-
1
-
-
0032661927
-
Using correspondence analysis to combine classifiers
-
Jul
-
C. J. Merz, "Using correspondence analysis to combine classifiers," Mach. Learn., vol. 36, no. 1, pp. 33-58, Jul. 1999.
-
(1999)
Mach. Learn
, vol.36
, Issue.1
, pp. 33-58
-
-
Merz, C.J.1
-
2
-
-
33750127404
-
Accuracy/diversity and ensemble MLP classifier design
-
Sep
-
T. Windeatt, "Accuracy/diversity and ensemble MLP classifier design," IEEE Trans. Neural Netw., vol. 17, no. 5, pp. 1194-1211, Sep. 2006.
-
(2006)
IEEE Trans. Neural Netw
, vol.17
, Issue.5
, pp. 1194-1211
-
-
Windeatt, T.1
-
3
-
-
80053403826
-
Ensemble methods in machine learning
-
J. Kittler and F. Roli, Eds. Berlin, Germany: Springer-Verlag
-
T. G. Dietterich, "Ensemble methods in machine learning," in Lecture Notes in Computer Science, J. Kittler and F. Roli, Eds. Berlin, Germany: Springer-Verlag, 2000, vol. 1857, pp. 1-15.
-
(2000)
Lecture Notes in Computer Science
, vol.1857
, pp. 1-15
-
-
Dietterich, T.G.1
-
4
-
-
0348151971
-
Combining classifiers: Soft computing solutions
-
S. K. Pal and A. Pal, Eds. Singapore: World Scientific
-
L. I. Kuncheva, "Combining classifiers: Soft computing solutions," in Pattern Recognition: From Classical to Modern Approaches, S. K. Pal and A. Pal, Eds. Singapore: World Scientific, 2001, pp. 427-451.
-
(2001)
Pattern Recognition: From Classical to Modern Approaches
, pp. 427-451
-
-
Kuncheva, L.I.1
-
5
-
-
0002978642
-
Experiments with a new boosting algorithm
-
Bari, Italy
-
Y. Freund and R. Schapire, "Experiments with a new boosting algorithm," in Proc. 13th Int. Conf. Mach. Learn., Bari, Italy, 1996, pp. 148-156.
-
(1996)
Proc. 13th Int. Conf. Mach. Learn
, pp. 148-156
-
-
Freund, Y.1
Schapire, R.2
-
6
-
-
0034247206
-
Multiboosting: A technique for combining boosting and wagging
-
Aug
-
G. I. Webb, "Multiboosting: A technique for combining boosting and wagging," Mach. Learn., vol. 40, no. 2, pp. 159-196, Aug. 2000.
-
(2000)
Mach. Learn
, vol.40
, Issue.2
, pp. 159-196
-
-
Webb, G.I.1
-
7
-
-
12144288329
-
Is combining classifiers with stacking better than selecting the best one?
-
S. Dzeroski and B. Zenko, "Is combining classifiers with stacking better than selecting the best one?," Mach. Learn., vol. 54, pp. 255-273, 2004.
-
(2004)
Mach. Learn
, vol.54
, pp. 255-273
-
-
Dzeroski, S.1
Zenko, B.2
-
8
-
-
0141921552
-
Online ensemble learning: An empirical study
-
A. Fern and R. Givan, "Online ensemble learning: An empirical study," Mach. Learn., vol. 53, pp. 71-109, 2003.
-
(2003)
Mach. Learn
, vol.53
, pp. 71-109
-
-
Fern, A.1
Givan, R.2
-
9
-
-
0030211964
-
Bagging predictors
-
L. Breiman, "Bagging predictors," Mach. Learn., vol. 24, no. 2, pp. 123-140, 1996.
-
(1996)
Mach. Learn
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
10
-
-
0003619255
-
-
Dept. Statist, Univ. California, Berkeley, CA, Tech. Rep. 460
-
L. Breiman, "Bias, variance, and arcing classifiers," Dept. Statist., Univ. California, Berkeley, CA, Tech. Rep. 460, 1996.
-
(1996)
Bias, variance, and arcing classifiers
-
-
Breiman, L.1
-
11
-
-
0032280519
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
R. E. Schapire, Y. Freund, P. L. Bartlett, and W. S. Lee, "Boosting the margin: A new explanation for the effectiveness of voting methods," Ann. Statist., vol. 26, no. 5, pp. 1651-1686, 1998.
