메뉴 건너뛰기




Volumn 20, Issue 2, 2009, Pages 258-277

Constructing ensembles of classifiers by means of weighted instance selection

Author keywords

Boosting; Decision trees; Ensembles of classifiers; Instance selection; k nearest neighbors (k NN); Support vector machines (SVMs)

Indexed keywords

DECISION TREES; FUZZY CONTROL; IMAGE RETRIEVAL; MEMBERSHIP FUNCTIONS; SUPPORT VECTOR MACHINES; TEXT PROCESSING;

EID: 60849105643     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2008.2005496     Document Type: Article
Times cited : (92)

References (62)
  • 1
    • 0032661927 scopus 로고    scopus 로고
    • Using correspondence analysis to combine classifiers
    • Jul
    • C. J. Merz, "Using correspondence analysis to combine classifiers," Mach. Learn., vol. 36, no. 1, pp. 33-58, Jul. 1999.
    • (1999) Mach. Learn , vol.36 , Issue.1 , pp. 33-58
    • Merz, C.J.1
  • 2
    • 33750127404 scopus 로고    scopus 로고
    • Accuracy/diversity and ensemble MLP classifier design
    • Sep
    • T. Windeatt, "Accuracy/diversity and ensemble MLP classifier design," IEEE Trans. Neural Netw., vol. 17, no. 5, pp. 1194-1211, Sep. 2006.
    • (2006) IEEE Trans. Neural Netw , vol.17 , Issue.5 , pp. 1194-1211
    • Windeatt, T.1
  • 3
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • J. Kittler and F. Roli, Eds. Berlin, Germany: Springer-Verlag
    • T. G. Dietterich, "Ensemble methods in machine learning," in Lecture Notes in Computer Science, J. Kittler and F. Roli, Eds. Berlin, Germany: Springer-Verlag, 2000, vol. 1857, pp. 1-15.
    • (2000) Lecture Notes in Computer Science , vol.1857 , pp. 1-15
    • Dietterich, T.G.1
  • 4
    • 0348151971 scopus 로고    scopus 로고
    • Combining classifiers: Soft computing solutions
    • S. K. Pal and A. Pal, Eds. Singapore: World Scientific
    • L. I. Kuncheva, "Combining classifiers: Soft computing solutions," in Pattern Recognition: From Classical to Modern Approaches, S. K. Pal and A. Pal, Eds. Singapore: World Scientific, 2001, pp. 427-451.
    • (2001) Pattern Recognition: From Classical to Modern Approaches , pp. 427-451
    • Kuncheva, L.I.1
  • 5
    • 0002978642 scopus 로고    scopus 로고
    • Experiments with a new boosting algorithm
    • Bari, Italy
    • Y. Freund and R. Schapire, "Experiments with a new boosting algorithm," in Proc. 13th Int. Conf. Mach. Learn., Bari, Italy, 1996, pp. 148-156.
    • (1996) Proc. 13th Int. Conf. Mach. Learn , pp. 148-156
    • Freund, Y.1    Schapire, R.2
  • 6
    • 0034247206 scopus 로고    scopus 로고
    • Multiboosting: A technique for combining boosting and wagging
    • Aug
    • G. I. Webb, "Multiboosting: A technique for combining boosting and wagging," Mach. Learn., vol. 40, no. 2, pp. 159-196, Aug. 2000.
    • (2000) Mach. Learn , vol.40 , Issue.2 , pp. 159-196
    • Webb, G.I.1
  • 7
    • 12144288329 scopus 로고    scopus 로고
    • Is combining classifiers with stacking better than selecting the best one?
    • S. Dzeroski and B. Zenko, "Is combining classifiers with stacking better than selecting the best one?," Mach. Learn., vol. 54, pp. 255-273, 2004.
    • (2004) Mach. Learn , vol.54 , pp. 255-273
    • Dzeroski, S.1    Zenko, B.2
  • 8
    • 0141921552 scopus 로고    scopus 로고
    • Online ensemble learning: An empirical study
    • A. Fern and R. Givan, "Online ensemble learning: An empirical study," Mach. Learn., vol. 53, pp. 71-109, 2003.
    • (2003) Mach. Learn , vol.53 , pp. 71-109
    • Fern, A.1    Givan, R.2
  • 9
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, "Bagging predictors," Mach. Learn., vol. 24, no. 2, pp. 123-140, 1996.
    • (1996) Mach. Learn , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 10
    • 0003619255 scopus 로고    scopus 로고
    • Dept. Statist, Univ. California, Berkeley, CA, Tech. Rep. 460
    • L. Breiman, "Bias, variance, and arcing classifiers," Dept. Statist., Univ. California, Berkeley, CA, Tech. Rep. 460, 1996.
