메뉴 건너뛰기




Volumn 174, Issue 5-6, 2010, Pages 410-441

Democratic instance selection: A linear complexity instance selection algorithm based on classifier ensemble concepts

Author keywords

Ensembles; Huge problems; Instance selection; Instance based learning

Indexed keywords

CLASSIFIER ENSEMBLES; COMPUTATIONAL COSTS; DATA SETS; ENSEMBLES OF CLASSIFIERS; EXECUTION TIME; FAST EXECUTION TIME; INSTANCE BASED LEARNING; INSTANCE SELECTION; LARGE DATASETS; LINEAR COMPLEXITY; SCALING PROBLEM; TESTING ERRORS; UCI MACHINE LEARNING REPOSITORY; VOTING SCHEMES; WEAK LEARNER;

EID: 76549101909     PISSN: 00043702     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.artint.2010.01.001     Document Type: Article
Times cited : (86)

References (48)
  • 2
    • 0141771188 scopus 로고    scopus 로고
    • A survey of methods for scaling up inductive learning algorithms
    • Provost F.J., and Kolluri V. A survey of methods for scaling up inductive learning algorithms. Data Mining and Knowledge Discovery 2 (1999) 131-169
    • (1999) Data Mining and Knowledge Discovery , vol.2 , pp. 131-169
    • Provost, F.J.1    Kolluri, V.2
  • 3
    • 4644347255 scopus 로고    scopus 로고
    • A selective sampling approach to active feature selection
    • Liu H., Motada H., and Yu L. A selective sampling approach to active feature selection. Artificial Intelligence 159 1-2 (2004) 49-74
    • (2004) Artificial Intelligence , vol.159 , Issue.1-2 , pp. 49-74
    • Liu, H.1    Motada, H.2    Yu, L.3
  • 4
    • 0347763609 scopus 로고    scopus 로고
    • Using evolutionary algorithms as instance selection for data reduction in KDD: An experimental study
    • Cano J.R., Herrera F., and Lozano M. Using evolutionary algorithms as instance selection for data reduction in KDD: An experimental study. IEEE Transactions on Evolutionary Computation 7 6 (2003) 561-575
    • (2003) IEEE Transactions on Evolutionary Computation , vol.7 , Issue.6 , pp. 561-575
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 5
    • 0036104537 scopus 로고    scopus 로고
    • Advances in instance selection for instance-based learning algorithms
    • Brighton H., and Mellish C. Advances in instance selection for instance-based learning algorithms. Data Mining and Knowledge Discovery 6 (2002) 153-172
    • (2002) Data Mining and Knowledge Discovery , vol.6 , pp. 153-172
    • Brighton, H.1    Mellish, C.2
  • 6
    • 33845982223 scopus 로고    scopus 로고
    • Evolutionary stratified training set selection for extracting classification rules with trade off precision-interpretability
    • Cano J.R., Herrera F., and Lozano M. Evolutionary stratified training set selection for extracting classification rules with trade off precision-interpretability. Data & Knowledge Engineering 60 1 (2007) 90-108
    • (2007) Data & Knowledge Engineering , vol.60 , Issue.1 , pp. 90-108
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 9
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • Schapire R.E., Freund Y., Bartlett P.L., and Lee W.S. Boosting the margin: A new explanation for the effectiveness of voting methods. Annals of Statistics 26 5 (1998) 1651-1686
    • (1998) Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.L.3    Lee, W.S.4
  • 10
    • 21744434575 scopus 로고    scopus 로고
    • Regaining sparsity in kernel principal components
    • García-Osorio C., and Fyfe C. Regaining sparsity in kernel principal components. Neurocomputing 67 (2005) 398-402
    • (2005) Neurocomputing , vol.67 , pp. 398-402
    • García-Osorio, C.1    Fyfe, C.2
  • 15
    • 0000974551 scopus 로고
    • Plots of high dimensional data
    • Andrews D.F. Plots of high dimensional data. Biometrics 28 (1972) 125-136
    • (1972) Biometrics , vol.28 , pp. 125-136
    • Andrews, D.F.1
  • 16
    • 11144306415 scopus 로고
    • Three-dimensional Andrews plots and the grand tour
    • Wegman E.J., and Shen J. Three-dimensional Andrews plots and the grand tour. Computing Science and Statistics 25 (1993) 284-288
    • (1993) Computing Science and Statistics , vol.25 , pp. 284-288
    • Wegman, E.J.1    Shen, J.2
  • 17
    • 76549132784 scopus 로고    scopus 로고
    • A cooperative coevolutionary algorithm for instance selection for instance-based learning
    • García-Pedrajas N., Romero del Castillo J.A., and Ortiz-Boyer D. A cooperative coevolutionary algorithm for instance selection for instance-based learning. Machine Learning 78 3 (2010) 381-420
    • (2010) Machine Learning , vol.78 , Issue.3 , pp. 381-420
    • García-Pedrajas, N.1    Romero del Castillo, J.A.2    Ortiz-Boyer, D.3
  • 18
    • 17444379003 scopus 로고    scopus 로고
    • Stratification for scaling up evolutionary prototype selection
    • Cano J.R., Herrera F., and Lozano M. Stratification for scaling up evolutionary prototype selection. Pattern Recognition Letters 26 7 (2005) 953-963
    • (2005) Pattern Recognition Letters , vol.26 , Issue.7 , pp. 953-963
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 20
    • 65049087517 scopus 로고    scopus 로고