-
(1998)
Ann. Statist
, vol.26
, Issue.5
, pp. 1651-1686
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.L.3
Lee, W.S.4
-
12
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
Jul./Aug
-
E. Bauer and R. Kohavi, "An empirical comparison of voting classification algorithms: Bagging, boosting, and variants," Mach. Learn., vol. 36, no. 1/2, pp. 105-142, Jul./Aug. 1999.
-
(1999)
Mach. Learn
, vol.36
, Issue.1-2
, pp. 105-142
-
-
Bauer, E.1
Kohavi, R.2
-
13
-
-
0141688336
-
On issues of instance selection
-
H. Liu and H. Motoda, "On issues of instance selection," Data Mining Knowl. Disc., vol. 6, pp. 115-130, 2002.
-
(2002)
Data Mining Knowl. Disc
, vol.6
, pp. 115-130
-
-
Liu, H.1
Motoda, H.2
-
14
-
-
0347763609
-
Using evolutionary algorithms as instance selection for data reduction in KDD: An experimental study
-
Dec
-
J. R. Cano, F. Herrera, and M. Lozano, "Using evolutionary algorithms as instance selection for data reduction in KDD: An experimental study," IEEE Trans. Evol. Comput., vol. 7, no. 6, pp. 561-575, Dec. 2003.
-
(2003)
IEEE Trans. Evol. Comput
, vol.7
, Issue.6
, pp. 561-575
-
-
Cano, J.R.1
Herrera, F.2
Lozano, M.3
-
15
-
-
23044490834
-
-
C. Domeniconi, G. D., and J. Peng, Large margin nearest neighbor classifiers, IEEE Trans. Neural Netw., 16, no. 4, pp. 899-909, Jul. 2005.
-
C. Domeniconi, G. D., and J. Peng, "Large margin nearest neighbor classifiers," IEEE Trans. Neural Netw., vol. 16, no. 4, pp. 899-909, Jul. 2005.
-
-
-
-
16
-
-
0036104537
-
Advances in instance selection for instance- based learning algorithms
-
H. Brighton and C. Mellish, "Advances in instance selection for instance- based learning algorithms," Data Mining Knowl. Disc., vol. 6, pp. 153-172, 2002.
-
(2002)
Data Mining Knowl. Disc
, vol.6
, pp. 153-172
-
-
Brighton, H.1
Mellish, C.2
-
17
-
-
0003731423
-
A study of instance-based algorithms for supervised learning tasks: Mathematical, empirical, and psychological evaluations,
-
Ph.D. dissertation, Dept. Inf. Comput. Sci, Univ. California at Irvine, Irvine, CA
-
D. W. Aha, "A study of instance-based algorithms for supervised learning tasks: Mathematical, empirical, and psychological evaluations," Ph.D. dissertation, Dept. Inf. Comput. Sci., Univ. California at Irvine, Irvine, CA, 1990.
-
(1990)
-
-
Aha, D.W.1
-
18
-
-
0031187375
-
Face recognition by elastic bunch graph matching
-
Jul
-
L. Wiskott, J.-M. Fellous, N. Kríger, and C. von der Malsburg, "Face recognition by elastic bunch graph matching," IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 7, pp. 775-779, Jul. 1997.
-
(1997)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.19
, Issue.7
, pp. 775-779
-
-
Wiskott, L.1
Fellous, J.-M.2
Kríger, N.3
von der Malsburg, C.4
-
19
-
-
0345414554
-
Fast pose estimation with parameter-sensitive hashing
-
Nice, France
-
G. Shakhnarovich, P. Viola, and T. Darrell, "Fast pose estimation with parameter-sensitive hashing," in Proc. 9th Int. Conf. Comput. Vis. Nice, France, 2003, pp. 750-757.
-
(2003)
Proc. 9th Int. Conf. Comput. Vis
, pp. 750-757
-
-
Shakhnarovich, G.1
Viola, P.2
Darrell, T.3
-
20
-
-
0036538619
-
Shape matching and object recognition using shape contexts
-
Apr
-
S. Belongie, J. Malik, and J. Puzicha, "Shape matching and object recognition using shape contexts," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 4, pp. 509-522, Apr. 2002.
