메뉴 건너뛰기




Volumn 35, Issue 4, 2008, Pages 1949-1965

Making CN2-SD subgroup discovery algorithm scalable to large size data sets using instance selection

Author keywords

Instance selection; Scaling down; Subgroup discovery

Indexed keywords

DIFFUSERS (OPTICAL); POPULATION STATISTICS;

EID: 48749106976     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2007.08.083     Document Type: Article
Times cited : (17)

References (57)
  • 2
    • 33750322433 scopus 로고    scopus 로고
    • Atzmueller, M., & Puppe, F. (2006). SD-Map a fast algorithm for exhaustive subgroup discovery. In Proceedings of the 10th European conference on principles and practice of knowledge discovery in databases (pp. 6-17).
    • Atzmueller, M., & Puppe, F. (2006). SD-Map a fast algorithm for exhaustive subgroup discovery. In Proceedings of the 10th European conference on principles and practice of knowledge discovery in databases (pp. 6-17).
  • 5
    • 0036104537 scopus 로고    scopus 로고
    • Advances in instance selection for instance based learning algorithms
    • Brightom H., and Mellish C. Advances in instance selection for instance based learning algorithms. Data Mining and Knowledge Discovery 6 (2002) 153-172
    • (2002) Data Mining and Knowledge Discovery , vol.6 , pp. 153-172
    • Brightom, H.1    Mellish, C.2
  • 6
    • 0347763609 scopus 로고    scopus 로고
    • Using evolutionary computation as instance selection for data reduction in KDD: An experimental study
    • Cano J.-R., Herrera F., and Lozano M. Using evolutionary computation as instance selection for data reduction in KDD: An experimental study. IEEE Transactions on Evolutionary Computation 7 6 (2003) 561-575
    • (2003) IEEE Transactions on Evolutionary Computation , vol.7 , Issue.6 , pp. 561-575
    • Cano, J.-R.1    Herrera, F.2    Lozano, M.3
  • 7
    • 17444379003 scopus 로고    scopus 로고
    • Stratification for scaling up evolutionary prototype selection
    • Cano J.-R., Herrera F., and Lozano M. Stratification for scaling up evolutionary prototype selection. Pattern Recognition Letters 26 (2005) 953-963
    • (2005) Pattern Recognition Letters , vol.26 , pp. 953-963
    • Cano, J.-R.1    Herrera, F.2    Lozano, M.3
  • 8
    • 33845982223 scopus 로고    scopus 로고
    • Evolutionary stratified training set selection for extracting classification rules with trade off precision-interpretability
    • Cano J.-R., Herrera F., and Lozano M. Evolutionary stratified training set selection for extracting classification rules with trade off precision-interpretability. Data and Knowledge Engineering 60 1 (2007) 90-108
    • (2007) Data and Knowledge Engineering , vol.60 , Issue.1 , pp. 90-108
    • Cano, J.-R.1    Herrera, F.2    Lozano, M.3
  • 9
    • 33846436416 scopus 로고    scopus 로고
    • An integrated approach for operational knowledge acquisition of refuse incinerators
    • Chang Y.-C., Lai P.-C., and Lee M.-T. An integrated approach for operational knowledge acquisition of refuse incinerators. Expert Systems with Applications 33 2 (2007) 413-419
    • (2007) Expert Systems with Applications , vol.33 , Issue.2 , pp. 413-419
    • Chang, Y.-C.1    Lai, P.-C.2    Lee, M.-T.3
  • 10
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • Clark P., and Boswell R. The CN2 induction algorithm. Machine Learning 3 4 (1989) 261-283
    • (1989) Machine Learning , vol.3 , Issue.4 , pp. 261-283
    • Clark, P.1    Boswell, R.2
  • 11
    • 85015191605 scopus 로고    scopus 로고
    • Clark, P., & Niblett, T. (1991). Rule induction with CN2: Some recent improvements. In Proceedings of the fifth European working session on learning (pp. 151-163).
    • Clark, P., & Niblett, T. (1991). Rule induction with CN2: Some recent improvements. In Proceedings of the fifth European working session on learning (pp. 151-163).
  • 12
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demsar J. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7 (2006) 1-30
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 13
    • 0036102015 scopus 로고    scopus 로고
    • Adaptive sampling methods for scaling up knowledge discovery algorithms
    • Domingo C., Gavaldá R., and Watanabe O. Adaptive sampling methods for scaling up knowledge discovery algorithms. Data Mining and Knowledge Discovery 6 2 (2002) 131-152
    • (2002) Data Mining and Knowledge Discovery , vol.6 , Issue.2 , pp. 131-152
    • Domingo, C.1    Gavaldá, R.2    Watanabe, O.3
  • 14
