-
2
-
-
84944611438
-
-
X. Wu, V. Kumar Eds, Chapman & Hall, CRC, London, Boca Raton
-
X. Wu, V. Kumar (Eds.), The Top Ten Algorithms in Data Mining, Chapman & Hall, CRC, London, Boca Raton, 2009.
-
(2009)
The Top Ten Algorithms in Data Mining
-
-
-
4
-
-
33750719625
-
Efficient data reduction in multimedia data
-
Wang-Manoranjan S., and Xu D.C. Efficient data reduction in multimedia data. Applied Intelligence 25 (2006) 359-374
-
(2006)
Applied Intelligence
, vol.25
, pp. 359-374
-
-
Wang-Manoranjan, S.1
Xu, D.C.2
-
5
-
-
10044273895
-
Data reduction of large vector graphics
-
Kolesnikov A., and Frantib P. Data reduction of large vector graphics. Pattern Recognition 38 (2005) 381-394
-
(2005)
Pattern Recognition
, vol.38
, pp. 381-394
-
-
Kolesnikov, A.1
Frantib, P.2
-
6
-
-
34250851661
-
On using prototype reduction schemes to optimize dissimilarity-based classification
-
Kim S.W., and Oomenn B.J. On using prototype reduction schemes to optimize dissimilarity-based classification. Pattern Recognition 40 11 (2007) 2946-2957
-
(2007)
Pattern Recognition
, vol.40
, Issue.11
, pp. 2946-2957
-
-
Kim, S.W.1
Oomenn, B.J.2
-
7
-
-
53949099623
-
Subgroup discovery in large size data sets preprocessed using stratified instance selection for increasing the presence of minority classes
-
Cano J.R., García S., and Herrera F. Subgroup discovery in large size data sets preprocessed using stratified instance selection for increasing the presence of minority classes. Pattern Recognition Letters 29 (2008) 2156-2164
-
(2008)
Pattern Recognition Letters
, vol.29
, pp. 2156-2164
-
-
Cano, J.R.1
García, S.2
Herrera, F.3
-
8
-
-
67649404578
-
On using prototype reduction schemes to enhance the computation of volume-based inter-class overlap measures
-
S.W. Kim, B.J. Oomenn, On using prototype reduction schemes to enhance the computation of volume-based inter-class overlap measures, Pattern Recognition 42(11) (2009) 2695-2704.
-
(2009)
Pattern Recognition
, vol.42
, Issue.11
, pp. 2695-2704
-
-
Kim, S.W.1
Oomenn, B.J.2
-
10
-
-
43449084041
-
Prototype-based classification
-
Perner P. Prototype-based classification. Applied Intelligence 28 (2008) 238-246
-
(2008)
Applied Intelligence
, vol.28
, pp. 238-246
-
-
Perner, P.1
-
12
-
-
85130883648
-
-
H. Liu, H. Motoda Eds, Chapman & Hall, CRC, London, Boca Raton
-
H. Liu, H. Motoda (Eds.), Computational Methods of Feature Selection, Chapman & Hall, CRC, London, Boca Raton, 2007.
-
(2007)
Computational Methods of Feature Selection
-
-
-
13
-
-
0347763609
-
Using evolutionary algorithms as instance selection for data reduction in KDD: An experimental study
-
Cano J.R., Herrera F., and Lozano M. Using evolutionary algorithms as instance selection for data reduction in KDD: An experimental study. IEEE Transactions on Evolutionary Computation 7 (2003) 561-575
-
(2003)
IEEE Transactions on Evolutionary Computation
, vol.7
, pp. 561-575
-
-
Cano, J.R.1
Herrera, F.2
Lozano, M.3
-
15
-
-
42749092345
-
A memetic algorithm for evolutionary prototype selection: a scaling up approach
-
García S., Cano J.R., and Herrera F. A memetic algorithm for evolutionary prototype selection: a scaling up approach. Pattern Recognition 41 8 (2008) 2693-2709
-
(2008)
Pattern Recognition
, vol.41
, Issue.8
, pp. 2693-2709
-
-
García, S.1
Cano, J.R.2
Herrera, F.3
-
16
-
-
0000935031
-
Editing for the k-nearest neighbors rule by a genetic algorithm
-
Kuncheva L.I. Editing for the k-nearest neighbors rule by a genetic algorithm. Pattern Recognition Letters 16 (1995) 809-814
-
(1995)
Pattern Recognition Letters
, vol.16
, pp. 809-814
-
-
Kuncheva, L.I.1
-
17
-
-
0343773003
-
Feature subset selection by Bayesian networks: a comparison with genetic and sequential algorithms
-