-
(2002)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.24
, Issue.4
, pp. 509-522
-
-
Belongie, S.1
Malik, J.2
Puzicha, J.3
-
21
-
-
0031249331
-
Large-scale simulation studies in image pattern recognition
-
Oct
-
T. K. Ho and H. S. Baird, "Large-scale simulation studies in image pattern recognition," IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 10, pp. 1067-1079, Oct. 1997.
-
(1997)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.19
, Issue.10
, pp. 1067-1079
-
-
Ho, T.K.1
Baird, H.S.2
-
22
-
-
0000406788
-
Solving multiclass learning problems via error-correcting output codes
-
T. G. Dietterich and G. Bakiri, "Solving multiclass learning problems via error-correcting output codes," J. Artif. Intell. Res., vol. 2, pp. 263-286, 1995.
-
(1995)
J. Artif. Intell. Res
, vol.2
, pp. 263-286
-
-
Dietterich, T.G.1
Bakiri, G.2
-
24
-
-
33744958288
-
Nearest neighbor classification from multiple feature subsets
-
S. D. Bay, "Nearest neighbor classification from multiple feature subsets," Intell. Data Anal., vol. 3, no. 3, pp. 191-209, 1999.
-
(1999)
Intell. Data Anal
, vol.3
, Issue.3
, pp. 191-209
-
-
Bay, S.D.1
-
25
-
-
14344254250
-
Featureboost: A metalearning algorithm that improves model robustness
-
J. O'Sullivan, J. Langford, R. Caruna, and A. Blum, "Featureboost: A metalearning algorithm that improves model robustness," in Proc. 17th Int. Conf. Mach. Learn., 2000, pp. 703-710.
-
(2000)
Proc. 17th Int. Conf. Mach. Learn
, pp. 703-710
-
-
O'Sullivan, J.1
Langford, J.2
Caruna, R.3
Blum, A.4
-
26
-
-
0032139235
-
The random subspace method for constructing decision forests
-
Aug
-
T. K. Ho, "The random subspace method for constructing decision forests," IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 8, pp. 832-844, Aug. 1998.
-
(1998)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.20
, Issue.8
, pp. 832-844
-
-
Ho, T.K.1
-
27
-
-
40549108335
-
Evolved feature weighting for random subspace classifier
-
Feb
-
L. Nanni and A. Lumini, "Evolved feature weighting for random subspace classifier," IEEE Trans. Neural Netw., vol. 19, no. 2, pp. 363-366, Feb. 2008.
-
(2008)
IEEE Trans. Neural Netw
, vol.19
, Issue.2
, pp. 363-366
-
-
Nanni, L.1
Lumini, A.2
-
28
-
-
0034186937
-
On the algorithmic implementation of stochastic discrimination
-
May
-
E. Kleinberg, "On the algorithmic implementation of stochastic discrimination," IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 5, pp. 473-490, May 2000.
-
(2000)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.22
, Issue.5
, pp. 473-490
-
-
Kleinberg, E.1
-
29
-
-
84957007471
-
Bagging and the random subspace method for redundant feature spaces
-
J. Kittler and R. Poli, Eds, Cambridge, U.K
-
M. Skurichina and R. P. W. Duin, "Bagging and the random subspace method for redundant feature spaces," in Proc. 2nd Int. Workshop Multiple Classifier Syst., J. Kittler and R. Poli, Eds., Cambridge, U.K., 2001, pp. 1-10.
-
(2001)
Proc. 2nd Int. Workshop Multiple Classifier Syst
, pp. 1-10
-
-
Skurichina, M.1
Duin, R.P.W.2
-
30
-
-
33846519343
-
Meta-learning orthographic and contextual models for language independent named entity recognition
-
R. Munro, D. Ler, and J. Patrick, "Meta-learning orthographic and contextual models for language independent named entity recognition," in Proc. 7th Conf. Natural Lang. Learn., 2003, pp. 192-195.
-
(2003)
Proc. 7th Conf. Natural Lang. Learn
, pp. 192-195
-
-
Munro, R.1
Ler, D.2
Patrick, J.3
-
31
-
-
78149349523
-
Comparing pure parallel ensemble creation techniques against bagging
-
Melbourne, FL
-
L. Hall, K. Bowyer, R. Banfield, D. Bhadoria, W. Kegelmeyer, and S. Eschrich, "Comparing pure parallel ensemble creation techniques against bagging," in Proc. 3rd IEEE Int. Conf. Data Mining, Melbourne, FL, 2003, pp. 533-536.
