메뉴 건너뛰기




Volumn 34, Issue 3, 2012, Pages 417-435

Prototype selection for nearest neighbor classification: Taxonomy and empirical study

Author keywords

classification; condensation; edition; nearest neighbor; Prototype selection; taxonomy

Indexed keywords

CLASSIFICATION RULES; DATA SETS; DIFFERENT SIZES; EDITION; EMPIRICAL STUDIES; EXPERIMENTAL STUDIES; LOW NOISE; MAIN CHARACTERISTICS; NEAREST NEIGHBOR CLASSIFICATION; NEAREST NEIGHBOR CLASSIFIER; NEAREST NEIGHBORS; NON-PARAMETRIC STATISTICAL TESTS; PROTOTYPE SELECTION; RUNTIMES; STORAGE REQUIREMENTS; THEORETICAL POINTS; TRAINING DATA;

EID: 84856161441     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPAMI.2011.142     Document Type: Article
Times cited : (647)

References (122)
  • 1
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Jan.
    • T.M. Cover and P.E. Hart, "Nearest Neighbor Pattern Classification," IEEE Trans. Information Theory, vol. 13, no. 1, pp. 21-27, Jan. 1967.
    • (1967) IEEE Trans. Information Theory , vol.13 , Issue.1 , pp. 21-27
    • Cover, T.M.1    Hart, P.E.2
  • 5
    • 84944611438 scopus 로고    scopus 로고
    • X. Wu and V. Kumar, eds. Chapman & Hall/CRC Data Mining and Knowledge Discovery
    • X. Wu and V. Kumar, The Top Ten Algorithms in Data Mining, X. Wu and V. Kumar, eds. Chapman & Hall/CRC Data Mining and Knowledge Discovery, 2009.
    • (2009) The Top Ten Algorithms in Data Mining
    • Wu, X.1    Kumar, V.2
  • 6
    • 0004267735 scopus 로고    scopus 로고
    • D.W. Aha, ed. Springer
    • D.W. Aha, Lazy Learning, D.W. Aha, ed. Springer, 1997.
    • (1997) Lazy Learning
    • Aha, D.W.1
  • 9
    • 33646575961 scopus 로고    scopus 로고
    • On optimum choice of k in nearest neighbor classification
    • DOI 10.1016/j.csda.2005.06.007, PII S0167947305001374
    • A.K. Ghosh, "On Optimum Choice of k in Nearest Neighbor Classification," Computational Statistics & Data Analysis, vol. 50, no. 11, pp. 3113-3123, 2006. (Pubitemid 43729105)
    • (2006) Computational Statistics and Data Analysis , vol.50 , Issue.11 , pp. 3113-3123
    • Ghosh, A.K.1
  • 11
    • 34250701071 scopus 로고    scopus 로고
    • On nearest neighbor classification using adaptive choice of k
    • A.K. Ghosh, and K. Anil, "On Nearest Neighbor Classification Using Adaptive Choice of k," J. Computational & Graphical Statistics, vol. 16, no. 2, pp. 482-502, 2007.
    • (2007) J. Computational & Graphical Statistics , vol.16 , Issue.2 , pp. 482-502
    • Ghosh, A.K.1    Anil, K.2
  • 14
    • 77649273622 scopus 로고    scopus 로고
    • About neighborhood counting measure metric and minimum risk metric
    • Apr.
    • A. Argentini and E. Blanzieri, "About Neighborhood Counting Measure Metric and Minimum Risk Metric," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 32, no. 4, pp. 763-765, Apr. 2010.
    • (2010) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.32 , Issue.4 , pp. 763-765
    • Argentini, A.1    Blanzieri, E.2
  • 15
    • 70350653805 scopus 로고    scopus 로고
    • A taxonomy of similarity mechanisms for case-based reasoning
    • Nov.
    • P. Cunningham, "A Taxonomy of Similarity Mechanisms for Case-Based Reasoning," IEEE Trans. Knowledge and Data Eng., vol. 21, no. 11, pp. 1532-1543, Nov. 2009.
    • (2009) IEEE Trans. Knowledge and Data Eng. , vol.21 , Issue.11 , pp. 1532-1543
    • Cunningham, P.1
  • 16
    • 61449115942 scopus 로고    scopus 로고
    • On the design and applicability of distance functions in high-dimensional data space
    • Apr.
    • C.-M. Hsu and M.-S. Chen, "On the Design and Applicability of Distance Functions in High-Dimensional Data Space," IEEE Trans. Knowledge and Data Eng., vol. 21, no. 4, pp. 523-536, Apr. 2009.
    • (2009) IEEE Trans. Knowledge and Data Eng. , vol.21 , Issue.4 , pp. 523-536
    • Hsu, C.-M.1    Chen, M.-S.2
  • 17
    • 0022806091 scopus 로고
    • A fast k nearest neighbor finding algorithm based on the ordered partition
    • Nov.
    • B.K. Kim and S.B. Park, "A Fast k Nearest Neighbor Finding Algorithm Based on the Ordered Partition," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 8, no. 6, pp. 761-766, Nov. 1986.
    • (1986) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.8 , Issue.6 , pp. 761-766
    • Kim, B.K.1    Park, S.B.2
  • 18
  • 19
    • 37549012615 scopus 로고    scopus 로고
    • K-nearest neighbor finding using maxnearestdist
    • Feb.
    • H. Samet, "K-Nearest Neighbor Finding Using Maxnearestdist," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 30, no. 2, pp. 243-252, Feb. 2008.
    • (2008) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.30 , Issue.2 , pp. 243-252
    • Samet, H.1
  • 20
    • 0031084264 scopus 로고    scopus 로고
    • Fast implementations of nearest-neighbor classifiers
    • P. Grother, G.T. Candela, and J.L. Blue, "Fast Implementations of Nearest-Neighbor Classifiers," Pattern Recognition, vol. 30, no. 3, pp. 459-465, 1997.
    • (1997) Pattern Recognition , vol.30 , Issue.3 , pp. 459-465
    • Grother, P.1    Candela, G.T.2    Blue, J.L.3
  • 21
    • 0032201716 scopus 로고    scopus 로고
    • An optimal algorithm for approximate nearest neighbor searching fixed dimensions
    • S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, and A.Y. Wu, "An Optimal Algorithm for Approximate Nearest Neighbor Searching Fixed Dimensions," J. ACM, vol. 45, no. 6, pp. 891-923, 1998.
