10166
    • Jansson, D.1    Ng, A.-H.2    Fu, A.3
  • 116
    • 58049217333 scopus 로고    scopus 로고
    • Using kinomics to delineate signaling pathways: control of CRTC2/TORC2 by the AMPK family
    • Fu A, Screaton RA. Using kinomics to delineate signaling pathways: control of CRTC2/TORC2 by the AMPK family. Cell Cycle 2008; 7: 3823-3828.
    • (2008) Cell Cycle , vol.7 , pp. 3823-3828
    • Fu, A.1    Screaton, R.A.2
  • 117
    • 0141868801 scopus 로고    scopus 로고
    • Comparative studies of resistin expression and phylogenomics in human and mouse
    • Yang R-Z, Huang Q, Xu A, et al. Comparative studies of resistin expression and phylogenomics in human and mouse. Biochem Biophys Res Commun 2003; 310: 927-935.
    • (2003) Biochem Biophys Res Commun , vol.310 , pp. 927-935
    • Yang, R.-Z.1    Huang, Q.2    Xu, A.3
  • 119
    • 17744377650 scopus 로고    scopus 로고
    • Recombinant human FIZZ3/resistin stimulates lipolysis in cultured human adipocytes, mouse adipose explants, and normal mice
    • Ort T, Arjona AA, MacDougall JR, et al. Recombinant human FIZZ3/resistin stimulates lipolysis in cultured human adipocytes, mouse adipose explants, and normal mice. Endocrinology 2005; 146: 2200-2209.
    • (2005) Endocrinology , vol.146 , pp. 2200-2209
    • Ort, T.1    Arjona, A.A.2    MacDougall, J.R.3
  • 120
    • 34250710450 scopus 로고    scopus 로고
    • Adipose tissue function and plasticity orchestrate nutritional adaptation
    • Sethi J, Vudal-Puig A. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res 2007; 48: 1253-1262.
    • (2007) J Lipid Res , vol.48 , pp. 1253-1262
    • Sethi, J.1    Vudal-Puig, A.2
  • 121
    • 34848872799 scopus 로고    scopus 로고
    • Obesity-associated improvements in metabolic profile through expansion of adipose tissue
    • Kim J-Y, van de Wall E, Laplante M, et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest 2007; 117: 2621-2637.
    • (2007) J Clin Invest , vol.117 , pp. 2621-2637
    • Kim, J.-Y.1    van de Wall, E.2    Laplante, M.3
  • 122
    • 9944251348 scopus 로고    scopus 로고
    • Overexpression of a dominant negative GIP receptor in transgenic mice results in disturbed postnatal pancreatic islet and beta-cell development
    • Herbach N, Goeke B, Schneider M, et al. Overexpression of a dominant negative GIP receptor in transgenic mice results in disturbed postnatal pancreatic islet and beta-cell development. Regul Pept 2005; 125: 103-117.
    • (2005) Regul Pept , vol.125 , pp. 103-117
    • Herbach, N.1    Goeke, B.2    Schneider, M.3
  • 123
    • 77951829073 scopus 로고    scopus 로고
    • Glucose intolerance and reduced proliferation of pancreatic beta-cells in transgenic pigs with impaired glucose-dependent insulinotropic polypeptide function
    • Renner S, Fehlings C, Herbach N, et al. Glucose intolerance and reduced proliferation of pancreatic beta-cells in transgenic pigs with impaired glucose-dependent insulinotropic polypeptide function. Diabetes 2010; 59: 1228-1238.
    • (2010) Diabetes , vol.59 , pp. 1228-1238
    • Renner, S.1    Fehlings, C.2    Herbach, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.