Inza I., Larraaga P., and Sierra B. Feature subset selection by Bayesian networks: a comparison with genetic and sequential algorithms. International Journal of Approximate Reasoning 27 (2001) 143-164
-
(2001)
International Journal of Approximate Reasoning
, vol.27
, pp. 143-164
-
-
Inza, I.1
Larraaga, P.2
Sierra, B.3
-
22
-
-
36749021623
-
A genetic approach for efficient outlier detection in projected space
-
Bandyopadhyay S., and Santanu S. A genetic approach for efficient outlier detection in projected space. Pattern Recognition 41 (2008) 1338-1349
-
(2008)
Pattern Recognition
, vol.41
, pp. 1338-1349
-
-
Bandyopadhyay, S.1
Santanu, S.2
-
23
-
-
0034153728
-
Cooperative coevolution: an architecture for evolving coadapted subcomponents
-
Potter M.A., and De Jong K.A. Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evolutionary Computation 8 (2000) 1-29
-
(2000)
Evolutionary Computation
, vol.8
, pp. 1-29
-
-
Potter, M.A.1
De Jong, K.A.2
-
25
-
-
33749251505
-
A cooperative constructive method for neural networks for pattern recognition
-
Garcia-Pedrajas N., and Ortiz-Boyer D. A cooperative constructive method for neural networks for pattern recognition. Pattern Recognition 40 1 (2007) 80-98
-
(2007)
Pattern Recognition
, vol.40
, Issue.1
, pp. 80-98
-
-
Garcia-Pedrajas, N.1
Ortiz-Boyer, D.2
-
26
-
-
10444261979
-
The cooperative coevolutionary (1 + 1) EA
-
Wiegand R.P., and Jansen T. The cooperative coevolutionary (1 + 1) EA. Evolutionary Computation 12 (2004) 405-434
-
(2004)
Evolutionary Computation
, vol.12
, pp. 405-434
-
-
Wiegand, R.P.1
Jansen, T.2
-
27
-
-
0001884644
-
Individual comparisons by rankings methods
-
Wilcoxon F. Individual comparisons by rankings methods. Biometrics 1 (1945) 80-83
-
(1945)
Biometrics
, vol.1
, pp. 80-83
-
-
Wilcoxon, F.1
-
29
-
-
33845982223
-
Evolutionary stratified training set selection for extracting classification rules with trade-off precision-interpretability
-
Cano J.R., Herrera F., and Lozano M. Evolutionary stratified training set selection for extracting classification rules with trade-off precision-interpretability. Data and Knowledge Engineering 60 (2007) 90-100
-
(2007)
Data and Knowledge Engineering
, vol.60
, pp. 90-100
-
-
Cano, J.R.1
Herrera, F.2
Lozano, M.3
-
30
-
-
30944444787
-
Artificial neural networks with evolutionary instance selection for financial forecasting
-
Kim K. Artificial neural networks with evolutionary instance selection for financial forecasting. Expert Systems with Applications 30 (2006) 519-526
-
(2006)
Expert Systems with Applications
, vol.30
, pp. 519-526
-
-
Kim, K.1
-
31
-
-
0343081513
-
Reduction techniques for instance-based learning algorithms
-
Wilson D.R., and Martinez T.R. Reduction techniques for instance-based learning algorithms. Machine Learning 38 (2000) 257-286
-
(2000)
Machine Learning
, vol.38
, pp. 257-286
-
-
Wilson, D.R.1
Martinez, T.R.2
-
33
-
-
0015361129
-
Asymptotic properties of nearest neighbor rules using edited data
-
Wilson D.L. Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions on Systems, Man and Cybernetics 3 (1972) 408-421
-
(1972)
IEEE Transactions on Systems, Man and Cybernetics
, vol.3
, pp. 408-421
-
-
Wilson, D.L.1
-
34
-
-
46249122128
-
Hit miss networks with applications to instance selection
-
Marchiori E. Hit miss networks with applications to instance selection. Journal of Machine Learning Research 9 (2008) 997-1017
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 997-1017
-
-
Marchiori, E.1
-
35
-
-
77951767444
-
A new fast prototype selection method based on clustering
-
in press, doi:10.1007/s10044-008-0142-x
-
J.A. Olvera-López, J.A. Carrasco-Ochoa, J.F. Martínez-Trinidad, A new fast prototype selection method based on clustering, Pattern Analysis and Applications (2009), in press, doi:10.1007/s10044-008-0142-x.