    • (1998) J. ACM , vol.45 , Issue.6 , pp. 891-923
    • Arya, S.1    Mount, D.M.2    Netanyahu, N.S.3    Silverman, R.4    Wu, A.Y.5
  • 22
    • 37549058056 scopus 로고    scopus 로고
    • Near-Optimal hashing algorithms for approximate nearest neighbor in high dimensions
    • A. Andoni and P. Indyk, "Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions," Comm. ACM, vol. 51, no. 1, pp. 117-122, 2008.
    • (2008) Comm. ACM , vol.51 , Issue.1 , pp. 117-122
    • Andoni, A.1    Indyk, P.2
  • 23
    • 0343081513 scopus 로고    scopus 로고
    • Reduction techniques for instance-based learning algorithms
    • DOI 10.1023/A:1007626913721
    • D.R. Wilson and T.R. Martinez, "Reduction Techniques for Instance-Based Learning Algorithms," Machine Learning, vol. 38, no. 3, pp. 257-286, 2000. (Pubitemid 30572450)
    • (2000) Machine Learning , vol.38 , Issue.3 , pp. 257-286
    • Randall Wilson, D.1    Martinez, T.R.2
  • 24
    • 9444236865 scopus 로고    scopus 로고
    • Comparison of instances seletion algorithms I. Algorithms survey
    • Artificial Intelligence and Soft Computing - ICAISC 2004
    • N. Jankowski and M. Grochowski, "Comparison of Instances Selection Algorithms I. Algorithms Survey," Proc. Int'l Conf. Artificial Intelligence and Soft Computing, pp. 598-603, 2004. (Pubitemid 38835886)
    • (2004) Lecture Notes in Computer Science , Issue.3070 , pp. 598-603
    • Jankowski, N.1    Grochowski, M.2
  • 25
    • 27744546228 scopus 로고    scopus 로고
    • Prototype selection for dissimilarity-based classifiers
    • DOI 10.1016/j.patcog.2005.06.012, PII S0031320305002633, Complexity Reduction
    • E. Pekalska, R.P.W. Duin, and P. Paclík, "Prototype Selection for Dissimilarity-Based Classifiers," Pattern Recognition, vol. 39, no. 2, pp. 189-208, 2006. (Pubitemid 41586089)
    • (2006) Pattern Recognition , vol.39 , Issue.2 , pp. 189-208
    • Pekalska, E.1    Duin, R.P.W.2    Paclik, P.3
  • 26
    • 0036684204 scopus 로고    scopus 로고
    • Discovering useful concept prototypes for classification based on filtering and abstraction
    • Aug.
    • W. Lam, C.K. Keung, and D. Liu, "Discovering Useful Concept Prototypes for Classification Based on Filtering and Abstraction," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 8, pp. 1075-1090, Aug. 2002.
    • (2002) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.24 , Issue.8 , pp. 1075-1090
    • Lam, W.1    Keung, C.K.2    Liu, D.3
  • 27
    • 33745421067 scopus 로고    scopus 로고
    • Experimental study on prototype optimisation algorithms for prototype-based classification in vector spaces
    • DOI 10.1016/j.patcog.2006.04.005, PII S0031320306001592
    • M. Lozano, J.M. Sotoca, J.S. Sánchez, F. Pla, E. Pekalska, and R.P.W. Duin, "Experimental Study on Prototype Optimisation Algorithms for Prototype-Based Classification in Vector Spaces," Pattern Recognition, vol. 39, no. 10, pp. 1827-1838, 2006. (Pubitemid 43947094)
    • (2006) Pattern Recognition , vol.39 , Issue.10 , pp. 1827-1838
    • Lozano, M.1    Sotoca, J.M.2    Sanchez, J.S.3    Pla, F.4    Pekalska, E.5    Duin, R.P.W.6
  • 28
    • 35348902771 scopus 로고    scopus 로고
    • Fast nearest neighbor condensation for large data sets classification
    • DOI 10.1109/TKDE.2007.190645
    • F. Angiulli, "Fast Nearest Neighbor Condensation for Large Data Sets Classification," IEEE Trans. Knowledge and Data Eng., vol. 19, no. 11, pp. 1450-1464, Nov. 2007. (Pubitemid 47573790)
    • (2007) IEEE Transactions on Knowledge and Data Engineering , vol.19 , Issue.11 , pp. 1450-1464
    • Angiulli, F.1
  • 29
    • 0035575921 scopus 로고    scopus 로고
    • Nearest prototype classifier designs: An experimental study
    • DOI 10.1002/int.1068
    • J.C. Bezdek and L.I. Kuncheva, "Nearest Prototype Classifier Designs: An Experimental Study," Int'l J. Intelligent Systems, vol. 16, pp. 1445-1473, 2001. (Pubitemid 33110647)
    • (2001) International Journal of Intelligent Systems , vol.16 , Issue.12 , pp. 1445-1473
    • Bezdek, J.C.1    Kuncheva, L.I.2
  • 30
    • 0346331906 scopus 로고    scopus 로고
    • A brief taxonomy and ranking of creative prototype reduction schemes
    • S.W. Kim and J. Oomenn, "A Brief Taxonomy and Ranking of Creative Prototype Reduction Schemes." Pattern Analysis and Applications, vol. 6, pp. 232-244, 2003.
    • (2003) Pattern Analysis and Applications , vol.6 , pp. 232-244
    • Kim, S.W.1    Oomenn, J.2
  • 31
    • 17444379003 scopus 로고    scopus 로고
    • Stratification for scaling up evolutionary prototype selection
    • DOI 10.1016/j.patrec.2004.09.043, PII S0167865504002909
    • J.-R. Cano, F. Herrera, and M. Lozano, "Stratification for Scaling up Evolutionary Prototype Selection," Pattern Recognition Letters, vol. 26, no. 7, pp. 953-963, 2005. (Pubitemid 40538755)
    • (2005) Pattern Recognition Letters , vol.26 , Issue.7 , pp. 953-963
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 32
    • 0016127071 scopus 로고
    • Finding prototypes for nearest neighbor classifiers
    • Nov.