    • (1996) Bias, variance, and arcing classifiers
    • Breiman, L.1
  • 11
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • R. E. Schapire, Y. Freund, P. L. Bartlett, and W. S. Lee, "Boosting the margin: A new explanation for the effectiveness of voting methods," Ann. Statist., vol. 26, no. 5, pp. 1651-1686, 1998.
    • (1998) Ann. Statist , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.L.3    Lee, W.S.4
  • 12
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Jul./Aug
    • E. Bauer and R. Kohavi, "An empirical comparison of voting classification algorithms: Bagging, boosting, and variants," Mach. Learn., vol. 36, no. 1/2, pp. 105-142, Jul./Aug. 1999.
    • (1999) Mach. Learn , vol.36 , Issue.1-2 , pp. 105-142
    • Bauer, E.1    Kohavi, R.2
  • 13
    • 0141688336 scopus 로고    scopus 로고
    • On issues of instance selection
    • H. Liu and H. Motoda, "On issues of instance selection," Data Mining Knowl. Disc., vol. 6, pp. 115-130, 2002.
    • (2002) Data Mining Knowl. Disc , vol.6 , pp. 115-130
    • Liu, H.1    Motoda, H.2
  • 14
    • 0347763609 scopus 로고    scopus 로고
    • Using evolutionary algorithms as instance selection for data reduction in KDD: An experimental study
    • Dec
    • J. R. Cano, F. Herrera, and M. Lozano, "Using evolutionary algorithms as instance selection for data reduction in KDD: An experimental study," IEEE Trans. Evol. Comput., vol. 7, no. 6, pp. 561-575, Dec. 2003.
    • (2003) IEEE Trans. Evol. Comput , vol.7 , Issue.6 , pp. 561-575
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 15
    • 23044490834 scopus 로고    scopus 로고
    • C. Domeniconi, G. D., and J. Peng, Large margin nearest neighbor classifiers, IEEE Trans. Neural Netw., 16, no. 4, pp. 899-909, Jul. 2005.
    • C. Domeniconi, G. D., and J. Peng, "Large margin nearest neighbor classifiers," IEEE Trans. Neural Netw., vol. 16, no. 4, pp. 899-909, Jul. 2005.
  • 16
    • 0036104537 scopus 로고    scopus 로고
    • Advances in instance selection for instance- based learning algorithms
    • H. Brighton and C. Mellish, "Advances in instance selection for instance- based learning algorithms," Data Mining Knowl. Disc., vol. 6, pp. 153-172, 2002.
    • (2002) Data Mining Knowl. Disc , vol.6 , pp. 153-172
    • Brighton, H.1    Mellish, C.2
  • 17
    • 0003731423 scopus 로고
    • A study of instance-based algorithms for supervised learning tasks: Mathematical, empirical, and psychological evaluations,
    • Ph.D. dissertation, Dept. Inf. Comput. Sci, Univ. California at Irvine, Irvine, CA
    • D. W. Aha, "A study of instance-based algorithms for supervised learning tasks: Mathematical, empirical, and psychological evaluations," Ph.D. dissertation, Dept. Inf. Comput. Sci., Univ. California at Irvine, Irvine, CA, 1990.
    • (1990)
    • Aha, D.W.1
  • 20
    • 0036538619 scopus 로고    scopus 로고
    • Shape matching and object recognition using shape contexts
    • Apr
    • S. Belongie, J. Malik, and J. Puzicha, "Shape matching and object recognition using shape contexts," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 4, pp. 509-522, Apr. 2002.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell , vol.24 , Issue.4 , pp. 509-522
    • Belongie, S.1    Malik, J.2    Puzicha, J.3
  • 21
    • 0031249331 scopus 로고    scopus 로고
    • Large-scale simulation studies in image pattern recognition
    • Oct
    • T. K. Ho and H. S. Baird, "Large-scale simulation studies in image pattern recognition," IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 10, pp. 1067-1079, Oct. 1997.
    • (1997) IEEE Trans. Pattern Anal. Mach. Intell , vol.19 , Issue.10 , pp. 1067-1079
    • Ho, T.K.1    Baird, H.S.2
  • 22
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • T. G. Dietterich and G. Bakiri, "Solving multiclass learning problems via error-correcting output codes," J. Artif. Intell. Res., vol. 2, pp. 263-286, 1995.
    • (1995) J. Artif. Intell. Res , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 24
    • 33744958288 scopus 로고    scopus 로고
    • Nearest neighbor classification from multiple feature subsets
    • S. D. Bay, "Nearest neighbor classification from multiple feature subsets," Intell. Data Anal., vol. 3, no. 3, pp. 191-209, 1999.