-
(2003)
Proc. 3rd IEEE Int. Conf. Data Mining
, pp. 533-536
-
-
Hall, L.1
Bowyer, K.2
Banfield, R.3
Bhadoria, D.4
Kegelmeyer, W.5
Eschrich, S.6
-
32
-
-
0343081513
-
Reduction techniques for instancebased learning algorithms
-
D. R. Wilson and T. R. Martinez, "Reduction techniques for instancebased learning algorithms," Mach. Learn., vol. 38, pp. 257-286, 2000.
-
(2000)
Mach. Learn
, vol.38
, pp. 257-286
-
-
Wilson, D.R.1
Martinez, T.R.2
-
33
-
-
0015361129
-
Asymptotic properties of nearest neighbor rules using edited data
-
D. L. Wilson, "Asymptotic properties of nearest neighbor rules using edited data," IEEE Trans. Syst. Man Cybern., vol. SMC-2, no. 3, pp. 408-421, 1972.
-
(1972)
IEEE Trans. Syst. Man Cybern
, vol.SMC-2
, Issue.3
, pp. 408-421
-
-
Wilson, D.L.1
-
34
-
-
84931162639
-
The condensed nearest neighbor rule
-
May
-
P. E. Hart, "The condensed nearest neighbor rule," IEEE Trans. Inf. Theory, vol. IT-14, no. 3, pp. 515-516, May 1968.
-
(1968)
IEEE Trans. Inf. Theory
, vol.IT-14
, Issue.3
, pp. 515-516
-
-
Hart, P.E.1
-
35
-
-
0015346497
-
The reduced nearest neighbor rule
-
May
-
G. W. Gates, "The reduced nearest neighbor rule," IEEE Trans. Inf. Theory, vol. IT-18, no. 3, pp. 431-433, May 1972.
-
(1972)
IEEE Trans. Inf. Theory
, vol.IT-18
, Issue.3
, pp. 431-433
-
-
Gates, G.W.1
-
36
-
-
0000935031
-
Editing for the k-nearest neighbors rule by a genetic algorithm
-
L. Kuncheva, "Editing for the k-nearest neighbors rule by a genetic algorithm," Pattern Recognit. Lett., vol. 16, pp. 809-814, 1995.
-
(1995)
Pattern Recognit. Lett
, vol.16
, pp. 809-814
-
-
Kuncheva, L.1
-
37
-
-
60849116742
-
Pattern and feature selection by genetic algorithms in nearest neighbor classification
-
H. Ishibuchi and T. Nakashima, "Pattern and feature selection by genetic algorithms in nearest neighbor classification," J. Adv. Comput. Intell. Intell. Inf., vol. 4, no. 2, pp. 138-145, 2000.
-
(2000)
J. Adv. Comput. Intell. Intell. Inf
, vol.4
, Issue.2
, pp. 138-145
-
-
Ishibuchi, H.1
Nakashima, T.2
-
38
-
-
0346238443
-
Using genetic algorithms for training data selection in RBF networks
-
H. Liu and H. Motoda, Eds. Norwell, MA: Kluwer
-
C. R. Reeves and D. R. Bush, "Using genetic algorithms for training data selection in RBF networks," in Instances Selection and Construction for Data Mining, H. Liu and H. Motoda, Eds. Norwell, MA: Kluwer, 2001, pp. 339-356.
-
(2001)
Instances Selection and Construction for Data Mining
, pp. 339-356
-
-
Reeves, C.R.1
Bush, D.R.2
-
40
-
-
60849129187
-
-
D. Whitley, The GENITOR algorithm and selective pressure, in Proc. 3rd Int. Conf. Genetic Algorithms, M. K. Publishers, Ed., Los Altos, CA, 1989, pp. 116-121.
-
D. Whitley, "The GENITOR algorithm and selective pressure," in Proc. 3rd Int. Conf. Genetic Algorithms, M. K. Publishers, Ed., Los Altos, CA, 1989, pp. 116-121.
