메뉴 건너뛰기




Volumn 9, Issue , 2008, Pages 997-1017

Hit miss networks with applications to instance selection

Author keywords

Graph based training set representation; Instance selection for instance based learning; Nearest neighbor

Indexed keywords

BOOLEAN FUNCTIONS; CLASSIFICATION (OF INFORMATION); CLASSIFIERS; EDUCATION; ITERATIVE METHODS; LEARNING ALGORITHMS; LEARNING SYSTEMS; STORAGE (MATERIALS); STRUCTURAL PROPERTIES;

EID: 46249122128     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (79)

References (38)
  • 2
    • 35348902771 scopus 로고    scopus 로고
    • Fast nearest neighbor condensation for large data sets classification
    • ISSN 1041-4347
    • F. Angiulli. Fast nearest neighbor condensation for large data sets classification. IEEE Transactions on Knowledge and Data Engineering, 19(11): 1450-1464, 2007. ISSN 1041-4347.
    • (2007) IEEE Transactions on Knowledge and Data Engineering , vol.19 , Issue.11 , pp. 1450-1464
    • Angiulli, F.1
  • 3
    • 0000435292 scopus 로고
    • The ordering of multivariate data
    • V. Barnett. The ordering of multivariate data. J. Roy. Statist. Soc., Ser. A 139(3):318-355, 1976.
    • (1976) J. Roy. Statist. Soc., Ser. A , vol.139 , Issue.3 , pp. 318-355
    • Barnett, V.1
  • 4
    • 46249119473 scopus 로고    scopus 로고
    • Proceedings of the 14th International Conference on Pattern Recognition
    • 1:238-243
    • B. Bhattacharya and D. Kaller. Reference set thinning for the k-nearest neighbor decision rule. Proceedings of the 14th International Conference on Pattern Recognition, (1):238-243, 1998.
    • (1998)
    • Bhattacharya, B.1    Kaller, D.2
  • 5
    • 33646719102 scopus 로고    scopus 로고
    • B. Bhattacharya, K. Mukherjee, and G. Toussaint. Geometric decision rules for instance-based learning problems. In Proceedings of the 1st International Conference on Pattern Recognition and Machine Intelligence (PReMI,05), number LNCS 3776, pages 60-69. Springer, 2005.
    • B. Bhattacharya, K. Mukherjee, and G. Toussaint. Geometric decision rules for instance-based learning problems. In Proceedings of the 1st International Conference on Pattern Recognition and Machine Intelligence (PReMI,05), number LNCS 3776, pages 60-69. Springer, 2005.
  • 8
    • 0036104537 scopus 로고    scopus 로고
    • Advances in instance selection for instance-based learning algorithms
    • H. Brighton and C. Mellish. Advances in instance selection for instance-based learning algorithms. Data Mining and Knowledge Discovery, (6): 153-172, 2002.
    • (2002) Data Mining and Knowledge Discovery , vol.6 , pp. 153-172
    • Brighton, H.1    Mellish, C.2
  • 12
    • 0028385080 scopus 로고
    • Minimal consistent set (mes) identification for optimal nearest neighbor decision systems design
    • B. V. Dasarathy. Minimal consistent set (mes) identification for optimal nearest neighbor decision systems design. IEEE Transactions on Systems, Man, and Cybernetics, 24(3):511-517, 1994.
    • (1994) IEEE Transactions on Systems, Man, and Cybernetics , vol.24 , Issue.3 , pp. 511-517
    • Dasarathy, B.V.1
  • 13
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demsar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7:1-30, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 14
    • 18144376645 scopus 로고    scopus 로고
    • The use of domination number of a random proximity catch digraph for testing spatial patterns of segregation and association
    • J. DeVinney and C.E. Priebe. The use of domination number of a random proximity catch digraph for testing spatial patterns of segregation and association. Statistics and Probability Letters, 73 (1):37-50, 2005.
    • (2005) Statistics and Probability Letters , vol.73 , Issue.1 , pp. 37-50
    • DeVinney, J.1    Priebe, C.E.2
  • 15
    • 33745738556 scopus 로고    scopus 로고
    • A new family of proximity graphs: Class cover catch digraphs
    • J. DeVinney and C.E. Priebe. A new family of proximity graphs: Class cover catch digraphs. Discrete Applied Mathematics, 154(14): 1975-1982, 2006.
    • (2006) Discrete Applied Mathematics , vol.154 , Issue.14 , pp. 1975-1982
    • DeVinney, J.1    Priebe, C.E.2
  • 16
    • 67649670115 scopus 로고    scopus 로고
    • Fast algorithms for classification using class cover catch digraphs
    • E.J. Wegman D.J. Marchette and C.E. Priebe. Fast algorithms for classification using class cover catch digraphs. Handbook of Statistics, 24:331-358, 2005.
    • (2005) Handbook of Statistics , vol.24 , pp. 331-358
    • Wegman, E.J.1    Marchette, D.J.2    Priebe, C.E.3
  • 18
    • 0031084264 scopus 로고    scopus 로고