    • (1999) Intell. Data Anal , vol.3 , Issue.3 , pp. 191-209
    • Bay, S.D.1
  • 26
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Aug
    • T. K. Ho, "The random subspace method for constructing decision forests," IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 8, pp. 832-844, Aug. 1998.
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 27
    • 40549108335 scopus 로고    scopus 로고
    • Evolved feature weighting for random subspace classifier
    • Feb
    • L. Nanni and A. Lumini, "Evolved feature weighting for random subspace classifier," IEEE Trans. Neural Netw., vol. 19, no. 2, pp. 363-366, Feb. 2008.
    • (2008) IEEE Trans. Neural Netw , vol.19 , Issue.2 , pp. 363-366
    • Nanni, L.1    Lumini, A.2
  • 28
    • 0034186937 scopus 로고    scopus 로고
    • On the algorithmic implementation of stochastic discrimination
    • May
    • E. Kleinberg, "On the algorithmic implementation of stochastic discrimination," IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 5, pp. 473-490, May 2000.
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell , vol.22 , Issue.5 , pp. 473-490
    • Kleinberg, E.1
  • 29
    • 84957007471 scopus 로고    scopus 로고
    • Bagging and the random subspace method for redundant feature spaces
    • J. Kittler and R. Poli, Eds, Cambridge, U.K
    • M. Skurichina and R. P. W. Duin, "Bagging and the random subspace method for redundant feature spaces," in Proc. 2nd Int. Workshop Multiple Classifier Syst., J. Kittler and R. Poli, Eds., Cambridge, U.K., 2001, pp. 1-10.
    • (2001) Proc. 2nd Int. Workshop Multiple Classifier Syst , pp. 1-10
    • Skurichina, M.1    Duin, R.P.W.2
  • 30
    • 33846519343 scopus 로고    scopus 로고
    • Meta-learning orthographic and contextual models for language independent named entity recognition
    • R. Munro, D. Ler, and J. Patrick, "Meta-learning orthographic and contextual models for language independent named entity recognition," in Proc. 7th Conf. Natural Lang. Learn., 2003, pp. 192-195.
    • (2003) Proc. 7th Conf. Natural Lang. Learn , pp. 192-195
    • Munro, R.1    Ler, D.2    Patrick, J.3
  • 32
    • 0343081513 scopus 로고    scopus 로고
    • Reduction techniques for instancebased learning algorithms
    • D. R. Wilson and T. R. Martinez, "Reduction techniques for instancebased learning algorithms," Mach. Learn., vol. 38, pp. 257-286, 2000.
    • (2000) Mach. Learn , vol.38 , pp. 257-286
    • Wilson, D.R.1    Martinez, T.R.2
  • 33
    • 0015361129 scopus 로고
    • Asymptotic properties of nearest neighbor rules using edited data
    • D. L. Wilson, "Asymptotic properties of nearest neighbor rules using edited data," IEEE Trans. Syst. Man Cybern., vol. SMC-2, no. 3, pp. 408-421, 1972.
    • (1972) IEEE Trans. Syst. Man Cybern , vol.SMC-2 , Issue.3 , pp. 408-421
    • Wilson, D.L.1
  • 34
    • 84931162639 scopus 로고
    • The condensed nearest neighbor rule
    • May
    • P. E. Hart, "The condensed nearest neighbor rule," IEEE Trans. Inf. Theory, vol. IT-14, no. 3, pp. 515-516, May 1968.
    • (1968) IEEE Trans. Inf. Theory , vol.IT-14 , Issue.3 , pp. 515-516
    • Hart, P.E.1
  • 35
    • 0015346497 scopus 로고
    • The reduced nearest neighbor rule
    • May
    • G. W. Gates, "The reduced nearest neighbor rule," IEEE Trans. Inf. Theory, vol. IT-18, no. 3, pp. 431-433, May 1972.
    • (1972) IEEE Trans. Inf. Theory , vol.IT-18 , Issue.3 , pp. 431-433
    • Gates, G.W.1
  • 36
    • 0000935031 scopus 로고
    • Editing for the k-nearest neighbors rule by a genetic algorithm
    • L. Kuncheva, "Editing for the k-nearest neighbors rule by a genetic algorithm," Pattern Recognit. Lett., vol. 16, pp. 809-814, 1995.