-
-
-
-
42
-
-
0003984832
-
-
Carnegie Mellon Univ, Pittsburgh, PA, Tech. Rep. CMU-CS-94-163
-
S. Baluja, "Population-based incremental learning," Carnegie Mellon Univ., Pittsburgh, PA, Tech. Rep. CMU-CS-94-163, 1994.
-
(1994)
Population-based incremental learning
-
-
Baluja, S.1
-
43
-
-
84955565984
-
Combining robot control strategies using genetic algorithms with memory
-
Berlin, Germany: Springer-Verlag, 1213, pp
-
S. J. Louis and G. Li, "Combining robot control strategies using genetic algorithms with memory," in Lecture Notes in Computer Science, Evolutionary Programming VI. Berlin, Germany: Springer-Verlag, 1997, vol. 1213, pp. 431-442.
-
(1997)
Lecture Notes in Computer Science, Evolutionary Programming
, vol.6
, pp. 431-442
-
-
Louis, S.J.1
Li, G.2
-
44
-
-
0000859501
-
Multi-objective pattern and feature selection by a genetic algorithm
-
Las Vegas, NV
-
H. Ishibuchi and T. Nakashima, "Multi-objective pattern and feature selection by a genetic algorithm," in Proc. Genetic Evol. Comput. Conf., Las Vegas, NV, 2000, pp. 1069-1076.
-
(2000)
Proc. Genetic Evol. Comput. Conf
, pp. 1069-1076
-
-
Ishibuchi, H.1
Nakashima, T.2
-
45
-
-
0035792033
-
Learning of neural networks with GA-based instance selection
-
Jul
-
H. Ishibuchi, T. Nakashima, and M. Nii, "Learning of neural networks with GA-based instance selection," in Proc. IFSA World Congr. 20th NAFIPS Int. Conf., Jul. 2001, vol. 4, pp. 2102-2107.
-
(2001)
Proc. IFSA World Congr. 20th NAFIPS Int. Conf
, vol.4
, pp. 2102-2107
-
-
Ishibuchi, H.1
Nakashima, T.2
Nii, M.3
-
46
-
-
0002976263
-
Recursive automatic bias selection for classifier construction
-
C. E. Brodley, "Recursive automatic bias selection for classifier construction," Mach. Learn., vol. 20, no. 1/2, pp. 63-94, 1995.
-
(1995)
Mach. Learn
, vol.20
, Issue.1-2
, pp. 63-94
-
-
Brodley, C.E.1
-
47
-
-
48949116216
-
A general wrapper approach to selection of class-dependent features
-
Jul
-
L. Wang, N. Zhou, and F. Chu, "A general wrapper approach to selection of class-dependent features," IEEE Trans. Neural Netw., vol. 19, no. 7, pp. 1267-1278, Jul. 2008.
-
(2008)
IEEE Trans. Neural Netw
, vol.19
, Issue.7
, pp. 1267-1278
-
-
Wang, L.1
Zhou, N.2
Chu, F.3
-
48
-
-
30944444787
-
Artificial neural networks with evolutionary instance selection for financial forecasting
-
K.-J. Kim, "Artificial neural networks with evolutionary instance selection for financial forecasting," Expert Syst. Appl., vol. 30, pp. 519-526, 2006.
-
(2006)
Expert Syst. Appl
, vol.30
, pp. 519-526
-
-
Kim, K.-J.1
-
50
-
-
0000259511
-
Approximate statistical tests for comparing supervised classification learning algorithms
-
T. G. Dietterich, "Approximate statistical tests for comparing supervised classification learning algorithms," Neural Comput., vol. 10, no. 7, pp. 1895-1923, 1998.
-
(1998)
Neural Comput
, vol.10
, Issue.7
, pp. 1895-1923
-
-
Dietterich, T.G.1
-
51
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
J. Demšar, "Statistical comparisons of classifiers over multiple data sets," J. Mach. Learn. Res., vol. 7, pp. 1-30, 2006.
-
(2006)
J. Mach. Learn. Res
, vol.7
, pp. 1-30
-
-
Demšar, J.1
-
52
-
-
0001750957
-
Approximations of the critical regions of the Friedman statistic
-
R. L. Iman and J. M. Davenport, "Approximations of the critical regions of the Friedman statistic," Commun. Statist., vol. 6, pp. 571-595, 1980.