    • Fast implementation of nearest neighbor classifiers
    • P.J. Grother, G.T. Candela, and J.L. Blue. Fast implementation of nearest neighbor classifiers. Pattern Recognition, 30:459-465, 1997.
    • (1997) Pattern Recognition , vol.30 , pp. 459-465
    • Grother, P.J.1    Candela, G.T.2    Blue, J.L.3
  • 20
    • 9444236865 scopus 로고    scopus 로고
    • Comparison of instances selection algorithms i. algorithms survey
    • Springer
    • N. Jankowski and M. Grochowski. Comparison of instances selection algorithms i. algorithms survey. In Artificial Intelligence and Soft Computing, pages 598-603. Springer, 2004a.
    • (2004) Artificial Intelligence and Soft Computing , pp. 598-603
    • Jankowski, N.1    Grochowski, M.2
  • 21
    • 9444268167 scopus 로고    scopus 로고
    • Comparison of instances selection algorithms ii. results and comments
    • Springer
    • N. Jankowski and M. Grochowski. Comparison of instances selection algorithms ii. results and comments. In Artificial Intelligence and Soft Computing, pages 580-585. Springer, 2004b.
    • (2004) Artificial Intelligence and Soft Computing , pp. 580-585
    • Jankowski, N.1    Grochowski, M.2
  • 22
    • 0026924875 scopus 로고
    • Relative neighborhood graphs and their relatives
    • J.W. Jaromczyk and G.T. Toussaint. Relative neighborhood graphs and their relatives. P-IEEE, 80: 1502-1517, 1992.
    • (1992) P-IEEE , vol.80 , pp. 1502-1517
    • Jaromczyk, J.W.1    Toussaint, G.T.2
  • 24
    • 33646718365 scopus 로고    scopus 로고
    • Application of the gabriel graph to instance-based learning
    • Simon Fraser University
    • K. Mukherjee. Application of the gabriel graph to instance-based learning. In M.sc. project, School of Computing Science, Simon Fraser University, 2004.
    • (2004) M.sc. project, School of Computing Science
    • Mukherjee, K.1
  • 25
    • 27744546228 scopus 로고    scopus 로고
    • Prototype selection for dissimilarity-based classifiers
    • E. Pekalska, R.P. W. Duin, and P. Paclík. Prototype selection for dissimilarity-based classifiers. Pattern Recognition, 39(2): 189-208, 2006.
    • (2006) Pattern Recognition , vol.39 , Issue.2 , pp. 189-208
    • Pekalska, E.1    Duin, R.P.W.2    Paclík, P.3
  • 28
    • 0031164017 scopus 로고    scopus 로고
    • Prototype selection for the nearest neighbour rule through proximity graphs
    • J.S. Sánchez, F. Pia, and F.J. Ferri. Prototype selection for the nearest neighbour rule through proximity graphs. Pattern Recognition Letters, 18:507-513, 1997.
    • (1997) Pattern Recognition Letters , vol.18 , pp. 507-513
    • Sánchez, J.S.1    Pia, F.2    Ferri, F.J.3
  • 29
    • 34047112206 scopus 로고    scopus 로고
    • A fast all nearest neighbor algorithm for applications involving large point-clouds
    • J. Sankaranarayanan, H. Samet, and A. Varshney. A fast all nearest neighbor algorithm for applications involving large point-clouds. Comput. Graph., 31(2): 157-174, 2007.
    • (2007) Comput. Graph , vol.31 , Issue.2 , pp. 157-174
    • Sankaranarayanan, J.1    Samet, H.2    Varshney, A.3
  • 30
    • 33847676236 scopus 로고    scopus 로고
    • Neighborhood property based pattern selection for support vector machines
    • H. Shin and S. Cho. Neighborhood property based pattern selection for support vector machines. Neural Computation, (19):816-855, 2007.
    • (2007) Neural Computation , vol.19 , pp. 816-855
    • Shin, H.1    Cho, S.2
  • 34
    • 38049184914 scopus 로고    scopus 로고
    • Avoiding boosting overfitting by removing "confusing" samples
    • Proceedings of the 18th European Conference on Machine Learning ECML
    • A. Vezhnevets and O. Barinova. Avoiding boosting overfitting by removing "confusing" samples. In Proceedings of the 18th European Conference on Machine Learning (ECML), volume 4701, pages 430-441. LNCS, 2007.
    • (2007) LNCS , vol.4701 , pp. 430-441
    • Vezhnevets, A.1    Barinova, O.2
  • 35
    • 0015361129 scopus 로고
    • Asymptotic properties of nearest neighbor rules using edited data
    • D. L. Wilson. Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions on Systems, Man and Cybernetics, (2):408-420, 1972.
    • (1972) IEEE Transactions on Systems, Man and Cybernetics , vol.2 , pp. 408-420
    • Wilson, D.L.1
  • 37
    • 0343081513 scopus 로고    scopus 로고
    • Reduction techniques for instance-based learning algorithms
    • D.R. Wilson and T.R. Martinez. Reduction techniques for instance-based learning algorithms. Machine Learning, 38(3):257-286, 2000.
    • (2000) Machine Learning , vol.38 , Issue.3 , pp. 257-286
    • Wilson, D.R.1    Martinez, T.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.