-
(2009)
Pattern Analysis and Applications
-
-
Olvera-López, J.A.1
Carrasco-Ochoa, J.A.2
Martínez-Trinidad, J.F.3
-
37
-
-
9444236865
-
Comparison of instances selection algorithms I
-
Algorithms survey, Springer, Berlin
-
N. Jankowski, M. Grochowski, Comparison of instances selection algorithms I. Algorithms survey, in: Lecture Notes in Computer Science, vol. 3070, Springer, Berlin, 2004, pp. 598-603.
-
(2004)
Lecture Notes in Computer Science
, vol.3070
, pp. 598-603
-
-
Jankowski, N.1
Grochowski, M.2
-
38
-
-
0346331906
-
A brief taxonomy and ranking of creative prototype reduction schemes
-
Kim S.W., and Oomenn B.J. A brief taxonomy and ranking of creative prototype reduction schemes. Pattern Analysis and Applications 6 (2003) 232-244
-
(2003)
Pattern Analysis and Applications
, vol.6
, pp. 232-244
-
-
Kim, S.W.1
Oomenn, B.J.2
-
41
-
-
35748932917
-
A review of feature selection techniques in bioinformatics
-
Saeys Y., Inza I., and Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 19 (2007) 2507-2517
-
(2007)
Bioinformatics
, vol.19
, pp. 2507-2517
-
-
Saeys, Y.1
Inza, I.2
Larranaga, P.3
-
43
-
-
67349250195
-
Feature selection based on loss-margin of nearest neighbor classification
-
Li Y., and Lu B.L. Feature selection based on loss-margin of nearest neighbor classification. Pattern Recognition 42 9 (2009) 1914-1921
-
(2009)
Pattern Recognition
, vol.42
, Issue.9
, pp. 1914-1921
-
-
Li, Y.1
Lu, B.L.2
-
45
-
-
37649019425
-
Feature subset selection based on fuzzy entropy measures for handling classification problems
-
Shie J., and Chen S. Feature subset selection based on fuzzy entropy measures for handling classification problems. Applied Intelligence 28 (2008) 69-82
-
(2008)
Applied Intelligence
, vol.28
, pp. 69-82
-
-
Shie, J.1
Chen, S.2
-
46
-
-
17044405923
-
Toward integrating feature selection algorithms for classification and clustering
-
Liu H., and Yu L. Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering 17 3 (2005) 1-12
-
(2005)
IEEE Transactions on Knowledge and Data Engineering
, vol.17
, Issue.3
, pp. 1-12
-
-
Liu, H.1
Yu, L.2
-
47
-
-
0033220766
-
Nearest neighbor classifier: simultaneous editing and descriptor selection
-
Kuncheva L.I., and Jain L.C. Nearest neighbor classifier: simultaneous editing and descriptor selection. Pattern Recognition Letters 20 (1999) 1149-1156
-
(1999)
Pattern Recognition Letters
, vol.20
, pp. 1149-1156
-
-
Kuncheva, L.I.1
Jain, L.C.2
-
48
-
-
0013384310
-
Genetic-algorithm-based instance and feature selection
-
H. Liu, H. Motoda Eds
-
H. Ishibuchi, T. Nakashima, M. Nii, Genetic-algorithm-based instance and feature selection, in: H. Liu, H. Motoda (Eds.), Instance Selection and Construction for Data Mining, 2001, pp. 95-112.
-
(2001)
Instance Selection and Construction for Data Mining
, pp. 95-112
-
-
Ishibuchi, H.1
Nakashima, T.2
Nii, M.3
-
49
-
-
57849085710
-
A novel approach for integrating feature and instance selection
-
Kunming
-
J. Teixeira, R.A. Ferreira, G.A. Lima, A novel approach for integrating feature and instance selection, in: International Conference on Machine Learning and Cybernetics, Kunming, 2008, pp. 374-379.