-
(1980)
Commun. Statist
, vol.6
, pp. 571-595
-
-
Iman, R.L.1
Davenport, J.M.2
-
53
-
-
0001884644
-
Individual comparisons by ranking methods
-
F. Wilcoxon, "Individual comparisons by ranking methods," Biometrics, vol. 1, pp. 80-83, 1945.
-
(1945)
Biometrics
, vol.1
, pp. 80-83
-
-
Wilcoxon, F.1
-
54
-
-
60849089965
-
-
GNU General Public License Version 3, Free Software Foundation, Inc, Jun, Online, Available
-
GNU General Public License Version 3, Free Software Foundation, Inc., Jun. 2007 [Online]. Available: http://www.gnu.org/licenses/ gpl-3.0-standalone.html
-
(2007)
-
-
-
55
-
-
0035521110
-
Learn++: An incremental learning algorithm for supervised neural networks
-
Nov
-
R. Polikar, L. Udpa, S. Udpa, and V. Honavar, "Learn++: An incremental learning algorithm for supervised neural networks," IEEE Trans. Syst. Man Cybern. C, Appl. Rev., vol. 31, no. 4, pp. 497-508, Nov. 2001.
-
(2001)
IEEE Trans. Syst. Man Cybern. C, Appl. Rev
, vol.31
, Issue.4
, pp. 497-508
-
-
Polikar, R.1
Udpa, L.2
Udpa, S.3
Honavar, V.4
-
56
-
-
10444259853
-
Creating diversity in ensembles using artificial data
-
P. Melville and R. J. Mooney, "Creating diversity in ensembles using artificial data," Inf. Fusion, vol. 6, pp. 99-111, 2005.
-
(2005)
Inf. Fusion
, vol.6
, pp. 99-111
-
-
Melville, P.1
Mooney, R.J.2
-
57
-
-
84948152666
-
Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error
-
L. de Raedt and P. Flach, Eds. Berlin, Germany: Springer-Verlag
-
G. Zenobi and P. Cunningham, "Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error," in Lecture Notes on Artificial Intelligence L. de Raedt and P. Flach, Eds. Berlin, Germany: Springer-Verlag, 2001, vol. 2167, pp. 576-587.
-
(2001)
Lecture Notes on Artificial Intelligence
, vol.2167
, pp. 576-587
-
-
Zenobi, G.1
Cunningham, P.2
-
58
-
-
18144454135
-
Design of nearest neighbor classifiers: Multi-objective approach
-
J. H. Chen, H. M. Chen, and S. Y. Ho, "Design of nearest neighbor classifiers: Multi-objective approach," Int. J. Approx. Reason., vol. 40, no. 1-2, pp. 3-22, 2005.
-
(2005)
Int. J. Approx. Reason
, vol.40
, Issue.1-2
, pp. 3-22
-
-
Chen, J.H.1
Chen, H.M.2
Ho, S.Y.3
-
59
-
-
33745913300
-
Data reduction for instance-based learning using entropy-based partitioning
-
Berlin, Germany: Springer-Verlag
-
S. H. Son and J. Y. Kim, "Data reduction for instance-based learning using entropy-based partitioning," in Lecture Notes in Computer Science. Berlin, Germany: Springer-Verlag, 2006, vol. 3982, pp. 590-599.
-
(2006)
Lecture Notes in Computer Science
, vol.3982
, pp. 590-599
-
-
Son, S.H.1
Kim, J.Y.2
-
60
-
-
0030370417
-
Bagging, boosting, and c4.5
-
J. R. Quinlan, "Bagging, boosting, and c4.5," in Proc. 13th Nat. Conf. Artif. Intell., 1996, pp. 725-730.
-
(1996)
Proc. 13th Nat. Conf. Artif. Intell
, pp. 725-730
-
-
Quinlan, J.R.1
-
61
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
T. G. Dietterich, "An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization," Mach. Learn., vol. 40, pp. 139-157, 2000.
-
(2000)
Mach. Learn
, vol.40
, pp. 139-157
-
-
Dietterich, T.G.1
-
62
-
-
0035478854
-
Random forests
-
L. Breiman, "Random forests," Mach. Learn., vol. 45, pp. 5-32, 2001.
-
(2001)
Mach. Learn
, vol.45
, pp. 5-32
-
-
Breiman, L.1
|