메뉴 건너뛰기




Volumn 39, Issue 10, 2006, Pages 1827-1838

Experimental study on prototype optimisation algorithms for prototype-based classification in vector spaces

Author keywords

Adaptive condensing; Dissimilarity representation; EM algorithm; Nearest neighbour rule; Normal density based classifier; Prototype selection

Indexed keywords

ADAPTIVE ALGORITHMS; CLASSIFICATION (OF INFORMATION); COMPUTATIONAL COMPLEXITY; OPTIMIZATION; SOFTWARE PROTOTYPING; VECTORS;

EID: 33745421067     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2006.04.005     Document Type: Article
Times cited : (65)

References (35)
  • 1
    • 0015361129 scopus 로고
    • Asymptotic properties of nearest neighbor rules using edited data sets
    • Wilson D.L. Asymptotic properties of nearest neighbor rules using edited data sets. IEEE Trans. Syst. Man Cybern. 2 (1972) 408-421
    • (1972) IEEE Trans. Syst. Man Cybern. , vol.2 , pp. 408-421
    • Wilson, D.L.1
  • 2
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • Aha D.W., Kibler D., and Albert M.K. Instance-based learning algorithms. Mach. Learn. 6 1 (1991) 37-66
    • (1991) Mach. Learn. , vol.6 , Issue.1 , pp. 37-66
    • Aha, D.W.1    Kibler, D.2    Albert, M.K.3
  • 5
    • 0343081513 scopus 로고    scopus 로고
    • Reduction techniques for instance-based learning algorithms
    • Wilson D.R., and Martinez T.R. Reduction techniques for instance-based learning algorithms. Mach. Learn. 38 3 (2000) 257-286
    • (2000) Mach. Learn. , vol.38 , Issue.3 , pp. 257-286
    • Wilson, D.R.1    Martinez, T.R.2
  • 6
    • 0028385080 scopus 로고
    • Minimal consistent subset (MCS) identification for optimal nearest neighbor decision systems design
    • Dasarathy B.V. Minimal consistent subset (MCS) identification for optimal nearest neighbor decision systems design. IEEE Trans. Syst. Man Cybern. 24 (1994) 511-517
    • (1994) IEEE Trans. Syst. Man Cybern. , vol.24 , pp. 511-517
    • Dasarathy, B.V.1
  • 7
    • 84931162639 scopus 로고
    • The condensed nearest neighbor rule
    • Hart P.E. The condensed nearest neighbor rule. IEEE Trans. Inform. Theory 14 5 (1968) 505-516
    • (1968) IEEE Trans. Inform. Theory , vol.14 , Issue.5 , pp. 505-516
    • Hart, P.E.1
  • 10
    • 33745328800 scopus 로고    scopus 로고
    • M.C. Ainslie, J.S. Sánchez, Space partitioning for instance reduction in lazy learning algorithms, Second Workshop on Integration and Collaboration Aspects of Data Mining, Decision Support and Meta-Learning, 2002, pp. 13-18.
  • 11
    • 0016127071 scopus 로고
    • Finding prototypes for nearest neighbor classifiers
    • Chang C.L. Finding prototypes for nearest neighbor classifiers. IEEE Trans. Comput. 23 (1974) 1179-1184
    • (1974) IEEE Trans. Comput. , vol.23 , pp. 1179-1184
    • Chang, C.L.1
  • 12
    • 0030196853 scopus 로고    scopus 로고
    • A sample set condensation algorithm for the class sensitive artificial neural network
    • Chen C.H., and Józwik A. A sample set condensation algorithm for the class sensitive artificial neural network. Pattern Recognition Lett. 17 (1996) 819-823
    • (1996) Pattern Recognition Lett. , vol.17 , pp. 819-823
    • Chen, C.H.1    Józwik, A.2
  • 14
    • 7444264764 scopus 로고    scopus 로고
    • M. Lozano, J.S., Sánchez, F. Pla, Using the geometrical distribution of prototypes for training set condensing, in: R. Conejo, M. Urretavizcaya, J.L. Pérez de la Cruz (Eds.), Current Topics in Artificial Intelligence, Lecture Notes in Artificial Intelligence, vol. 3040, Springer, Berlin, 2004, 618-627.
  • 15
    • 33745381081 scopus 로고    scopus 로고
    • M. Lozano, J.M. Sotoca, J.S. Sánchez, F. Pla, An adaptive condensing algorithm based on mixtures of Gaussians, in: J. Vitrià et al. (Eds.), Setè Congrés Català d'Intel.ligencia Artificial, Barcelona (Spain), Frontiers in Artificial Intelligence and Applications, vol. 113, IOS Press, Amsterdam, 2004, pp. 225-232.
  • 16
    • 27744546228 scopus 로고    scopus 로고
    • Prototype selection for dissimilarity-based classifiers