    • 0001334115 scopus 로고
    • The CHC adaptive search algorithm: How to have safe search when engaging in nontraditional genetic recombination
    • Eshelman L.J. The CHC adaptive search algorithm: How to have safe search when engaging in nontraditional genetic recombination. Foundation of Genetic Algorithms 1 (1991) 265-283
    • (1991) Foundation of Genetic Algorithms , vol.1 , pp. 265-283
    • Eshelman, L.J.1
  • 15
    • 0001837148 scopus 로고
    • A comparison of alternative tests of significance for the problem of m rankings
    • Friedman M. A comparison of alternative tests of significance for the problem of m rankings. Annals of Mathematical Statistics 11 (1940) 86-92
    • (1940) Annals of Mathematical Statistics , vol.11 , pp. 86-92
    • Friedman, M.1
  • 16
    • 84864847489 scopus 로고    scopus 로고
    • Gamberger, D., & Lavrač, N. (2002). Generating actionable knowledge by expert-guided subgroup discovery. In Proceedings of principles of data mining knowledge discovery (pp. 163-174).
    • Gamberger, D., & Lavrač, N. (2002). Generating actionable knowledge by expert-guided subgroup discovery. In Proceedings of principles of data mining knowledge discovery (pp. 163-174).
  • 17
    • 84864847489 scopus 로고    scopus 로고
    • Gamberger, D., & Lavrač, N. (2002). Descriptive induction through subgroup discovery: A case study in a medical domain. In Proceedings of the international conference on machine learning (pp. 163-170).
    • Gamberger, D., & Lavrač, N. (2002). Descriptive induction through subgroup discovery: A case study in a medical domain. In Proceedings of the international conference on machine learning (pp. 163-170).
  • 19
    • 48749099785 scopus 로고    scopus 로고
    • Gamberger, D., Lavrač, N., & Wettschereck, D. (2002). Subgroup visualization: A method and application in population screening. In Proceedings of the intelligent data analysis in medicine and pharmacology (pp. 31-35).
    • Gamberger, D., Lavrač, N., & Wettschereck, D. (2002). Subgroup visualization: A method and application in population screening. In Proceedings of the intelligent data analysis in medicine and pharmacology (pp. 31-35).
  • 20
    • 9444268167 scopus 로고    scopus 로고
    • Grochowski, M., & Jankowski, N. (2004). Comparison of instance selection algorithms II. Results and comments. In Proceedings of the 7th international conference on artificial intelligence and soft computing (pp. 580-585).
    • Grochowski, M., & Jankowski, N. (2004). Comparison of instance selection algorithms II. Results and comments. In Proceedings of the 7th international conference on artificial intelligence and soft computing (pp. 580-585).
  • 23
    • 0002294347 scopus 로고
    • A simple sequentially rejective multiple test procedure
    • Holm S. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6 (1979) 65-70
    • (1979) Scandinavian Journal of Statistics , vol.6 , pp. 65-70
    • Holm, S.1
  • 24
    • 33748076461 scopus 로고    scopus 로고
    • A GA-based feature selection and parameters optimization for support vector machines
    • Huang C.-L., and Wang C.-J. A GA-based feature selection and parameters optimization for support vector machines. Expert Systems with Application 31 2 (2006) 231-240
    • (2006) Expert Systems with Application , vol.31 , Issue.2 , pp. 231-240
    • Huang, C.-L.1    Wang, C.-J.2
  • 25
    • 0001750957 scopus 로고
    • Approximations of the critical region of the Friedman statistic
    • Iman R.L., and Davenport J.M. Approximations of the critical region of the Friedman statistic. Communications in Statistics (1980) 571-595
    • (1980) Communications in Statistics , pp. 571-595
    • Iman, R.L.1    Davenport, J.M.2
  • 26
    • 33644667964 scopus 로고    scopus 로고
    • Evaluating the perfomance of cost-based discretization versus entropy- and error-based discretization
    • Janssens D., Brijs T., Vanhoof K., and Wets G. Evaluating the perfomance of cost-based discretization versus entropy- and error-based discretization. Computers and Operations Research 33 (2006) 3107-3123
    • (2006) Computers and Operations Research , vol.33 , pp. 3107-3123
    • Janssens, D.1    Brijs, T.2    Vanhoof, K.3    Wets, G.4
  • 27
    • 48749109409 scopus 로고    scopus 로고
    • Kavšek, B., Lavrač, N., & Bullas, J. C. (2002). Rule induction for subgroup discovery: A case study in mining UK traffic accident data. In Proceedings of the international multi-conference on information society (pp. 127-130).