    • C.-L. Chang, "Finding Prototypes for Nearest Neighbor Classifiers," IEEE Trans. Computers, vol. 23, no. 11, pp. 1179-1184, Nov. 1974.
    • (1974) IEEE Trans. Computers , vol.23 , Issue.11 , pp. 1179-1184
    • Chang, C.-L.1
  • 33
    • 0025489075 scopus 로고
    • The self organizing map
    • Sept.
    • T. Kohonen, "The Self Organizing Map," Proc. IEEE, vol. 78, no. 9, pp. 1464-1480, Sept. 1990.
    • (1990) Proc. IEEE , vol.78 , Issue.9 , pp. 1464-1480
    • Kohonen, T.1
  • 35
    • 78650064965 scopus 로고    scopus 로고
    • IPADE: Iterative prototype adjustment for nearest neighbor classification
    • Dec.
    • I. Triguero, S. García, and F. Herrera, "IPADE: Iterative Prototype Adjustment for Nearest Neighbor Classification," IEEE Trans. Neural Networks, vol. 21, no. 12, pp. 1984-1990, Dec. 2010.
    • (2010) IEEE Trans. Neural Networks , vol.21 , Issue.12 , pp. 1984-1990
    • Triguero, I.1    García, S.2    Herrera, F.3
  • 36
    • 78650282967 scopus 로고    scopus 로고
    • Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification
    • I. Triguero, S. García, and F. Herrera, "Differential Evolution for Optimizing the Positioning of Prototypes in Nearest Neighbor Classification," Pattern Recognition, vol. 44, pp. 901-916, 2011.
    • (2011) Pattern Recognition , vol.44 , pp. 901-916
    • Triguero, I.1    García, S.2    Herrera, F.3
  • 37
    • 0030216565 scopus 로고    scopus 로고
    • Unifying instance-based and rule-based induction
    • P. Domingos, "Unifying Instance-Based and Rule-Based Induction," Machine Learning, vol. 24, no. 2, pp. 141-168, 1996. (Pubitemid 126724383)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 141-168
    • Domingos, P.1
  • 38
  • 39
    • 79951856108 scopus 로고    scopus 로고
    • Evolutionary selection of hyperrectangles in nested generalized exemplar learning
    • S. García, J. Derrac, J. Luengo, C.J. Carmona, and F. Herrera, "Evolutionary Selection of Hyperrectangles in Nested Generalized Exemplar Learning," Applied Soft Computing, vol. 11, pp. 3032-3045, 2011.
    • (2011) Applied Soft Computing , vol.11 , pp. 3032-3045
    • García, S.1    Derrac, J.2    Luengo, J.3    Carmona, C.J.4    Herrera, F.5
  • 40
    • 0012657799 scopus 로고
    • Prototype and feature selection by sampling and random mutation hill climbing algorithms
    • D.B. Skalak, "Prototype and Feature Selection by Sampling and Random Mutation Hill Climbing Algorithms," Proc. 11th Int'l Conf. Machine Learning, pp. 293-301, 1994.
    • (1994) Proc. 11th Int'l Conf. Machine Learning , pp. 293-301
    • Skalak, D.B.1
  • 41
    • 76749096459 scopus 로고    scopus 로고
    • IFS-CoCo: Instance and feature selection based on cooperative coevolution with nearest neighbor rule
    • J. Derrac, S. García, and F. Herrera, "IFS-CoCo: Instance and Feature Selection Based on Cooperative Coevolution with Nearest Neighbor Rule," Pattern Recognition, vol. 43, no. 6, pp. 2082-2105, 2010.
    • (2010) Pattern Recognition , vol.43 , Issue.6 , pp. 2082-2105
    • Derrac, J.1    García, S.2    Herrera, F.3
  • 42
    • 0031073477 scopus 로고    scopus 로고
    • A Review and Empirical Evaluation of Feature Weighting Methods for a Class of Lazy Learning Algorithms
    • D. Wettschereck, D.W. Aha, and T. Mohri, "A Review and Empirical Evaluation of Feature Weighting Methods for a Class of Lazy Learning Algorithms," Artificial Intelligence Rev., vol. 11, nos. 1-5, pp. 273-314, 1997. (Pubitemid 127508242)
    • (1997) Artificial Intelligence Review , vol.11 , Issue.1-5 , pp. 273-314
    • Wettschereck, D.1    Aha, D.W.2    Mohri, T.3
  • 43
    • 33746412073 scopus 로고    scopus 로고
    • Learning weighted metrics to minimize nearest-neighbor classification error
    • July
    • R. Paredes and E. Vidal, "Learning Weighted Metrics to Minimize Nearest-Neighbor Classification Error," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 7, pp. 1100-1110, July 2006.
    • (2006) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.28 , Issue.7 , pp. 1100-1110
    • Paredes, R.1    Vidal, E.2
  • 44
    • 39549117816 scopus 로고    scopus 로고
    • Local feature weighting in nearest prototype classification
    • DOI 10.1109/TNN.2007.902955
    • F. Fernández and P. Isasi, "Local Feature Weighting in Nearest Prototype Classification," IEEE Trans. Neural Networks, vol. 19, no. 1, pp. 40-53, Jan. 2008. (Pubitemid 351279224)
    • (2008) IEEE Transactions on Neural Networks , vol.19 , Issue.1 , pp. 40-53
    • Fernandez, F.1    Isasi, P.2
  • 45
    • 0031069975 scopus 로고    scopus 로고
    • Voting over multiple condensed nearest neighbors
    • E. Alpaydin, "Voting over Multiple Condensed Nearest Neighbors," Artificial Intelligence Rev., vol. 11, nos. 1-5, pp. 115-132, 1997. (Pubitemid 127508235)
    • (1997) Artificial Intelligence Review , vol.11 , Issue.1-5 , pp. 115-132
    • Alpaydin, E.1
  • 46
    • 60849105643 scopus 로고    scopus 로고
    • Constructing ensembles of classifiers by means of weighted instance selection
    • Feb.
    • N. García-Pedrajas, "Constructing Ensembles of Classifiers by Means of Weighted Instance Selection," IEEE Trans. Neural Networks, vol. 20, no. 2, pp. 258-277, Feb. 2009.
