메뉴 건너뛰기




Volumn 33, Issue 5, 2011, Pages 958-977

MILIS: Multiple instance learning with instance selection

Author keywords

alternating optimization; feature selection; Multiple instance learning; support vector machine

Indexed keywords

ALTERNATING OPTIMIZATION; CLASSIFIER LEARNING; FEATURE SELECTION; INSTANCE SELECTION; KERNEL DENSITY ESTIMATORS; MULTIPLE INSTANCE LEARNING; OPTIMIZATION FRAMEWORK; REAL WORLD DATA; SPEED-UPS; STATE OF THE ART; TRAINING DATA SETS; TRAINING PROCESS;

EID: 79953031810     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPAMI.2010.155     Document Type: Article
Times cited : (171)

References (37)
  • 1
    • 0030649484 scopus 로고    scopus 로고
    • Solving the multiple instance problem with axis-parallel rectangles
    • PII S0004370296000343
    • T.G. Dietterich, R.H. Lathrop, and T. Lozano-Perez, "Solving the Multiple-Instance Problem with Axis-Parallel Rectangles," Artifi cial Intelligence, vol. 89, pp. 31-71, 1997. (Pubitemid 127412230)
    • (1997) Artificial Intelligence , vol.89 , Issue.1-2 , pp. 31-71
    • Dietterich, T.G.1    Lathrop, R.H.2    Lozano-Perez, T.3
  • 3
    • 84863161940 scopus 로고    scopus 로고
    • Image categorization by learning and reasoning with regions
    • Y. Chen and J.Z. Wang, "Image Categorization by Learning and Reasoning with Regions," J. Machine Learning Research, vol. 5, pp. 913-939, 2004.
    • (2004) J. Machine Learning Research , vol.5 , pp. 913-939
    • Chen, Y.1    Wang, J.Z.2
  • 8
    • 0141596676 scopus 로고    scopus 로고
    • Solving the multiple-instance problem: A lazy learning approach
    • J. Wang and J.D. Zucker, "Solving the Multiple-Instance Problem: A Lazy Learning Approach," Proc. Int'l Conf. Machine Learning, pp. 1119-1125, 2000.
    • (2000) Proc. Int'l Conf. Machine Learning , pp. 1119-1125
    • Wang, J.1    Zucker, J.D.2
  • 12
    • 33749243963 scopus 로고    scopus 로고
    • A regularization framework for multiple-instance learning
    • P.-M. Cheung and J.T. Kwok, "A Regularization Framework for Multiple-Instance Learning," Proc. Int'l Conf. Machine Learning, pp. 193-200, 2006.
    • (2006) Proc. Int'l Conf. Machine Learning , pp. 193-200
    • Cheung, P.-M.1    Kwok, J.T.2
  • 13
    • 34547984757 scopus 로고    scopus 로고
    • On the relation between multi-instance learning and semi-supervised learning
    • Z.-H. Zhou and J.-M. Xu, "On the Relation between Multi-Instance Learning and Semi-Supervised Learning," Proc. Int'l Conf. Machine Learning, pp. 1167-1174, 2007.
    • (2007) Proc. Int'l Conf. Machine Learning , pp. 1167-1174
    • Zhou, Z.-H.1    Xu, J.-M.2
  • 14
    • 43049183016 scopus 로고    scopus 로고
    • Multiple instance classification via successive linear programming
    • O.L. Mangasarian and E.W. Wild, "Multiple Instance Classification via Successive Linear Programming," J. Optimization Theory and Applications, vol. 137, no. 3, pp. 555-568, 2008.
    • (2008) J. Optimization Theory and Applications , vol.137 , Issue.3 , pp. 555-568
    • Mangasarian, O.L.1    Wild, E.W.2
  • 20
    • 0032201716 scopus 로고    scopus 로고
    • An optimal algorithm for approximate nearest neighbor searching fixed dimensions
    • S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, and A.Y. Wu, "An Optimal Algorithm for Approximate Nearest Neighbor Searching Fixed Dimensions," J. ACM, vol. 45, no. 6, pp. 891-923, 1998.
    • (1998) J ACM , vol.45 , Issue.6 , pp. 891-923
    • Arya, S.1    Mount, D.M.2    Netanyahu, N.S.3    Silverman, R.4    Wu, A.Y.5
  • 21
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparison to regularized likelihood methods
    • MIT Press
    • J. Platt, "Probabilistic Outputs for Support Vector Machines and Comparison to Regularized Likelihood Methods," Advances in Large Margin Classifiers, pp. 61-74, MIT Press, 2000.
    • (2000) Advances in Large Margin Classifiers , pp. 61-74
    • Platt, J.1
  • 22
    • 34247849152 scopus 로고    scopus 로고
    • Training a support vector machine in the primal
    • O. Chapelle, "Training a Support Vector Machine in the Primal," Neural Computation, vol. 19, pp. 1155-1178, 2007.
    • (2007) Neural Computation , vol.19 , pp. 1155-1178
    • Chapelle, O.1
  • 27
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • DOI 10.1023/A:1012487302797
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene Selection for Cancer Classification Using Support Vector Machines," Machine Learning, vol. 46, nos. 1-3, pp. 389-422, 2002. (Pubitemid 34129977)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 29
    • 56749117943 scopus 로고    scopus 로고
    • Defense of one-vs-all classification
    • R. Rifkin and A. Klautau, "In Defense of One-vs-All Classification," J. Machine Learning Research, vol. 5, pp. 101-141, 2004.
    • (2004) J. Machine Learning Research , vol.5 , pp. 101-141
    • Rifkin, R.1    Klautau, A.2
  • 30
    • 0010442827 scopus 로고    scopus 로고
    • On the algorithmic implementation of multiclass kernel-based vector machines
    • K. Crammer and Y. Singer, "On the Algorithmic Implementation of Multiclass Kernel-Based Vector Machines," J. Machine Learning Research, vol. 2, pp. 265-292, 2001.
    • (2001) J. Machine Learning Research , vol.2 , pp. 265-292
    • Crammer, K.1    Singer, Y.2
  • 32
    • 84932617705 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
    • L. Fei-Fei, R. Fergus, and P. Perona, "Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories," Proc. IEEE CVPR Workshop Generative-Model Based Vision, 2004.
    • (2004) Proc. IEEE CVPR Workshop Generative-Model Based Vision
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 33
    • 34247576789 scopus 로고    scopus 로고
    • The pyramid match kernel: Efficient learning with sets of features
    • K. Grauman and T. Darrell, "The Pyramid Match Kernel: Efficient Learning with Sets of Features," J. Machine Learning Research, vol. 8, pp. 725-760, 2007. (Pubitemid 46677049)
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 725-760
    • Grauman, K.1    Darrell, T.2
  • 35
    • 33846580425 scopus 로고    scopus 로고
    • Local features and kernels for classification of texture and object categories: A comprehensive study
    • DOI 10.1007/s11263-006-9794-4
    • J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, "Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study," Int'l J. Computer Vision, vol. 73, no. 2, pp. 213-238, 2007. (Pubitemid 46181625)
    • (2007) International Journal of Computer Vision , vol.73 , Issue.2 , pp. 213-238
    • Zhang, J.1    Marszalek, M.2    Lazebnik, S.3    Schmid, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.