메뉴 건너뛰기




Volumn 7, Issue 6, 2003, Pages 561-575

Using evolutionary algorithms as instance selection for data reduction in KDD: An experimental study

Author keywords

Data mining (DM); Data reduction; Evolutionary algorithms (EAs); Instance selection; Knowledge discovery

Indexed keywords

DATA REDUCTION; DATABASE SYSTEMS; INTERNET; KNOWLEDGE REPRESENTATION; LEARNING ALGORITHMS;

EID: 0347763609     PISSN: 1089778X     EISSN: None     Source Type: Journal    
DOI: 10.1109/TEVC.2003.819265     Document Type: Article
Times cited : (294)

References (36)
  • 2
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • D. W. Aha, D. Kibbler, and M. K. Albert, "Instance-based learning algorithms," Mach. Learn., vol. 6, pp. 37-66, 1991.
    • (1991) Mach. Learn. , vol.6 , pp. 37-66
    • Aha, D.W.1    Kibbler, D.2    Albert, M.K.3
  • 4
    • 0003984832 scopus 로고
    • Population-based incremental learning
    • Carnegie Mellon Univ., Pittsburgh, PA, CMU-CS-94-163
    • S. Baluja, "Population-based incremental learning," Carnegie Mellon Univ., Pittsburgh, PA, CMU-CS-94-163, 1994.
    • (1994)
    • Baluja, S.1
  • 5
    • 0347499395 scopus 로고    scopus 로고
    • Identifying competence-critical instances for instance-based learners
    • H. Liu and and H. Motoda, Eds. Norwell, MA: Kluwer
    • H. Brighton and C. Mellish, "Identifying competence-critical instances for instance-based learners," in Instance Selection and Construction for Data Mining, H. Liu and and H. Motoda, Eds. Norwell, MA: Kluwer, 2001, pp. 77-94.
    • (2001) Instance Selection and Construction for Data Mining , pp. 77-94
    • Brighton, H.1    Mellish, C.2
  • 6
    • 0036104537 scopus 로고    scopus 로고
    • Advances in instance selection for instance-based learning algorithms
    • ____, "Advances in instance selection for instance-based learning algorithms," Data Mining and Knowl. Dis., vol. 6, pp. 153-172, 2002.
    • (2002) Data Mining and Knowl. Dis. , vol.6 , pp. 153-172
    • Brighton, H.1    Mellish, C.2
  • 7
    • 85118837783 scopus 로고    scopus 로고
    • Addressing the selective superiority problem: Automatic algorithm/model class selection
    • C. E. Broadley, "Addressing the selective superiority problem: Automatic algorithm/model class selection," in Proc. 10th Int. Machine Learning Conf., Amherst, MA, 1993, pp. 17-24.
    • Proc. 10th Int. Machine Learning Conf., Amherst, MA, 1993 , pp. 17-24
    • Broadley, C.E.1
  • 10
    • 0001334115 scopus 로고
    • The adaptive search algorithm: How to have safe search when engaging in nontraditional genetic recombination
    • G. J. E. Rawlins, Ed. San Mateo, CA: Morgan Kauffman
    • L. J. Eshelman, "The adaptive search algorithm: How to have safe search when engaging in nontraditional genetic recombination," in Foundations of Genetic Algorithms-1, G. J. E. Rawlins, Ed. San Mateo, CA: Morgan Kauffman, 1991, pp. 265-283.
    • (1991) Foundations of Genetic Algorithms-1 , pp. 265-283
    • Eshelman, L.J.1
  • 12
    • 0012209798 scopus 로고    scopus 로고
    • Making better use of global discretization
    • I. Bratko and S. Dzeroski, Eds.
    • E. Frank and I. H. Witten, "Making better use of global discretization," in Proc. 16th Int. Conf. Machine Learning, I. Bratko and S. Dzeroski, Eds., 1999, pp. 115-123.
    • (1999) Proc. 16th Int. Conf. Machine Learning , pp. 115-123
    • Frank, E.1    Witten, I.H.2
  • 13
    • 0015346497 scopus 로고
    • The reduced nearest neighbor rule
    • May
    • G. W. Gates, "The reduced nearest neighbor rule," IEEE Trans. Inform. Theory, vol. IT-14, pp. 431-433, May 1972.
    • (1972) IEEE Trans. Inform. Theory , vol.IT-14 , pp. 431-433
    • Gates, G.W.1
  • 15
    • 84931162639 scopus 로고
    • The condensed nearest neighbor rule
    • May
    • P. E. Hart, "The condensed nearest neighbor rule," IEEE Trans. Inform. Theory, vol. IT-14, pp. 515-516, May 1968.
    • (1968) IEEE Trans. Inform. Theory , vol.IT-14 , pp. 515-516
    • Hart, P.E.1
  • 17
    • 0000935031 scopus 로고
    • Editing for the k-nearest neighbors rule by a genetic algorithm
    • L. Kuncheva, "Editing for the k-Nearest neighbors rule by a genetic algorithm," Pattern Recognit. Lett., vol. 16, pp. 809-814, 1995.