    • (1995) Pattern Recognit. Lett , vol.16 , pp. 809-814
    • Kuncheva, L.1
  • 37
    • 60849116742 scopus 로고    scopus 로고
    • Pattern and feature selection by genetic algorithms in nearest neighbor classification
    • H. Ishibuchi and T. Nakashima, "Pattern and feature selection by genetic algorithms in nearest neighbor classification," J. Adv. Comput. Intell. Intell. Inf., vol. 4, no. 2, pp. 138-145, 2000.
    • (2000) J. Adv. Comput. Intell. Intell. Inf , vol.4 , Issue.2 , pp. 138-145
    • Ishibuchi, H.1    Nakashima, T.2
  • 38
    • 0346238443 scopus 로고    scopus 로고
    • Using genetic algorithms for training data selection in RBF networks
    • H. Liu and H. Motoda, Eds. Norwell, MA: Kluwer
    • C. R. Reeves and D. R. Bush, "Using genetic algorithms for training data selection in RBF networks," in Instances Selection and Construction for Data Mining, H. Liu and H. Motoda, Eds. Norwell, MA: Kluwer, 2001, pp. 339-356.
    • (2001) Instances Selection and Construction for Data Mining , pp. 339-356
    • Reeves, C.R.1    Bush, D.R.2
  • 40
    • 60849129187 scopus 로고    scopus 로고
    • D. Whitley, The GENITOR algorithm and selective pressure, in Proc. 3rd Int. Conf. Genetic Algorithms, M. K. Publishers, Ed., Los Altos, CA, 1989, pp. 116-121.
    • D. Whitley, "The GENITOR algorithm and selective pressure," in Proc. 3rd Int. Conf. Genetic Algorithms, M. K. Publishers, Ed., Los Altos, CA, 1989, pp. 116-121.
  • 42
    • 0003984832 scopus 로고
    • Carnegie Mellon Univ, Pittsburgh, PA, Tech. Rep. CMU-CS-94-163
    • S. Baluja, "Population-based incremental learning," Carnegie Mellon Univ., Pittsburgh, PA, Tech. Rep. CMU-CS-94-163, 1994.
    • (1994) Population-based incremental learning
    • Baluja, S.1
  • 43
    • 84955565984 scopus 로고    scopus 로고
    • Combining robot control strategies using genetic algorithms with memory
    • Berlin, Germany: Springer-Verlag, 1213, pp
    • S. J. Louis and G. Li, "Combining robot control strategies using genetic algorithms with memory," in Lecture Notes in Computer Science, Evolutionary Programming VI. Berlin, Germany: Springer-Verlag, 1997, vol. 1213, pp. 431-442.
    • (1997) Lecture Notes in Computer Science, Evolutionary Programming , vol.6 , pp. 431-442
    • Louis, S.J.1    Li, G.2
  • 44
    • 0000859501 scopus 로고    scopus 로고
    • Multi-objective pattern and feature selection by a genetic algorithm
    • Las Vegas, NV
    • H. Ishibuchi and T. Nakashima, "Multi-objective pattern and feature selection by a genetic algorithm," in Proc. Genetic Evol. Comput. Conf., Las Vegas, NV, 2000, pp. 1069-1076.
    • (2000) Proc. Genetic Evol. Comput. Conf , pp. 1069-1076
    • Ishibuchi, H.1    Nakashima, T.2
  • 46
    • 0002976263 scopus 로고
    • Recursive automatic bias selection for classifier construction
    • C. E. Brodley, "Recursive automatic bias selection for classifier construction," Mach. Learn., vol. 20, no. 1/2, pp. 63-94, 1995.
    • (1995) Mach. Learn , vol.20 , Issue.1-2 , pp. 63-94
    • Brodley, C.E.1
  • 47
    • 48949116216 scopus 로고    scopus 로고
    • A general wrapper approach to selection of class-dependent features
    • Jul
    • L. Wang, N. Zhou, and F. Chu, "A general wrapper approach to selection of class-dependent features," IEEE Trans. Neural Netw., vol. 19, no. 7, pp. 1267-1278, Jul. 2008.
    • (2008) IEEE Trans. Neural Netw , vol.19 , Issue.7 , pp. 1267-1278
    • Wang, L.1    Zhou, N.2    Chu, F.3
  • 48
    • 30944444787 scopus 로고    scopus 로고
    • Artificial neural networks with evolutionary instance selection for financial forecasting
    • K.-J. Kim, "Artificial neural networks with evolutionary instance selection for financial forecasting," Expert Syst. Appl., vol. 30, pp. 519-526, 2006.
    • (2006) Expert Syst. Appl , vol.30 , pp. 519-526
    • Kim, K.-J.1
  • 50
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • T. G. Dietterich, "Approximate statistical tests for comparing supervised classification learning algorithms," Neural Comput., vol. 10, no. 7, pp. 1895-1923, 1998.