-
(2008)
International Conference on Machine Learning and Cybernetics
, pp. 374-379
-
-
Teixeira, J.1
Ferreira, R.A.2
Lima, G.A.3
-
51
-
-
58549117670
-
Bankruptcy prediction modeling with hybrid case-based reasoning and genetic algorithms approach
-
Ahn H., and Kim K. Bankruptcy prediction modeling with hybrid case-based reasoning and genetic algorithms approach. Applied Soft Computing 9 (2009) 599-607
-
(2009)
Applied Soft Computing
, vol.9
, pp. 599-607
-
-
Ahn, H.1
Kim, K.2
-
52
-
-
0001334115
-
The CHC adaptative search algorithm: how to have safe search when engaging in nontraditional genetic recombination
-
Rawlins G.J.E. (Ed)
-
Eshelman L.J. The CHC adaptative search algorithm: how to have safe search when engaging in nontraditional genetic recombination. In: Rawlins G.J.E. (Ed). Foundations of Genetic Algorithms (1991) 265-283
-
(1991)
Foundations of Genetic Algorithms
, pp. 265-283
-
-
Eshelman, L.J.1
-
54
-
-
84956859473
-
Evolution of reference sets in nearest neighbor classification
-
Ishibuchi H., and Nakashima T. Evolution of reference sets in nearest neighbor classification. Lecture Notes in Computer Science vol. 1585 (1999) 82-89
-
(1999)
Lecture Notes in Computer Science
, vol.1585
, pp. 82-89
-
-
Ishibuchi, H.1
Nakashima, T.2
-
55
-
-
23044528412
-
Prototype selection and feature subset selection by estimation of distribution algorithms
-
A case study in the survival of cirrhotic patients treated with TIPS, Springer, Berlin
-
B. Sierra, E. Lazkano, I. Inza, M. Merino, P. Larraaga, J. Quiroga, Prototype selection and feature subset selection by estimation of distribution algorithms. A case study in the survival of cirrhotic patients treated with TIPS, in: Lecture Notes in Artificial Intelligence, vol. 2101, Springer, Berlin, 2001, pp. 20-29.
-
(2001)
Lecture Notes in Artificial Intelligence
, vol.2101
, pp. 20-29
-
-
Sierra, B.1
Lazkano, E.2
Inza, I.3
Merino, M.4
Larraaga, P.5
Quiroga, J.6
-
56
-
-
0000751098
-
Using learning to facilitate the evolution of features for recognizing visual concepts
-
Bala J., De Jong K.A., Huang J., Vafaie H., and Wechsler H. Using learning to facilitate the evolution of features for recognizing visual concepts. Evolutionary Computation 4 3 (1997) 297-311
-
(1997)
Evolutionary Computation
, vol.4
, Issue.3
, pp. 297-311
-
-
Bala, J.1
De Jong, K.A.2
Huang, J.3
Vafaie, H.4
Wechsler, H.5
-
57
-
-
0035426683
-
Genetic feature selection in a fuzzy rule-based classification system learning process for high-dimensional problems
-
Casillas J., Cordon O., Del Jesus M.J., and Herrera F. Genetic feature selection in a fuzzy rule-based classification system learning process for high-dimensional problems. Information Sciences 136 (2001) 135-157
-
(2001)
Information Sciences
, vol.136
, pp. 135-157
-
-
Casillas, J.1
Cordon, O.2
Del Jesus, M.J.3
Herrera, F.4
-
58
-
-
0035359278
-
Selection of relevant features in a fuzzy genetic learning algorithm
-
Gonzalez A., and Perez R. Selection of relevant features in a fuzzy genetic learning algorithm. IEEE Transactions on Systems, Man and Cybernetics 31 3 (2001) 417-425
-
(2001)
IEEE Transactions on Systems, Man and Cybernetics
, vol.31
, Issue.3
, pp. 417-425
-
-
Gonzalez, A.1
Perez, R.2
-
59
-
-
38349121661
-
Genetic algorithm-based feature set partitioning for classification problems
-
Rokach L. Genetic algorithm-based feature set partitioning for classification problems. Pattern Recognition 41 (2008) 1676-1700
-
(2008)
Pattern Recognition
, vol.41
, pp. 1676-1700
-
-
Rokach, L.1
-
60
-
-
0024895461
-
A note on genetic algorithm for large-scale feature selection
-