    • (1995) Pattern Recognit. Lett. , vol.16 , pp. 809-814
    • Kuncheva, L.1
  • 21
    • 0346868860 scopus 로고    scopus 로고
    • Data reduction via instance selection
    • H. Liu and H. Motoda, Eds. Norwell, MA: Kluwer
    • ____, "Data reduction via instance selection," in Instance Selection and Construction for Data Mining, H. Liu and H. Motoda, Eds. Norwell, MA: Kluwer, 2001, pp. 3-20.
    • (2001) Instance Selection and Construction for Data Mining , pp. 3-20
    • Liu, H.1    Motoda, H.2
  • 23
    • 0001920729 scopus 로고
    • Similarity metric learning for a variable-kernel classifier
    • D. G. Lowe, "Similarity metric learning for a variable-kernel classifier," Neural Comput., vol. 7, no. 1, pp. 72-85, 1995.
    • (1995) Neural Comput. , vol.7 , Issue.1 , pp. 72-85
    • Lowe, D.G.1
  • 25
    • 0346238443 scopus 로고    scopus 로고
    • Using genetic algorithms for training data selection in RBF networks
    • H. Liu and H. Motoda, Eds. Norwel, MA: Kluwer
    • C. R. Reeves and D. R. Bush, "Using genetic algorithms for training data selection in RBF networks," in Instance Selection and Construction for Data Mining, H. Liu and H. Motoda, Eds. Norwel, MA: Kluwer, 2001, pp. 339-356.
    • (2001) Instance Selection and Construction for Data Mining , pp. 339-356
    • Reeves, C.R.1    Bush, D.R.2
  • 26
    • 0036107187 scopus 로고    scopus 로고
    • A unifying view on instance selection
    • T. Reinartz, "A unifying view on instance selection," Data Mining and Knowl. Dis., vol. 6, pp. 191-210, 2002.
    • (2002) Data Mining and Knowl. Dis. , vol.6 , pp. 191-210
    • Reinartz, T.1
  • 27
    • 84890445089 scopus 로고    scopus 로고
    • Overfitting in making comparisons between variable selection methods
    • J. Reunanen, "Overfitting in making comparisons between variable selection methods," J. Mach. Learn. Res., vol.3, pp. 1371-1382, 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1371-1382
    • Reunanen, J.1
  • 28
    • 0026154509 scopus 로고
    • A survey of decision tree classifier methodology
    • May-June
    • S. R. Safavian and D. Landgrebe, "A survey of decision tree classifier methodology," IEEE Trans. Systems, Man, Cybern., vol. 21, pp. 660-674, May-June, 1991.
    • (1991) IEEE Trans. Systems, Man, Cybern. , vol.21 , pp. 660-674
    • Safavian, S.R.1    Landgrebe, D.2
  • 30
    • 0012657799 scopus 로고    scopus 로고
    • Prototype and feature selection by sampling and random mutation hill climbing algorithms
    • D. B. Skalak, "Prototype and feature selection by sampling and random mutation hill climbing algorithms," in Proc. 11th Int. Conf. Machine Learning, 1994, pp. 293-301.
    • Proc. 11th Int. Conf. Machine Learning, 1994 , pp. 293-301
    • Skalak, D.B.1
  • 31
    • 0015361129 scopus 로고
    • Asymptotic properties of nearest neighbor rules using edited data
    • D. L. Wilson, "Asymptotic properties of nearest neighbor rules using edited data," IEEE Trans. Systems Man, Cybern., vol. SMC-2, pp. 408-421, 1972.
    • (1972) IEEE Trans. Systems Man, Cybern. , vol.SMC-2 , pp. 408-421
    • Wilson, D.L.1
  • 33
    • 0343081513 scopus 로고    scopus 로고
    • Reduction techniques for instance-based learning algorithms
    • ____, "Reduction techniques for instance-based learning algorithms," Mach. Learn., vol. 38, pp. 257-268, 2000.
    • (2000) Mach. Learn. , vol.38 , pp. 257-268
    • Wilson, D.R.1    Martinez, T.R.2
  • 35
    • 0003389370 scopus 로고
    • The GENITOR algorithm and selective preasure: Why rank based allocation of reproductive trials is best
    • Schaffer, Ed.
    • D. Whitley, "The GENITOR algorithm and selective preasure: Why rank based allocation of reproductive trials is best," in Proc. 3rd Int. Conf. GAs, Schaffer, Ed., 1989, pp. 116-121.
    • (1989) Proc. 3rd Int. Conf. GAs , pp. 116-121
    • Whitley, D.1
  • 36
    • 85107848924 scopus 로고
    • Selecting typical instances in instance-based learning
    • D. Sleeman and P. Edwards, Eds.
    • J. Zhang, "Selecting typical instances in instance-based learning," in Proc. 9th Int. Conf. Machine Learning, D. Sleeman and P. Edwards, Eds., 1992, pp. 470-479.
    • (1992) Proc. 9th Int. Conf. Machine Learning , pp. 470-479
    • Zhang, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.