    • A divide-and-conquer recursive approach for scaling up instance selection algorithms
    • de Haro-García A., and Pedrajas N.G. A divide-and-conquer recursive approach for scaling up instance selection algorithms. Data Mining and Knowledge Discovery 18 3 (2009) 392-418
    • (2009) Data Mining and Knowledge Discovery , vol.18 , Issue.3 , pp. 392-418
    • de Haro-García, A.1    Pedrajas, N.G.2
  • 26
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar J. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7 (2006) 1-30
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1
  • 28
    • 0343081513 scopus 로고    scopus 로고
    • Reduction techniques for instance-based learning algorithms
    • Wilson D.R., and Martinez T.R. Reduction techniques for instance-based learning algorithms. Machine Learning 38 (2000) 257-286
    • (2000) Machine Learning , vol.38 , pp. 257-286
    • Wilson, D.R.1    Martinez, T.R.2
  • 29
    • 0015361129 scopus 로고
    • Asymptotic properties of nearest neighbor rules using edited data
    • Wilson D.L. Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions on Systems, Man, and Cybernetics 2 3 (1972) 408-421
    • (1972) IEEE Transactions on Systems, Man, and Cybernetics , vol.2 , Issue.3 , pp. 408-421
    • Wilson, D.L.1
  • 32
    • 0000935031 scopus 로고
    • Editing for the k-nearest neighbors rule by a genetic algorithm
    • Kuncheva L. Editing for the k-nearest neighbors rule by a genetic algorithm. Pattern Recognition Letters 16 (1995) 809-814
    • (1995) Pattern Recognition Letters , vol.16 , pp. 809-814
    • Kuncheva, L.1
  • 34
    • 0346238443 scopus 로고    scopus 로고
    • Using genetic algorithms for training data selection in RBF networks
    • Liu H., and Motoda H. (Eds), Kluwer, Norwell, Massachusetts, USA
    • Reeves C.R., and Bush D.R. Using genetic algorithms for training data selection in RBF networks. In: Liu H., and Motoda H. (Eds). Instances Selection and Construction for Data Mining (2001), Kluwer, Norwell, Massachusetts, USA 339-356
    • (2001) Instances Selection and Construction for Data Mining , pp. 339-356
    • Reeves, C.R.1    Bush, D.R.2
  • 36
    • 76549114537 scopus 로고    scopus 로고
    • D. Whitley, The GENITOR algorithm and selective pressure, in: M.K. Publishers (Ed.), Proc. 3rd International Conf. on Genetic Algorithms, Los Altos, CA, 1989, pp. 116-121
    • D. Whitley, The GENITOR algorithm and selective pressure, in: M.K. Publishers (Ed.), Proc. 3rd International Conf. on Genetic Algorithms, Los Altos, CA, 1989, pp. 116-121
  • 38
    • 0003984832 scopus 로고
    • Population-based incremental learning
    • Tech. Rep. CMU-CS-94-163, Carnegie Mellon University, Pittsburgh
    • S. Baluja, Population-based incremental learning, Tech. Rep. CMU-CS-94-163, Carnegie Mellon University, Pittsburgh, 1994
    • (1994)
    • Baluja, S.1
  • 40
    • 0008181958 scopus 로고    scopus 로고
    • Impact of learning set quality and size on decision tree performances, International Journal of Computers
    • Sebban M., Nock R., Chauchat J.H., and Rakotomalala R. Impact of learning set quality and size on decision tree performances, International Journal of Computers. Systems and Signals 1 1 (2000) 85-105
    • (2000) Systems and Signals , vol.1 , Issue.1 , pp. 85-105
    • Sebban, M.1    Nock, R.2    Chauchat, J.H.3    Rakotomalala, R.4
  • 44
    • 76549111507 scopus 로고    scopus 로고
    • Identifying and eliminating irrelevant instances using information theory
    • 13th Biennial Conference of the Canadian Society for Computational Studies of Intelligence, AI 2000. Hamilton H., and Yang Q. (Eds). Montreal, Springer
    • Sebban M., and Nock R. Identifying and eliminating irrelevant instances using information theory. In: Hamilton H., and Yang Q. (Eds). 13th Biennial Conference of the Canadian Society for Computational Studies of Intelligence, AI 2000. Montreal. Lecture Notes in Artificial Intelligence vol. 1822 (2000), Springer 90-101
    • (2000) Lecture Notes in Artificial Intelligence , vol.1822 , pp. 90-101
    • Sebban, M.1    Nock, R.2
  • 46
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer E., and Kohavi R. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning 36 1/2 (1999) 105-142
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 105-142
    • Bauer, E.1    Kohavi, R.2
  • 47
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Dietterich T.G. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning 40 (2000) 139-157
    • (2000) Machine Learning , vol.40 , pp. 139-157
    • Dietterich, T.G.1
  • 48
    • 60849105643 scopus 로고    scopus 로고
    • Constructing ensembles of classifiers by means of weighted instance selection
    • García-Pedrajas N. Constructing ensembles of classifiers by means of weighted instance selection. IEEE Transactions on Neural Networks 20 2 (2008) 258-277
    • (2008) IEEE Transactions on Neural Networks , vol.20 , Issue.2 , pp. 258-277
    • García-Pedrajas, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.