Siedlecki W., and Sklansky J. A note on genetic algorithm for large-scale feature selection. Pattern Recognition Letters 10 (1989) 335-347
-
(1989)
Pattern Recognition Letters
, vol.10
, pp. 335-347
-
-
Siedlecki, W.1
Sklansky, J.2
-
61
-
-
58349092287
-
Evolutionary-based feature selection approaches with new criteria for data mining: a case study of credit approval data
-
Wang C., and Huang Y. Evolutionary-based feature selection approaches with new criteria for data mining: a case study of credit approval data. Expert Systems with Applications 36 (2009) 5900-5908
-
(2009)
Expert Systems with Applications
, vol.36
, pp. 5900-5908
-
-
Wang, C.1
Huang, Y.2
-
62
-
-
17444397485
-
Neural vs. statistical classifier in conjunction with genetic algorithm based feature selection
-
Zhang P., Verma B., and Kumar K. Neural vs. statistical classifier in conjunction with genetic algorithm based feature selection. Pattern Recognition Letters 26 7 (2005) 909-919
-
(2005)
Pattern Recognition Letters
, vol.26
, Issue.7
, pp. 909-919
-
-
Zhang, P.1
Verma, B.2
Kumar, K.3
-
63
-
-
0036832996
-
Design of an optimal nearest neighbor classifier using an intelligent genetic algorithm
-
Ho S., Liu C., and Liu S. Design of an optimal nearest neighbor classifier using an intelligent genetic algorithm. Pattern Recognition Letters 23 (2002) 1495-1503
-
(2002)
Pattern Recognition Letters
, vol.23
, pp. 1495-1503
-
-
Ho, S.1
Liu, C.2
Liu, S.3
-
66
-
-
7244246137
-
-
Ph.D. Thesis, George Mason University, Fairfax, Virginia
-
R.P. Wiegand, An analysis of cooperative coevolutionary algorithms, Ph.D. Thesis, George Mason University, Fairfax, Virginia, 2003.
-
(2003)
An analysis of cooperative coevolutionary algorithms
-
-
Wiegand, R.P.1
-
68
-
-
84880814738
-
Improving coevolutionary search for optimal multiagent behaviors
-
Acapulco
-
L. Panait, R.P. Wiegand, S. Luke, Improving coevolutionary search for optimal multiagent behaviors, in: International Joint Conferences on Artificial Intelligence, Acapulco, 2003, pp. 653-658.
-
(2003)
International Joint Conferences on Artificial Intelligence
, pp. 653-658
-
-
Panait, L.1
Wiegand, R.P.2
Luke, S.3
-
69
-
-
33750272950
-
Archive-based cooperative coevolutionary algorithms
-
Seattle
-
L. Panait, S. Luke, J.F Harrison, Archive-based cooperative coevolutionary algorithms, in: Genetic and Evolutionary Computation Conference, GECCO'06, Seattle, 2006, pp. 345-352.
-
(2006)
Genetic and Evolutionary Computation Conference, GECCO'06
, pp. 345-352
-
-
Panait, L.1
Luke, S.2
Harrison, J.F.3
-
70
-
-
33847290404
-
-
Birmingham
-
R.P. Wiegand, J. Sarma, Spatial embedding and loss of gradient in cooperative coevolutionary algorithms, Parallel Problem Solving from Nature VIII, Birmingham, 2004, pp. 912-921.
-
(2004)
Spatial embedding and loss of gradient in cooperative coevolutionary algorithms, Parallel Problem Solving from Nature VIII
, pp. 912-921
-
-
Wiegand, R.P.1
Sarma, J.2
-
71
-
-
34547241457
-
Sequential versus parallel cooperative coevolutionary algorithms for optimization
-
Vancouver
-
E. Popovici, K.A. De Jong, Sequential versus parallel cooperative coevolutionary algorithms for optimization, IEEE Congress on Evolutionary Computation, Vancouver, 2006, pp. 1610-1617.
-
(2006)
IEEE Congress on Evolutionary Computation
, pp. 1610-1617
-
-
Popovici, E.1
De Jong, K.A.2
-
72
-
-
0013401736
-
An empirical analysis of collaboration methods in cooperative coevolutionary algorithms
-
San Francisco
-
R.P. Wiegand, L. Liles, K.A. De Jong, An empirical analysis of collaboration methods in cooperative coevolutionary algorithms, in: Genetic and Evolutionary Computation Conference, GECCO'01, San Francisco, 2001, pp. 1235-1242.
