메뉴 건너뛰기




Volumn 78, Issue 3, 2010, Pages 381-420

A cooperative coevolutionary algorithm for instance selection for instance-based learning

Author keywords

Evolutionary algorithms; Instance selection

Indexed keywords

ARTIFICIAL INTELLIGENCE; SOFTWARE ENGINEERING;

EID: 76549132784     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-009-5161-3     Document Type: Article
Times cited : (66)

References (61)
  • 1
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • DOI 10.1023/A:1022689900470
    • Aha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-based learning algorithms. Machine Learning, 6, 37-66. (Pubitemid 21727227)
    • (1991) Machine Learning , vol.6 , Issue.1 , pp. 37-66
    • Aha David, W.1    Kibler Dennis2    Albert Marc, K.3
  • 4
    • 25444531678 scopus 로고    scopus 로고
    • Decision boundary preserving prototype selection for nearest neighbor classification
    • DOI 10.1142/S0218001405004332, PII S0218001405004332
    • Barandela, R., Ferri, F. J., & Sánchez, J. S. (2005). Decision boundary preserving prototype selection for nearest neighbor classification. International Journal of Pattern Recognition and Artificial Intelligence, 19(6), 787-806. (Pubitemid 41374104)
    • (2005) International Journal of Pattern Recognition and Artificial Intelligence , vol.19 , Issue.6 , pp. 787-806
    • Barandela, R.1    Ferri, F.J.2    Sanchez, J.S.3
  • 5
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • PII S0004370297000635
    • Blum, A., & Langley, P. (1997). Selection of relevant features and examples in machine learning. Artificial Intelligence, 97, 245-271. (Pubitemid 127401106)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 6
    • 25444469991 scopus 로고    scopus 로고
    • Active coevolutionary learning of deterministic finite automata
    • Bongard, J., & Lipson, H. (2005a). Active coevolutionary learning of deterministic finite automata. Journal of Machine Learning Research, 6, 1651-1678.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1651-1678
    • Bongard, J.1    Lipson, H.2
  • 7
    • 24144463742 scopus 로고    scopus 로고
    • Nonlinear system identification using coevolution of models and tests
    • DOI 10.1109/TEVC.2005.850293
    • Bongard, J. C., & Lipson, H. (2005b). Nonlinear system identification using coevolution of models and tests. IEEE Transactions on Evolutionary Computation, 9(4), 361-384. (Pubitemid 41226911)
    • (2005) IEEE Transactions on Evolutionary Computation , vol.9 , Issue.4 , pp. 361-384
    • Bongard, J.C.1    Lipson, H.2
  • 8
    • 0036104537 scopus 로고    scopus 로고
    • Advances in instance selection for instance-based learning algorithms
    • DOI 10.1023/A:1014043630878
    • Brighton, H., & Mellish, C. (2002). Advances in instance selection for instance-based learning algorithms. Data Mining and Knowledge Discovery, 6, 153-172. (Pubitemid 37113870)
    • (2002) Data Mining and Knowledge Discovery , vol.6 , Issue.2 , pp. 153-172
    • Brighton, H.1    Mellish, C.2
  • 9
    • 0002976263 scopus 로고
    • Recursive automatic bias selection for classifier construction
    • Brodley, C. E. (1995). Recursive automatic bias selection for classifier construction. Machine Learning, 20(1/2), 63-94.
    • (1995) Machine Learning , vol.20 , Issue.1-2 , pp. 63-94
    • Brodley, C.E.1
  • 10
    • 0347763609 scopus 로고    scopus 로고
    • Using evolutionary algorithms as instance selection for data reduction in KDD: An experimental study
    • Cano, J. R., Herrera, F., & Lozano, M. (2003). Using evolutionary algorithms as instance selection for data reduction in KDD: an experimental study. IEEE Transactions on Evolutionary Computation, 7(6), 561-575.
    • (2003) IEEE Transactions on Evolutionary Computation , vol.7 , Issue.6 , pp. 561-575