    • Pe{combining ogonek}kalska E., Duin R.P.W., and Paclík P. Prototype selection for dissimilarity-based classifiers. Pattern Recognition 39 2 (2006) 189-208
    • (2006) Pattern Recognition , vol.39 , Issue.2 , pp. 189-208
    • Pekalska, E.1    Duin, R.P.W.2    Paclík, P.3
  • 18
    • 33745331640 scopus 로고    scopus 로고
    • P. Paclík, R.P.W. Duin, Classifying spectral data using relational representation, Spectral Imaging Workshop, Graz, Austria, 2003.
  • 19
    • 0348041666 scopus 로고    scopus 로고
    • Dissimilarity-based classification of spectra: computational issues
    • Paclík P., and Duin R.P.W. Dissimilarity-based classification of spectra: computational issues. Real Time Imaging 9 4 (2003) 237-244
    • (2003) Real Time Imaging , vol.9 , Issue.4 , pp. 237-244
    • Paclík, P.1    Duin, R.P.W.2
  • 20
    • 0036604999 scopus 로고    scopus 로고
    • Dissimilarity representations allow for building good classifiers
    • Pe{combining ogonek}kalska E., and Duin R.P.W. Dissimilarity representations allow for building good classifiers. Pattern Recognition Lett. 23 8 (2002) 943-956
    • (2002) Pattern Recognition Lett. , vol.23 , Issue.8 , pp. 943-956
    • Pekalska, E.1    Duin, R.P.W.2
  • 21
    • 0041995203 scopus 로고    scopus 로고
    • A generalized kernel approach to dissimilarity based classification
    • Pe{combining ogonek}kalska E., Paclík P., and Duin R.P.W. A generalized kernel approach to dissimilarity based classification. J. Mach. Learn. Res. 2 2 (2002) 175-211
    • (2002) J. Mach. Learn. Res. , vol.2 , Issue.2 , pp. 175-211
    • Pekalska, E.1    Paclík, P.2    Duin, R.P.W.3
  • 22
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover T.M., and Hart P.E. Nearest neighbor pattern classification. IEEE Trans. Inform. Theory 13 1 (1967) 21-27
    • (1967) IEEE Trans. Inform. Theory , vol.13 , Issue.1 , pp. 21-27
    • Cover, T.M.1    Hart, P.E.2
  • 23
    • 0031273787 scopus 로고    scopus 로고
    • On the use of neighbourhood-based non-parametric classifiers
    • Sánchez J.S., Pla F., and Ferri F.J. On the use of neighbourhood-based non-parametric classifiers. Pattern Recognition Lett. 18 (1997) 1179-1186
    • (1997) Pattern Recognition Lett. , vol.18 , pp. 1179-1186
    • Sánchez, J.S.1    Pla, F.2    Ferri, F.J.3
  • 24
    • 33745390659 scopus 로고    scopus 로고
    • T. Kohonen, J. Hynninen, J. Kangas, J. Laarksonen, K. Torkkola, LVQ_PAK: the learning vector quantization program package, Helsinki University of Technology, 1996 〈http://www.cis.hut.fi/research/som-research/nnrc-programs.shtml〉.
  • 25
    • 0029669422 scopus 로고    scopus 로고
    • A new definition of neighbourhood of a point in multi-dimensional space
    • Chaudhuri B.B. A new definition of neighbourhood of a point in multi-dimensional space. Pattern Recognition Lett. 17 (1996) 11-17
    • (1996) Pattern Recognition Lett. , vol.17 , pp. 11-17
    • Chaudhuri, B.B.1
  • 29
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster A.P., Laird N.M., and Rubin D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Statist. Soc. B 39 (1977) 1-38
    • (1977) J. R. Statist. Soc. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 31
    • 33749612653 scopus 로고    scopus 로고
    • E. Pe{combining ogonek}kalska, R.P.W. Duin, S. Günter, H. Bunke, On not making dissimilarities euclidean, Structural Syntactic and Statistical Pattern Recognition, Lecture Notes in Computer Science, vol. 3138, Springer, Berlin, 2004, pp. 1145-1154.
  • 33
    • 33745363335 scopus 로고    scopus 로고
    • R.P.W. Duin, P. Juszczak, D. de Ridder, P. Paclík, E. Pe{combining ogonek}kalska, D.M.J. Tax, PR-tools, a Matlab toolbox for pattern recognition, 2004 〈http://www.prtools.org〉.
  • 35
    • 33745345078 scopus 로고    scopus 로고
    • C.J. Merz, P.M. Murphy, UCI Repository of Machine Learning DB, Department of Information and Computer Science, University of California, 1998 〈http://www.ics.uci.edu/∼mlearn〉.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.