-
(2001)
Genetic and Evolutionary Computation Conference, GECCO'01
, pp. 1235-1242
-
-
Wiegand, R.P.1
Liles, L.2
De Jong, K.A.3
-
75
-
-
57349175700
-
A no-free-lunch framework for coevolution
-
Atlanta
-
C.S. Travis, D.R. Tauritz, A no-free-lunch framework for coevolution, in: Genetic and Evolutionary Computation Conference, GECCO'08, Atlanta, 2008, pp. 371-378.
-
(2008)
Genetic and Evolutionary Computation Conference, GECCO'08
, pp. 371-378
-
-
Travis, C.S.1
Tauritz, D.R.2
-
76
-
-
76749131627
-
-
UCI repository of machine learning databases, URL: 〈
-
A. Asuncion, D.J. Newman, UCI repository of machine learning databases, 2007, URL: 〈 http://www.ics.uci.edu/∼mlearn/MLRepository.html〉.
-
(2007)
-
-
Asuncion, A.1
Newman, D.J.2
-
78
-
-
0034274591
-
A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms
-
Lim T.S., Loh W.Y., and Shih Y.S. A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Machine Learning 40 3 (2000) 203-228
-
(2000)
Machine Learning
, vol.40
, Issue.3
, pp. 203-228
-
-
Lim, T.S.1
Loh, W.Y.2
Shih, Y.S.3
-
79
-
-
84973587732
-
A coefficient of agreement for nominal scales
-
Cohen J. A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20 1 (1960) 37-46
-
(1960)
Educational and Psychological Measurement
, vol.20
, Issue.1
, pp. 37-46
-
-
Cohen, J.1
-
81
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Demšar J. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7 (2006) 1-30
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1-30
-
-
Demšar, J.1
-
82
-
-
58149287952
-
An extension on "Statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons
-
García S., and Herrera F. An extension on "Statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons. Journal of Machine Learning Research 9 (2008) 2677-2694
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 2677-2694
-
-
García, S.1
Herrera, F.2
-
84
-
-
0004252445
-
-
Prentice-Hall, Englewood Cliffs, London
-
Zar J.H. Biostatistical Analysis (1999), Prentice-Hall, Englewood Cliffs, London
-
(1999)
Biostatistical Analysis
-
-
Zar, J.H.1
-
85
-
-
0036104537
-
Advances in instance selection for instance-based learning algorithms
-
Brighton H., and Mellish C. Advances in instance selection for instance-based learning algorithms. Data Mining and Knowledge Discovery 6 2 (2002) 153-172
-
(2002)
Data Mining and Knowledge Discovery
, vol.6
, Issue.2
, pp. 153-172
-
-
Brighton, H.1
Mellish, C.2
-
86
-
-
85146422424
-
A practical approach to feature selection
-
Sleeman P., and Edwards P. (Eds), Morgan Kaufmann, Los Altos, CA
-
Kira K., and Rendell L. A practical approach to feature selection. In: Sleeman P., and Edwards P. (Eds). Proceedings of the Ninth International Conference on Machine Learning (ICML-92) (1992), Morgan Kaufmann, Los Altos, CA 249-256
-
(1992)
Proceedings of the Ninth International Conference on Machine Learning (ICML-92)
, pp. 249-256
-
-
Kira, K.1
Rendell, L.2
-
87
-
-
0242324457
-
Feature selection and classification: A probabilistic wrapper approach
-
Fukuoka, Japan
-
H. Liu, R. Setiono, Feature selection and classification: a probabilistic wrapper approach, in: Ninth International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, Fukuoka, Japan, 1996, pp. 419-424.
-
(1996)
Ninth International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems
, pp. 419-424
-
-
Liu, H.1
Setiono, R.2
-
90
-
-
17444379003
-
Stratification for scaling up evolutionary prototype selection
-
Cano J.R., Herrera F., and Lozano M. Stratification for scaling up evolutionary prototype selection. Pattern Recognition Letters 26 (2005) 953-963
-
(2005)
Pattern Recognition Letters
, vol.26
, pp. 953-963
-
-
Cano, J.R.1
Herrera, F.2
Lozano, M.3
-
91
-
-
65049087517
-
A divide-and-conquer recursive approach for scaling up instance selection algorithms
-
Haro-García A., and García-Pedrajas N. A divide-and-conquer recursive approach for scaling up instance selection algorithms. Data Mining and Knowledge Discovery 18 (2009) 392-418
-
(2009)
Data Mining and Knowledge Discovery
, vol.18
, pp. 392-418
-
-
Haro-García, A.1
García-Pedrajas, N.2
|