    • (2009) IEEE Trans. Neural Networks , vol.20 , Issue.2 , pp. 258-277
    • García-Pedrajas, N.1
  • 48
    • 27744468378 scopus 로고    scopus 로고
    • Learning prototypes and distances: A prototype reduction technique based on nearest neighbor error minimization
    • DOI 10.1016/j.patcog.2005.06.001, PII S0031320305002232, Complexity Reduction
    • R. Paredes and E. Vidal, "Learning Prototypes and Distances: A Prototype Reduction Technique Based on Nearest Neighbor Error Minimization," Pattern Recognition, vol. 39, no. 2, pp. 180-188, 2006. (Pubitemid 41586088)
    • (2006) Pattern Recognition , vol.39 , Issue.2 , pp. 180-188
    • Paredes, R.1    Vidal, E.2
  • 50
    • 34250851661 scopus 로고    scopus 로고
    • On using prototype reduction schemes to optimize dissimilarity-based classification
    • DOI 10.1016/j.patcog.2007.03.006, PII S0031320307001148
    • S.-W. Kim and B.J. Oommen, "On Using Prototype Reduction Schemes to Optimize Dissimilarity-Based Classification," Pattern Recognition, vol. 40, no. 11, pp. 2946-2957, 2007. (Pubitemid 46990445)
    • (2007) Pattern Recognition , vol.40 , Issue.11 , pp. 2946-2957
    • Kim, S.-W.1    Oommen, B.J.2
  • 51
    • 65049087517 scopus 로고    scopus 로고
    • A divide-and-conquer recursive approach for scaling up instance selection algorithms
    • A. Haro-García and N. García-Pedrajas, "A Divide-and-Conquer Recursive Approach for Scaling Up Instance Selection Algorithms," Data Mining and Knowledge Discovery, vol. 18, no. 3, pp. 392-418, 2009.
    • (2009) Data Mining and Knowledge Discovery , vol.18 , Issue.3 , pp. 392-418
    • Haro-García, A.1    García-Pedrajas, N.2
  • 52
    • 76549101909 scopus 로고    scopus 로고
    • Democratic instance selection: A linear complexity instance selection algorithm based on classifier ensemble concepts
    • C. García-Osorio, A. de Haro-García, and N. García-Pedrajas, "Democratic Instance Selection: A Linear Complexity Instance Selection Algorithm Based on Classifier Ensemble Concepts," Artificial Intelligence, vol. 174, nos. 5/6, pp. 410-441, 2010.
    • (2010) Artificial Intelligence , vol.174 , Issue.5-6 , pp. 410-441
    • García-Osorio, C.1    De Haro-García, A.2    García-Pedrajas, N.3
  • 53
    • 35648977602 scopus 로고    scopus 로고
    • Distributed nearest neighbor-based condensation of very large data sets
    • DOI 10.1109/TKDE.2007.190665
    • F. Angiulli and G. Folino, "Distributed Nearest Neighbor-Based Condensation of Very Large Data Sets," IEEE Trans. Knowledge and Data Eng., vol. 19, no. 12, pp. 1593-1606, Dec. 2007. (Pubitemid 350025495)
    • (2007) IEEE Transactions on Knowledge and Data Engineering , vol.19 , Issue.12 , pp. 1593-1606
    • Angiulli, F.1    Folino, G.2
  • 54
    • 33845982223 scopus 로고    scopus 로고
    • Evolutionary stratified training set selection for extracting classification rules with trade off precision-interpretability
    • DOI 10.1016/j.datak.2006.01.008, PII S0169023X0600019X
    • J.-R. Cano, F. Herrera, and M. Lozano, "Evolutionary Stratified Training Set Selection for Extracting Classification Rules with Trade Off Precision-Interpretability," Data and Knowledge Eng., vol. 60, no. 1, pp. 90-108, 2007. (Pubitemid 46053591)
    • (2007) Data and Knowledge Engineering , vol.60 , Issue.1 , pp. 90-108
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 55
    • 30944444787 scopus 로고    scopus 로고
    • Artificial neural networks with evolutionary instance selection for financial forecasting
    • K.J. Kim, "Artificial Neural Networks with Evolutionary Instance Selection for Financial Forecasting," Expert Systems with Applications, vol. 30, no. 3, pp. 519-526, 2006.
    • (2006) Expert Systems with Applications , vol.30 , Issue.3 , pp. 519-526
    • Kim, K.J.1
  • 56
    • 48749106976 scopus 로고    scopus 로고
    • Making CN2-SD subgroup discovery algorithm scalable to large size data sets using instance selection
    • J.-R. Cano, F. Herrera, M. Lozano, and S. García, "Making CN2-SD Subgroup Discovery Algorithm Scalable to Large Size Data Sets Using Instance Selection," Expert Systems with Applications, vol. 35, no. 4, pp. 1949-1965, 2008.
    • (2008) Expert Systems with Applications , vol.35 , Issue.4 , pp. 1949-1965
    • Cano, J.-R.1    Herrera, F.2    Lozano, M.3    García, S.4
  • 57
    • 53949099623 scopus 로고    scopus 로고
    • Subgroup discover in large size data sets preprocessed using stratified instance selection for increasing the presence of minority classes
    • J.-R. Cano, S. García, and F. Herrera, "Subgroup Discover in Large Size Data Sets Preprocessed Using Stratified Instance Selection for Increasing the Presence of Minority Classes," Pattern Recognition Letters, vol. 29, no. 16, pp. 2156-2164, 2008.
    • (2008) Pattern Recognition Letters , vol.29 , Issue.16 , pp. 2156-2164
    • Cano, J.-R.1    García, S.2    Herrera, F.3
  • 60
    • 50549101751 scopus 로고    scopus 로고
    • Automatically countering imbalance and its empirical relationship to cost
    • N.V. Chawla, D.A. Cieslak, L.O. Hall, and A. Joshi, "Automatically Countering Imbalance and Its Empirical Relationship to Cost," Data Mining and Knowledge Discovery, vol. 17, no. 2, pp. 225-252, 2008.
    • (2008) Data Mining and Knowledge Discovery , vol.17 , Issue.2 , pp. 225-252
    • Chawla, N.V.1    Cieslak, D.A.2    Hall, L.O.3    Joshi, A.4
  • 61
    • 27144531570 scopus 로고    scopus 로고
    • A Study of the behavior of several methods for balancing machine learning training data
    • G.E.A.P.A. Batista, R.C. Prati, and M.C. Monard, "A Study of the Behavior of Several Methods for Balancing Machine Learning Training Data," ACM SIGKDD Explorations Newsletter, vol. 6, no. 1, pp. 20-29, 2004.