    • (1998) Neural Comput , vol.10 , Issue.7 , pp. 1895-1923
    • Dietterich, T.G.1
  • 51
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar, "Statistical comparisons of classifiers over multiple data sets," J. Mach. Learn. Res., vol. 7, pp. 1-30, 2006.
    • (2006) J. Mach. Learn. Res , vol.7 , pp. 1-30
    • Demšar, J.1
  • 52
    • 0001750957 scopus 로고
    • Approximations of the critical regions of the Friedman statistic
    • R. L. Iman and J. M. Davenport, "Approximations of the critical regions of the Friedman statistic," Commun. Statist., vol. 6, pp. 571-595, 1980.
    • (1980) Commun. Statist , vol.6 , pp. 571-595
    • Iman, R.L.1    Davenport, J.M.2
  • 53
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • F. Wilcoxon, "Individual comparisons by ranking methods," Biometrics, vol. 1, pp. 80-83, 1945.
    • (1945) Biometrics , vol.1 , pp. 80-83
    • Wilcoxon, F.1
  • 54
    • 60849089965 scopus 로고    scopus 로고
    • GNU General Public License Version 3, Free Software Foundation, Inc, Jun, Online, Available
    • GNU General Public License Version 3, Free Software Foundation, Inc., Jun. 2007 [Online]. Available: http://www.gnu.org/licenses/ gpl-3.0-standalone.html
    • (2007)
  • 55
    • 0035521110 scopus 로고    scopus 로고
    • Learn++: An incremental learning algorithm for supervised neural networks
    • Nov
    • R. Polikar, L. Udpa, S. Udpa, and V. Honavar, "Learn++: An incremental learning algorithm for supervised neural networks," IEEE Trans. Syst. Man Cybern. C, Appl. Rev., vol. 31, no. 4, pp. 497-508, Nov. 2001.
    • (2001) IEEE Trans. Syst. Man Cybern. C, Appl. Rev , vol.31 , Issue.4 , pp. 497-508
    • Polikar, R.1    Udpa, L.2    Udpa, S.3    Honavar, V.4
  • 56
    • 10444259853 scopus 로고    scopus 로고
    • Creating diversity in ensembles using artificial data
    • P. Melville and R. J. Mooney, "Creating diversity in ensembles using artificial data," Inf. Fusion, vol. 6, pp. 99-111, 2005.
    • (2005) Inf. Fusion , vol.6 , pp. 99-111
    • Melville, P.1    Mooney, R.J.2
  • 57
    • 84948152666 scopus 로고    scopus 로고
    • Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error
    • L. de Raedt and P. Flach, Eds. Berlin, Germany: Springer-Verlag
    • G. Zenobi and P. Cunningham, "Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error," in Lecture Notes on Artificial Intelligence L. de Raedt and P. Flach, Eds. Berlin, Germany: Springer-Verlag, 2001, vol. 2167, pp. 576-587.
    • (2001) Lecture Notes on Artificial Intelligence , vol.2167 , pp. 576-587
    • Zenobi, G.1    Cunningham, P.2
  • 58
    • 18144454135 scopus 로고    scopus 로고
    • Design of nearest neighbor classifiers: Multi-objective approach
    • J. H. Chen, H. M. Chen, and S. Y. Ho, "Design of nearest neighbor classifiers: Multi-objective approach," Int. J. Approx. Reason., vol. 40, no. 1-2, pp. 3-22, 2005.
    • (2005) Int. J. Approx. Reason , vol.40 , Issue.1-2 , pp. 3-22
    • Chen, J.H.1    Chen, H.M.2    Ho, S.Y.3
  • 59
    • 33745913300 scopus 로고    scopus 로고
    • Data reduction for instance-based learning using entropy-based partitioning
    • Berlin, Germany: Springer-Verlag
    • S. H. Son and J. Y. Kim, "Data reduction for instance-based learning using entropy-based partitioning," in Lecture Notes in Computer Science. Berlin, Germany: Springer-Verlag, 2006, vol. 3982, pp. 590-599.
    • (2006) Lecture Notes in Computer Science , vol.3982 , pp. 590-599
    • Son, S.H.1    Kim, J.Y.2
  • 61
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • T. G. Dietterich, "An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization," Mach. Learn., vol. 40, pp. 139-157, 2000.
    • (2000) Mach. Learn , vol.40 , pp. 139-157
    • Dietterich, T.G.1
  • 62
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman, "Random forests," Mach. Learn., vol. 45, pp. 5-32, 2001.
    • (2001) Mach. Learn , vol.45 , pp. 5-32
    • Breiman, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.