메뉴 건너뛰기




Volumn 18, Issue 3, 2009, Pages 392-418

A divide-and-conquer recursive approach for scaling up instance selection algorithms

Author keywords

Divide and conquer; Instance based learning; Instance selection; Scalability

Indexed keywords

DATA-SETS; DIVIDE-AND-CONQUER; EXECUTION TIME; FAST EXECUTION TIME; INSTANCE BASED LEARNING; INSTANCE SELECTION; INSTANCE SELECTION FOR INSTANCE-BASED LEARNING; LARGE DATA SETS; RECURSIVE APPROACHES; SCALING PROBLEMS; SCALING-UP; STANDARD ALGORITHMS; TRAINING SETS; UCI MACHINE LEARNING REPOSITORIES;

EID: 65049087517     PISSN: 13845810     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10618-008-0121-2     Document Type: Article
Times cited : (47)

References (40)
  • 2
    • 0003984832 scopus 로고
    • Technical Report CMU-CS-94-163. Carnegie Mellon University, Pittsburgh
    • Baluja S (1994) Population-based incremental learning. Technical Report CMU-CS-94-163. Carnegie Mellon University, Pittsburgh
    • (1994) Population-based Incremental Learning
    • Baluja, S.1
  • 4
    • 25444531678 scopus 로고    scopus 로고
    • Decision boundary preserving prototype selection for nearest neighbor classification
    • R Barandela FJ Ferri JS Sínchez 2005 Decision boundary preserving prototype selection for nearest neighbor classification Int J Pattern Recognit Artif Intell 19 6 787 806
    • (2005) Int J Pattern Recognit Artif Intell , vol.19 , Issue.6 , pp. 787-806
    • Barandela, R.1    Ferri, F.J.2    Sínchez, J.S.3
  • 5
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • A Blum P Langley 1997 Selection of relevant features and examples in machine learning Artif Intell 97 245 271
    • (1997) Artif Intell , vol.97 , pp. 245-271
    • Blum, A.1    Langley, P.2
  • 6
    • 0036104537 scopus 로고    scopus 로고
    • Advances in instance selection for instance-based learning algorithms
    • H Brighton C Mellish 2002 Advances in instance selection for instance-based learning algorithms Data Min Knowl Discov 6 153 172
    • (2002) Data Min Knowl Discov , vol.6 , pp. 153-172
    • Brighton, H.1    Mellish, C.2
  • 7
    • 0002976263 scopus 로고
    • Recursive automatic bias selection for classifier construction
    • CE Brodley 1995 Recursive automatic bias selection for classifier construction Mach Learn 20 1/2 63 94
    • (1995) Mach Learn , vol.20 , Issue.1-2 , pp. 63-94
    • Brodley, C.E.1
  • 8
    • 0347763609 scopus 로고    scopus 로고
    • Using evolutionary algorithms as instance selection for data reduction in KDD: An experimental study
    • JR Cano F Herrera M Lozano 2003 Using evolutionary algorithms as instance selection for data reduction in KDD: an experimental study IEEE Trans Evol Comput 7 6 561 575
    • (2003) IEEE Trans Evol Comput , vol.7 , Issue.6 , pp. 561-575
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 9
    • 17444379003 scopus 로고    scopus 로고
    • Stratification for scaling up evolutionary prototype selection
    • JR Cano F Herrera M Lozano 2005 Stratification for scaling up evolutionary prototype selection Pattern Recognit Lett 26 7 953 963
    • (2005) Pattern Recognit Lett , vol.26 , Issue.7 , pp. 953-963
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 12
    • 18144454135 scopus 로고    scopus 로고
    • Design of nearest neighbor classifiers: Multi-objective approach
    • JH Chen HM Chen SY Ho 2005 Design of nearest neighbor classifiers: multi-objective approach Int J Approx Reason 40 1-2 3 22
    • (2005) Int J Approx Reason , vol.40 , Issue.12 , pp. 3-22
    • Chen, J.H.1    Chen, H.M.2    Ho, S.Y.3
  • 15
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J Demšar 2006 Statistical comparisons of classifiers over multiple data sets J Mach Learn Res 7 1 30
    • (2006) J Mach Learn Res , vol.7 , pp. 1-30
    • Demšar, J.1
  • 16
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • TG Dietterich 1998 Approximate statistical tests for comparing supervised classification learning algorithms Neural Comput 10 7 1895 1923
    • (1998) Neural Comput , vol.10 , Issue.7 , pp. 1895-1923
    • Dietterich, T.G.1
  • 18
    • 65049084517 scopus 로고    scopus 로고
    • A cooperative coevolutionary algorithm for instance selection for instance-based learning
    • in review
    • García-Pedrajas N, del Castillo JAR, Ortiz-Boyer D (2008) A cooperative coevolutionary algorithm for instance selection for instance-based learning. Mach Learn (in review)
    • (2008) Mach Learn
    • García-Pedrajas, N.1
  • 23
    • 60849116742 scopus 로고    scopus 로고
    • Pattern and feature selection by genetic algorithms in nearest neighbor classification
    • H Ishibuchi T Nakashima 2000 Pattern and feature selection by genetic algorithms in nearest neighbor classification J Adv Comput Intell Intell Inform 4 2 138 145
    • (2000) J Adv Comput Intell Intell Inform , vol.4 , Issue.2 , pp. 138-145
    • Ishibuchi, H.1    Nakashima, T.2
  • 25
    • 0000935031 scopus 로고
    • Editing for the k-nearest neighbors rule by a genetic algorithm
    • L Kuncheva 1995 Editing for the k-nearest neighbors rule by a genetic algorithm Pattern Recognit Lett 16 809 814
    • (1995) Pattern Recognit Lett , vol.16 , pp. 809-814
    • Kuncheva, L.1
  • 28
    • 0141688336 scopus 로고    scopus 로고
    • On issues of instance selection
    • H Liu H Motoda 2002 On issues of instance selection Data Min Knowl Discov 6 115 130
    • (2002) Data Min Knowl Discov , vol.6 , pp. 115-130
    • Liu, H.1    Motoda, H.2
  • 30
    • 0141771188 scopus 로고    scopus 로고
    • A survey of methods for scaling up inductive learning algorithms
    • FJ Provost V Kolluri 1999 A survey of methods for scaling up inductive learning algorithms Data Min Knowl Discov 2 131 169
    • (1999) Data Min Knowl Discov , vol.2 , pp. 131-169
    • Provost, F.J.1    Kolluri, V.2
  • 36
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • F Wilcoxon 1945 Individual comparisons by ranking methods Biometrics 1 80 83
    • (1945) Biometrics , vol.1 , pp. 80-83
    • Wilcoxon, F.1
  • 37
    • 0015361129 scopus 로고
    • Asymptotic properties of nearest neighbor rules using edited data
    • DL Wilson 1972 Asymptotic properties of nearest neighbor rules using edited data IEEE Trans Syst Man Cybern 2 3 408 421
    • (1972) IEEE Trans Syst Man Cybern , vol.2 , Issue.3 , pp. 408-421
    • Wilson, D.L.1
  • 39
    • 0343081513 scopus 로고    scopus 로고
    • Reduction techniques for instance-based learning algorithms
    • DR Wilson TR Martinez 2000 Reduction techniques for instance-based learning algorithms Mach Learn 38 257 286
    • (2000) Mach Learn , vol.38 , pp. 257-286
    • Wilson, D.R.1    Martinez, T.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.