    • (2004) ACM SIGKDD Explorations Newsletter , vol.6 , Issue.1 , pp. 20-29
    • Batista, G.E.A.P.A.1    Prati, R.C.2    Monard, M.C.3
  • 62
    • 70349617264 scopus 로고    scopus 로고
    • Evolutionary under-sampling for classification with imbalanced data sets: Proposals and taxonomy
    • S. García and F. Herrera, "Evolutionary Under-Sampling for Classification with Imbalanced Data Sets: Proposals and Taxonomy," Evolutionary Computation, vol. 17, no. 3, pp. 275-306, 2009.
    • (2009) Evolutionary Computation , vol.17 , Issue.3 , pp. 275-306
    • García, S.1    Herrera, F.2
  • 63
    • 67649404578 scopus 로고    scopus 로고
    • On using prototype reduction schemes to enhance the computation of volume-based inter-class overlap measures
    • S.-W. Kim and B.J. Oommen, "On Using Prototype Reduction Schemes to Enhance the Computation of Volume-Based Inter-Class Overlap Measures," Pattern Recognition, vol. 42, no. 11, pp. 2695-2704, 2009.
    • (2009) Pattern Recognition , vol.42 , Issue.11 , pp. 2695-2704
    • Kim, S.-W.1    Oommen, B.J.2
  • 64
    • 25144505553 scopus 로고    scopus 로고
    • Data characterization for effective prototype selection
    • Pattern Recognition and Image Analysis: Second Iberian Conference, IbPRIA 2005. Proceedings
    • R.A. Mollineda, J.S. Sánchez, and J.M. Sotoca, "Data Characterization for Effective Prototype Selection," Proc. Second Iberian Conf. Pattern Recognition and Image Analysis, pp. 27-34, 2005. (Pubitemid 41343167)
    • (2005) Lecture Notes in Computer Science , vol.3523 , Issue.2 , pp. 27-34
    • Mollineda, R.A.1    Sanchez, J.S.2    Sotoca, J.M.3
  • 66
    • 84931162639 scopus 로고
    • The condensed nearest neighbor rule
    • May
    • P.E. Hart, "The Condensed Nearest Neighbor Rule," IEEE Trans. Information Theory, vol. 14, no. 3, pp. 515-516, May 1968.
    • (1968) IEEE Trans. Information Theory , vol.14 , Issue.3 , pp. 515-516
    • Hart, P.E.1
  • 67
    • 0015346497 scopus 로고
    • The reduced nearest neighbor rule
    • May
    • G.W. Gates, "The Reduced Nearest Neighbor Rule," IEEE Trans. Information Theory, vol. 18, no. 3, pp. 431-433, May 1972.
    • (1972) IEEE Trans. Information Theory , vol.18 , Issue.3 , pp. 431-433
    • Gates, G.W.1
  • 68
    • 0015361129 scopus 로고
    • Asymptotic properties of nearest neighbor rules using edited data
    • July
    • D.L. Wilson, "Asymptotic Properties of Nearest Neighbor Rules Using Edited Data," IEEE Trans. Systems, Man, and Cybernetics, vol. 2, no. 3, pp. 408-421, July 1972.
    • (1972) IEEE Trans. Systems, Man, and Cybernetics , vol.2 , Issue.3 , pp. 408-421
    • Wilson, D.L.1
  • 69
    • 0016080967 scopus 로고
    • Automatic selection of reference data for use in a nearest-neighbor method of pattern classification
    • July
    • J.R. Ullmann, "Automatic Selection of Reference Data for Use in a Nearest-Neighbor Method of Pattern Classification," IEEE Trans. Information Theory, vol. 20, no. 4, pp. 541-543, July 1974.
    • (1974) IEEE Trans. Information Theory , vol.20 , Issue.4 , pp. 541-543
    • Ullmann, J.R.1
  • 71
    • 0016969272 scopus 로고
    • An experiment with the edited nearest-neighbor rule
    • June
    • I. Tomek, "An Experiment with the Edited Nearest-Neighbor Rule," IEEE Trans. Systems, Man, and Cybernetics, vol. 6, no. 6, pp. 448-452, June 1976.
    • (1976) IEEE Trans. Systems, Man, and Cybernetics , vol.6 , Issue.6 , pp. 448-452
    • Tomek, I.1
  • 73
    • 0018492515 scopus 로고
    • Condensed nearest neighbor rule using the concept of mutual nearest neighborhood
    • K.C. Gowda and G. Krishna, "The Condensed Nearest Neighbor Rule Using the Concept of Mutual Nearest Neighborhood," IEEE Trans. Information Theory, vol. 25, no. 4, pp. 488-490, July 1979. (Pubitemid 9477344)
    • (1979) IEEE Trans Inf Theory , vol.25 , Issue.4 , pp. 488-490
    • Gowda K.Chidananda1    Krishna, G.2
  • 75
    • 38249042848 scopus 로고
    • On the editing rate of the multiedit algorithm
    • P.A. Devijver, "On the Editing Rate of The Multiedit Algorithm," Pattern Recognition Letters, vol. 4, pp. 9-12, 1986.
    • (1986) Pattern Recognition Letters , vol.4 , pp. 9-12
    • Devijver, P.A.1
  • 76
    • 0002161390 scopus 로고
    • Learning representative exemplars of concepts: An initial case study
    • D. Kibler and D.W. Aha, "Learning Representative Exemplars of Concepts: An Initial Case Study," Proc. Fourth Int'l Workshop Machine Learning, pp. 24-30, 1987.
    • (1987) Proc. Fourth Int'l Workshop Machine Learning , pp. 24-30
    • Kibler, D.1    Aha, D.W.2
  • 77
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • DOI 10.1023/A:1022689900470
    • D.W. Aha, D. Kibler, and M.K. Albert, "Instance-Based Learning Algorithms," Machine Learning, vol. 6, no. 1, pp. 37-66, 1991. (Pubitemid 21727227)
    • (1991) Machine Learning , vol.6 , Issue.1 , pp. 37-66
    • Aha David, W.1    Kibler Dennis2    Albert Marc, K.3
  • 78
    • 0028385080 scopus 로고
    • Minimal Consistent Set (MCS) identification for optimal nearest neighbor decision system design
    • Mar.