    • Kavšek, B., Lavrač, N., & Bullas, J. C. (2002). Rule induction for subgroup discovery: A case study in mining UK traffic accident data. In Proceedings of the international multi-conference on information society (pp. 127-130).
  • 28
    • 33747881454 scopus 로고    scopus 로고
    • APRIORI-SD: Adapting association rule learning to subgroup discovery
    • Kavšek B., and Lavrač N. APRIORI-SD: Adapting association rule learning to subgroup discovery. Applied Artificial Intelligence 20 7 (2006) 543-583
    • (2006) Applied Artificial Intelligence , vol.20 , Issue.7 , pp. 543-583
    • Kavšek, B.1    Lavrač, N.2
  • 29
    • 48749103653 scopus 로고    scopus 로고
    • Kibbler, D., & Aha, D. W. (1987). Learning representative exemplars of concepts: An initial case of study. In Proceedings of the 4th international workshop on machine learning (pp. 24-30).
    • Kibbler, D., & Aha, D. W. (1987). Learning representative exemplars of concepts: An initial case of study. In Proceedings of the 4th international workshop on machine learning (pp. 24-30).
  • 30
    • 30944444787 scopus 로고    scopus 로고
    • Articial neural networks with evolutionary instance selection for financial forecasting
    • Kim K.-J. Articial neural networks with evolutionary instance selection for financial forecasting. Expert Systems with Applications 30 3 (2006) 519-526
    • (2006) Expert Systems with Applications , vol.30 , Issue.3 , pp. 519-526
    • Kim, K.-J.1
  • 31
    • 0002192370 scopus 로고    scopus 로고
    • Explora: A multipattern and multistrategy discovery assistant
    • MIT Press pp. 249-271
    • Klöesgen W. Explora: A multipattern and multistrategy discovery assistant. Advances in knowledge discovery and data mining (1996), MIT Press pp. 249-271
    • (1996) Advances in knowledge discovery and data mining
    • Klöesgen, W.1
  • 32
    • 48749101589 scopus 로고    scopus 로고
    • Klöesgen, W., & Michael, M. (2002). Census data mining - An application. In Proceedings of the 6th European conference on principles of data mining, knowledge discovery (pp. 65-79).
    • Klöesgen, W., & Michael, M. (2002). Census data mining - An application. In Proceedings of the 6th European conference on principles of data mining, knowledge discovery (pp. 65-79).
  • 33
    • 0000935031 scopus 로고
    • Editing for the k-nearest neighbors rule by a genetic algorithm
    • Kuncheva L. Editing for the k-nearest neighbors rule by a genetic algorithm. Pattern Recognition Letters 16 (1995) 809-814
    • (1995) Pattern Recognition Letters , vol.16 , pp. 809-814
    • Kuncheva, L.1
  • 34
    • 0038433993 scopus 로고    scopus 로고
    • Lavrač, N., Flach, P., Kavšek, B., & Todorovski, L. (2002). Adapting classification rule induction to subgroup discovery. In Proceedings of the IEEE international conference on data mining (pp. 266-273).
    • Lavrač, N., Flach, P., Kavšek, B., & Todorovski, L. (2002). Adapting classification rule induction to subgroup discovery. In Proceedings of the IEEE international conference on data mining (pp. 266-273).
  • 35
    • 3242791702 scopus 로고    scopus 로고
    • Decision support through subgroup discovery: Three case studies and the lessons learned
    • Lavrač N., Cestnik B., Gamberger D., and Flach P. Decision support through subgroup discovery: Three case studies and the lessons learned. Machine Learning 57 (2004) 115-143
    • (2004) Machine Learning , vol.57 , pp. 115-143
    • Lavrač, N.1    Cestnik, B.2    Gamberger, D.3    Flach, P.4
  • 37
    • 26944438672 scopus 로고    scopus 로고
    • Lavrač, N. (2005). Subgroup discovery techniques and applications. In Proceedings of the 19th Pacific-Asia conference advances in knowledge discovery (pp. 2-14).
    • Lavrač, N. (2005). Subgroup discovery techniques and applications. In Proceedings of the 19th Pacific-Asia conference advances in knowledge discovery (pp. 2-14).
  • 41
    • 0242360768 scopus 로고    scopus 로고
    • Nakada, T., & Kunifuji, S. (2003). Subgroup discovery among personal homepages. In Proceedings of the discovery science (pp. 385-392).
    • Nakada, T., & Kunifuji, S. (2003). Subgroup discovery among personal homepages. In Proceedings of the discovery science (pp. 385-392).
  • 42
    • 48749113542 scopus 로고    scopus 로고
    • Newman, D. J., Hettich, S., Blake, C. L. & Merz, C. J. (1998). UCI Repository of machine learning databases, http://www.ics.uci.edu/~mlearn/MLRepository.html, University of California, Irvine, Department of Information and Computer Sciences.