    • B.V. Dasarathy, "Minimal Consistent Set (MCS) Identification for Optimal Nearest Neighbor Decision System Design," IEEE Trans. Systems, Man, and Cybernetics, vol. 24, no. 3, pp. 511-517, Mar. 1994.
    • (1994) IEEE Trans. Systems, Man, and Cybernetics , vol.24 , Issue.3 , pp. 511-517
    • Dasarathy, B.V.1
  • 80
    • 0002976263 scopus 로고
    • Recursive automatic bias selection for classifier construction
    • C.E. Brodley, "Recursive Automatic Bias Selection for Classifier Construction," Machine Learning, vol. 20, nos. 1/2, pp. 63-94, 1995.
    • (1995) Machine Learning , vol.20 , Issue.1-2 , pp. 63-94
    • Brodley, C.E.1
  • 81
    • 0001920729 scopus 로고
    • Similarity metric learning for a variable-kernel classifier
    • D.G. Lowe, "Similarity Metric Learning for a Variable-Kernel Classifier," Neural Computation, vol. 7, no. 1, pp. 72-85, 1995.
    • (1995) Neural Computation , vol.7 , Issue.1 , pp. 72-85
    • Lowe, D.G.1
  • 82
    • 0031164017 scopus 로고    scopus 로고
    • Prototype selection for the nearest neighbour rule through proximity graphs
    • PII S0167865597000354
    • J.S. Sánchez, F. Pla, and F.J. Ferri, "Prototype Selection for the Nearest Neighbor Rule through Proximity Graphs," Pattern Recognition Letters, vol. 18, pp. 507-513, 1997. (Pubitemid 127424198)
    • (1997) Pattern Recognition Letters , vol.18 , Issue.6 , pp. 507-513
    • Sanchez, J.S.1    Pla, F.2    Ferri, F.J.3
  • 83
    • 0032131595 scopus 로고    scopus 로고
    • Selection of the optimal prototype subset for 1-NN classification
    • PII S0167865598000750
    • U. Lipowezky, "Selection of the Optimal Prototype Subset for 1-nn Classification," Pattern Recognition Letters, vol. 19, no. 10, pp. 907-918, 1998. (Pubitemid 128429327)
    • (1998) Pattern Recognition Letters , vol.19 , Issue.10 , pp. 907-918
    • Lipowezky, U.1
  • 84
    • 0000935031 scopus 로고
    • Editing for the k-nearest neighbors rule by a genetic algorithm
    • L.I. Kuncheva, "Editing for the k-Nearest Neighbors Rule by a Genetic Algorithm," Pattern Recognition Letters, vol. 16, no. 8, pp. 809-814, 1995.
    • (1995) Pattern Recognition Letters , vol.16 , Issue.8 , pp. 809-814
    • Kuncheva, L.I.1
  • 85
    • 0033220766 scopus 로고    scopus 로고
    • Nearest neighbor classifier: Simultaneous editing and feature selection
    • DOI 10.1016/S0167-8655(99)00082-3
    • L.I. Kuncheva and L.C. Jain, "Nearest Neighbor Classifier: Simultaneous Editing and Feature Selection," Pattern Recognition Letters, vol. 20, nos. 11-13, pp. 1149-1156, 1999. (Pubitemid 32261892)
    • (1999) Pattern Recognition Letters , vol.20 , Issue.11-13 , pp. 1149-1156
    • Kuncheva, L.I.1    Jain, L.C.2
  • 86
    • 0033883192 scopus 로고    scopus 로고
    • New edited k-nearest neighbor rule in the pattern classification problem
    • DOI 10.1016/S0031-3203(99)00068-0
    • K. Hattori and M. Takahashi, "A New Edited K-Nearest Neighbor Rule in the Pattern Classification Problem," Pattern Recognition, vol. 33, no. 3, pp. 521-528, 2000. (Pubitemid 30527943)
    • (2000) Pattern Recognition , vol.33 , Issue.3 , pp. 521-528
    • Hattori, K.1    Takahashi, M.2
  • 87
    • 23044528412 scopus 로고    scopus 로고
    • Prototype selection and feature subset selection by estimation of distribution algorithms. A sTIPS
    • Artificial Intelligence in Medicine
    • B. Sierra, E. Lazkano, I. Inza, M. Merino, P. Larrañ aga, and J. Quiroga, "Prototype Selection and Feature Subset Selection by Estimation of Distribution Algorithms, A Case Study in the Survival of Cirrhotic Patients Treated with TIPS," Proc. Eighth Conf. AI in Medicine in Europe, pp. 20-29, 2001. (Pubitemid 33301579)
    • (2001) Lecture Notes in Computer Science , Issue.2101 , pp. 20-29
    • Sierra, B.1    Lazkano, E.2    Inza, I.3    Merino, M.4    Larranaga, P.5    Quiroga, J.6
  • 88
    • 0035359888 scopus 로고    scopus 로고
    • Another move toward the minimum consistent subset: A tabu search approach to the condensed nearest neighbor rule
    • DOI 10.1109/3477.931531, PII S1083441901048531
    • V. Cerverón and F.J. Ferri, "Another Move toward the Minimum Consistent Subset: A Tabu Search Approach to the Condensed Nearest Neighbor Rule," IEEE Trans. Systems, Man, and Cybernetics, Part B, vol. 31, no. 3, pp. 408-413, June 2001. (Pubitemid 32676845)
    • (2001) IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics , vol.31 , Issue.3 , pp. 408-413
    • Cerveron, V.1    Ferri, F.J.2
  • 89
    • 0036104537 scopus 로고    scopus 로고
    • Advances in instance selection for instance-based learning algorithms
    • DOI 10.1023/A:1014043630878
    • H. Brighton and C. Mellish, "Advances in Instance Selection for Instance-Based Learning Algorithms," Data Mining and Knowledge Discovery, vol. 6, no. 2, pp. 153-172, 2002. (Pubitemid 37113870)
    • (2002) Data Mining and Knowledge Discovery , vol.6 , Issue.2 , pp. 153-172
    • Brighton, H.1    Mellish, C.2
  • 90
    • 0036466989 scopus 로고    scopus 로고
    • An incremental prototype set building technique
    • DOI 10.1016/S0031-3203(00)00184-9, PII S0031320300001849
    • V.S. Devi and M.N. Murty, "An Incremental Prototype Set Building Technique," Pattern Recognition, vol. 35, no. 2, pp. 505-513, 2002. (Pubitemid 34034624)
    • (2002) Pattern Recognition , vol.35 , Issue.2 , pp. 505-513
    • Susheela Devi, V.1    Murty M.Narasimha2
  • 91
    • 0036832996 scopus 로고    scopus 로고
    • Design of an optimal nearest neighbor classifier using an intelligent genetic algorithm
    • DOI 10.1016/S0167-8655(02)00109-5, PII S0167865502001095
    • S.-Y. Ho, C.-C. Liu, and S. Liu, "Design of an Optimal Nearest Neighbor Classifier Using an Intelligent Genetic Algorithm," Pattern Recognition Letters, vol. 23, no. 13, pp. 1495-1503, 2002. (Pubitemid 34731673)
    • (2002) Pattern Recognition Letters , vol.23 , Issue.13 , pp. 1495-1503
    • Ho, S.-Y.1    Liu, C.-C.2    Liu, S.3
  • 93
    • 0141830857 scopus 로고    scopus 로고
    • Stopping criterion for boosting-based data reduction techniques: From binary to multiclass problems
    • M. Sebban, R. Nock, E. Brodley, and A. Danyluk, "Stopping Criterion for Boosting-Based Data Reduction Techniques: From Binary to Multiclass Problems," J. Machine Learning Research, vol. 3, pp. 863-885, 2002.
    • (2002) J. Machine Learning Research , vol.3 , pp. 863-885
    • Sebban, M.1    Nock, R.2    Brodley, E.3    Danyluk, A.4
  • 94
    • 0036779076 scopus 로고    scopus 로고
    • Improved k-nearest neighbor classification
    • DOI 10.1016/S0031-3203(01)00132-7, PII S0031320301001327
    • Y. Wu, K.G. Ianakiev, and V. Govindaraju, "Improved K-Nearest Neighbor Classification," Pattern Recognition, vol. 35, no. 10, pp. 2311-2318, 2002. (Pubitemid 34812880)
    • (2002) Pattern Recognition , vol.35 , Issue.10 , pp. 2311-2318
    • Wu, Y.1    Ianakiev, K.2    Govindaraju, V.3
  • 95
    • 0036643301 scopus 로고    scopus 로고
    • Optimal reference subset selection for nearest neighbor classification by tabu search
    • DOI 10.1016/S0031-3203(01)00137-6, PII S0031320301001376
    • H. Zhang and G. Sun, "Optimal Reference Subset Selection for Nearest Neighbor Classification by Tabu Search," Pattern Recognition, vol. 35, no. 7, pp. 1481-1490, 2002. (Pubitemid 34440048)
    • (2002) Pattern Recognition , vol.35 , Issue.7 , pp. 1481-1490
    • Zhang, H.1    Sun, G.2
  • 98
    • 0347763609 scopus 로고    scopus 로고
    • Using evolutionary algorithms as instance selection for data reduction in KDD: An experimental study
    • Dec.
    • J.-R. Cano, F. Herrera, and M. Lozano, "Using Evolutionary Algorithms as Instance Selection for Data Reduction in KDD: An Experimental Study," IEEE Trans. Evolutionary Computation, vol. 7, no. 6, pp. 561-575, Dec. 2003.
    • (2003) IEEE Trans. Evolutionary Computation , vol.7 , Issue.6 , pp. 561-575
    • Cano, J.-R.1    Herrera, F.2    Lozano, M.3
  • 99
    • 0036555992 scopus 로고    scopus 로고
    • Finding representative patterns with ordered projections
    • J.C. Riquelme, J.S. Aguilar-Ruiz, and M. Toro, "Finding Representative Patterns with Ordered Projections," Pattern Recognition, vol. 36, no. 4, pp. 1009-1018, 2003.
    • (2003) Pattern Recognition , vol.36 , Issue.4 , pp. 1009-1018
    • Riquelme, J.C.1    Aguilar-Ruiz, J.S.2    Toro, M.3
  • 100
    • 0347895067 scopus 로고    scopus 로고
    • Analysis of new techniques to obtain quality training sets
    • DOI 10.1016/S0167-8655(02)00225-8, PII S0167865502002258
    • J.S. Sánchez, R. Barandela, A.I. Marqués, R. Alejo, and J. Badenas, "Analysis of New Techniques to Obtain Quality Training Sets," Pattern Recognition Letters, vol. 24, no. 7, pp. 1015-1022, 2003. (Pubitemid 36049311)
    • (2003) Pattern Recognition Letters , vol.24 , Issue.7 , pp. 1015-1022
    • Sanchez, J.S.1    Barandela, R.2    Marques, A.I.3    Alejo, R.4    Badenas, J.5
  • 101
    • 25144493576 scopus 로고    scopus 로고
    • A stochastic approach to Wilson's editing algorithm
    • Pattern Recognition and Image Analysis: Second Iberian Conference, IbPRIA 2005. Proceedings
    • F. Vázquez, J.S. Sánchez, and F. Pla, "A Stochastic Approach to Wilson's Editing Algorithm," Proc. Second Iberian Conf. Pattern Recognition and Image Analysis, pp. 35-42, 2005. (Pubitemid 41343168)
    • (2005) Lecture Notes in Computer Science , vol.3523 , Issue.2 , pp. 35-42
    • Vazquez, F.1    Sanchez, J.S.2    Pla, F.3
  • 102
    • 26844514541 scopus 로고    scopus 로고
    • Support vector based prototype selection method for nearest neighbor rules
    • Advances in Natural Computation: First International Conference, ICNC 2005. Proceedings
    • Y. Li, Z. Hu, Y. Cai, and W. Zhang, "Support Vector Based Prototype Selection Method for Nearest Neighbor Rules," Proc. First Int'l Conf. Advances in Natural Computation, pp. 528-535, 2005. (Pubitemid 41449951)
    • (2005) Lecture Notes in Computer Science , vol.3610 , Issue.PART I , pp. 528-535
    • Li, Y.1    Hu, Z.2    Cai, Y.3    Zhang, W.4
  • 104
    • 25444531678 scopus 로고    scopus 로고
    • Decision boundary preserving prototype selection for nearest neighbor classification
    • DOI 10.1142/S0218001405004332, PII S0218001405004332
    • R. Barandela, F.J. Ferri, and J.S. Sánchez, "Decision Boundary Preserving Prototype Selection for Nearest Neighbor Classification," Int'l J. Pattern Recognition and Artificial Intelligence, vol. 19, no. 6, pp. 787-806, 2005. (Pubitemid 41374104)
    • (2005) International Journal of Pattern Recognition and Artificial Intelligence , vol.19 , Issue.6 , pp. 787-806
    • Barandela, R.1    Ferri, F.J.2    Sanchez, J.S.3
  • 105
    • 33750052899 scopus 로고    scopus 로고
    • Adaptive prototype learning algorithms: Theoretical and experimental studies
    • F. Chang, C.-C. Lin, and C.-J. Lu, "Adaptive Prototype Learning Algorithms: Theoretical and Experimental Studies," J. Machine Learning Research, vol. 7, pp. 2125-2148, 2006. (Pubitemid 44582046)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2125-2148
    • Chang, F.1    Lin, C.-C.2    Lu, C.-J.3
  • 107
    • 58449124909 scopus 로고    scopus 로고
    • Evolving edited k-nearest neighbor classifiers
    • R. Gil-Pita and X. Yao, "Evolving Edited K-Nearest Neighbor Classifiers," Int'l J. Neural Systems, vol. 18, no. 6, pp. 459-467, 2008.