    • Newman, D. J., Hettich, S., Blake, C. L. & Merz, C. J. (1998). UCI Repository of machine learning databases, http://www.ics.uci.edu/~mlearn/MLRepository.html, University of California, Irvine, Department of Information and Computer Sciences.
  • 43
    • 33846442797 scopus 로고    scopus 로고
    • Medical decision support system based on artificial immune recognition immune system (AIRS), fuzzy weighted pre-processing and feature selection
    • Polat K., and Gunes S. Medical decision support system based on artificial immune recognition immune system (AIRS), fuzzy weighted pre-processing and feature selection. Expert Systems with Applications 33 2 (2007) 484-490
    • (2007) Expert Systems with Applications , vol.33 , Issue.2 , pp. 484-490
    • Polat, K.1    Gunes, S.2
  • 44
    • 0141771188 scopus 로고    scopus 로고
    • A survey of methods for scaling up inductive algorithms
    • Provost F., and Kolluri V. A survey of methods for scaling up inductive algorithms. Data Mining and Knowledge Discovery 3 2 (1999) 131-169
    • (1999) Data Mining and Knowledge Discovery , vol.3 , Issue.2 , pp. 131-169
    • Provost, F.1    Kolluri, V.2
  • 45
    • 0036555992 scopus 로고    scopus 로고
    • Finding representative patterns with ordered projections
    • Riquelme J.C., Aguilar J.S., and Toro M. Finding representative patterns with ordered projections. Pattern Recognition 36 (2003) 1009-1018
    • (2003) Pattern Recognition , vol.36 , pp. 1009-1018
    • Riquelme, J.C.1    Aguilar, J.S.2    Toro, M.3
  • 46
    • 18144451785 scopus 로고    scopus 로고
    • High training set size reduction by space partitioning and prototype abstraction
    • Sánchez J.S. High training set size reduction by space partitioning and prototype abstraction. Pattern Recognition 37 (2004) 1561-1564
    • (2004) Pattern Recognition , vol.37 , pp. 1561-1564
    • Sánchez, J.S.1
  • 50
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • Wilcoxon F. Individual comparisons by ranking methods. Biometrics 1 (1945) 80-83
    • (1945) Biometrics , vol.1 , pp. 80-83
    • Wilcoxon, F.1
  • 51
    • 0015361129 scopus 로고
    • Asymptotic properties of nearest neighbor rules using edited data
    • Wilson D.L. Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions on Systems, Man and Cybernetics 2 3 (1972) 408-421
    • (1972) IEEE Transactions on Systems, Man and Cybernetics , vol.2 , Issue.3 , pp. 408-421
    • Wilson, D.L.1
  • 52
    • 48749110779 scopus 로고    scopus 로고
    • Wilson, D. R., & Martinez, T. R. (1997). Instance pruning techniques. In Proceedings of the 14th international conference (pp. 403-411).
    • Wilson, D. R., & Martinez, T. R. (1997). Instance pruning techniques. In Proceedings of the 14th international conference (pp. 403-411).
  • 53
    • 0343081513 scopus 로고    scopus 로고
    • Reduction techniques for instance-based learning algorithms
    • Wilson D.R., and Martinez T.R. Reduction techniques for instance-based learning algorithms. Machine Learning 38 (2000) 257-268
    • (2000) Machine Learning , vol.38 , pp. 257-268
    • Wilson, D.R.1    Martinez, T.R.2
  • 54
    • 34548792706 scopus 로고    scopus 로고
    • Wrobel, S. (1997). An algorithm for multi-relational discovery of subgroups. In Proceedings of the 1st European conference on principles of data mining and knowledge discovery (pp. 78-87).
    • Wrobel, S. (1997). An algorithm for multi-relational discovery of subgroups. In Proceedings of the 1st European conference on principles of data mining and knowledge discovery (pp. 78-87).
  • 55
    • 33144482770 scopus 로고    scopus 로고
    • An efficient data mining approach for discovering interesting knowledge from customer transactions
    • Yen S.-J., and Lee Y.-S. An efficient data mining approach for discovering interesting knowledge from customer transactions. Expert Systems with Applications 30 4 (2006) 650-657
    • (2006) Expert Systems with Applications , vol.30 , Issue.4 , pp. 650-657
    • Yen, S.-J.1    Lee, Y.-S.2
  • 57
    • 32144454875 scopus 로고    scopus 로고
    • Propositionalization-based relational subgroup discovery with RSD
    • Železný F., and Lavrač N. Propositionalization-based relational subgroup discovery with RSD. Machine Learning 62 (2006) 33-63
    • (2006) Machine Learning , vol.62 , pp. 33-63
    • Železný, F.1    Lavrač, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.