    • (2008) Int'l J. Neural Systems , vol.18 , Issue.6 , pp. 459-467
    • Gil-Pita, R.1    Yao, X.2
  • 108
    • 42749092345 scopus 로고    scopus 로고
    • A memetic algorithm for evolutionary prototype selection: A scaling Up approach
    • S. García, J.R. Cano, and F. Herrera, "A Memetic Algorithm for Evolutionary Prototype Selection: A Scaling Up Approach," Pattern Recognition, vol. 41, no. 8, pp. 2693-2709, 2008.
    • (2008) Pattern Recognition , vol.41 , Issue.8 , pp. 2693-2709
    • García, S.1    Cano, J.R.2    Herrera, F.3
  • 109
    • 46249122128 scopus 로고    scopus 로고
    • Hit miss networks with applications to instance selection
    • E. Marchiori, "Hit Miss Networks with Applications to Instance Selection," J. Machine Learning Research, vol. 9, pp. 997-1017, 2008.
    • (2008) J. Machine Learning Research , vol.9 , pp. 997-1017
    • Marchiori, E.1
  • 110
    • 67349169047 scopus 로고    scopus 로고
    • A novel template reduction approach for the k-nearest neighbor method
    • May
    • H.A. Fayed and A.F. Atiya, "A Novel Template Reduction Approach for the K-Nearest Neighbor Method," IEEE Trans. Neural Networks, vol. 20, no. 5, pp. 890-896, May 2009.
    • (2009) IEEE Trans. Neural Networks , vol.20 , Issue.5 , pp. 890-896
    • Fayed, H.A.1    Atiya, A.F.2
  • 112
    • 73849133622 scopus 로고    scopus 로고
    • Class conditional nearest neighbor for large margin instance selection
    • Feb.
    • E. Marchiori, "Class Conditional Nearest Neighbor for Large Margin Instance Selection," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 32, no. 2, pp. 364-370, Feb. 2010.
    • (2010) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.32 , Issue.2 , pp. 364-370
    • Marchiori, E.1
  • 113
    • 76549132784 scopus 로고    scopus 로고
    • A cooperative coevolutionary algorithm for instance selection for instance-based learning
    • N. García-Pedrajas, J.A. Romero Del Castillo, and D. Ortiz-Boyer, "A Cooperative Coevolutionary Algorithm for Instance Selection for Instance-Based Learning," Machine Learning, vol. 78, no. 3, pp. 381-420, 2010.
    • (2010) Machine Learning , vol.78 , Issue.3 , pp. 381-420
    • García-Pedrajas, N.1    Romero Del Castillo, J.A.2    Ortiz-Boyer, D.3
  • 116
  • 118
    • 34548677479 scopus 로고    scopus 로고
    • A lot of randomness is hiding in accuracy
    • DOI 10.1016/j.engappai.2007.01.001, PII S0952197607000061
    • A. Ben-David, "A Lot of Randomness Is Hiding in Accuracy," Eng. Applications of Artificial Intelligence, vol. 20, pp. 875-885, 2007. (Pubitemid 47419312)
    • (2007) Engineering Applications of Artificial Intelligence , vol.20 , Issue.7 , pp. 875-885
    • Ben-David, A.1
  • 119
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demsar, "Statistical Comparisons of Classifiers over Multiple Data Sets," J. Machine Learning Research, vol. 7, pp. 1-30, 2006. (Pubitemid 43022939)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 120
    • 58149287952 scopus 로고    scopus 로고
    • An extension on 'statistical comparisons of classifiers over multiple data sets' for all pairwise comparisons
    • S. García and F. Herrera, "An Extension on 'Statistical Comparisons of Classifiers over Multiple Data Sets' for All Pairwise Comparisons," J. Machine Learning Research, vol. 9, pp. 2677-2694, 2008.
    • (2008) J. Machine Learning Research , vol.9 , pp. 2677-2694
    • García, S.1    Herrera, F.2
  • 121
    • 77549084648 scopus 로고    scopus 로고
    • Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power
    • S. García, A. Fernández, J. Luengo, and F. Herrera, "Advanced Nonparametric Tests for Multiple Comparisons in the Design of Experiments in Computational Intelligence and Data Mining: Experimental Analysis of Power," Information Sciences, vol. 180, no. 10, pp. 2044-2064, 2010.
    • (2010) Information Sciences , vol.180 , Issue.10 , pp. 2044-2064
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4
  • 122
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • F. Wilcoxon, "Individual Comparisons by Ranking Methods," Biometrics Bull., vol. 1, pp. 80-83, 1945.
    • (1945) Biometrics Bull. , vol.1 , pp. 80-83
    • Wilcoxon, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.