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 11
    • 17444379003 scopus 로고    scopus 로고
    • Stratification for scaling up evolutionary prototype selection
    • DOI 10.1016/j.patrec.2004.09.043, PII S0167865504002909
    • Cano, J. R., Herrera, F., & Lozano, M. (2005). Stratification for scaling up evolutionary prototype selection. Pattern Recognition Letters, 26(7), 953-963. (Pubitemid 40538755)
    • (2005) Pattern Recognition Letters , vol.26 , Issue.7 , pp. 953-963
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 12
    • 33845982223 scopus 로고    scopus 로고
    • Evolutionary stratified training set selection for extracting classification rules with trade off precision-interpretability
    • DOI 10.1016/j.datak.2006.01.008, PII S0169023X0600019X
    • Cano, J. R., Herrera, F., & Lozano, M. (2007). Evolutionary stratified training set selection for extracting classification rules with trade off precision-interpretability. Data & Knowledge Engineering, 60(1), 90-108. (Pubitemid 46053591)
    • (2007) Data and Knowledge Engineering , vol.60 , Issue.1 , pp. 90-108
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 13
    • 0032089874 scopus 로고    scopus 로고
    • Random sampling for histogram construction: How much is enough?
    • Chaudhuri, S., Motwani, R., & Narasayya, V. (1998). Random sampling for histogram construction: how much is enough? In L. Haas & A. Tiwary (Eds.), Proceedings of ACM SIGMOD, international conference on management of data (pp. 436-447). New York, USA. (Pubitemid 128655989)
    • (1998) SIGMOD Record , vol.27 , Issue.2 , pp. 436-447
    • Chaudhuri, S.1    Motwani, R.2    Narasayya, V.3
  • 14
    • 0033325801 scopus 로고    scopus 로고
    • Evolving neural networks to play checkers without relying on expert knowledge
    • DOI 10.1109/72.809083
    • Chellapilla, K., & Fogel, D. B. (1999). Evolving neural networks to play checkers without relying on expert knowledge. IEEE Transactions on Neural Networks, 10(6), 1382-1391. (Pubitemid 30536588)
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.6 , pp. 1382-1391
    • Chellapilla, K.1    Fogel, D.B.2
  • 18
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7, 1-30. (Pubitemid 43022939)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 19
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10(7), 1895-1923. (Pubitemid 128463689)
    • (1998) Neural Computation , vol.10 , Issue.7 , pp. 1895-1923
    • Dietterich, T.G.1
  • 20
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of threemethods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Dietterich, T. G. (2000). An experimental comparison of threemethods for constructing ensembles of decision trees: bagging, boosting, and randomization. Machine Learning, 40, 139-157.
    • (2000) Machine Learning , vol.40 , pp. 139-157
    • Dietterich, T.G.1
  • 22
    • 33847409306 scopus 로고    scopus 로고
    • Immune network based ensembles
    • DOI 10.1016/j.neucom.2006.11.005, PII S092523120600467X, Advances in Computational Intelligence and Learning 14th European Symposium on Artificial Neural Networks 2006
    • García-Pedrajas, N., & Fyfe, C. (2007) Immune network based ensembles. In Neurocomputing (pp. 1155-1166). (Pubitemid 46336774)
    • (2007) Neurocomputing , vol.70 , Issue.7-9 , pp. 1155-1166
    • Garcia-Pedrajas, N.1    Fyfe, C.2
  • 23
    • 33749251505 scopus 로고    scopus 로고
    • A cooperative constructive method for neural networks for pattern recognition
    • García-Pedrajas, N., & Ortiz-Boyer, D. (2007). A cooperative constructive method for neural networks for pattern recognition. Pattern Recognition, 40(1), 80-99.
    • (2007) Pattern Recognition , vol.40 , Issue.1 , pp. 80-99
    • García-Pedrajas, N.1    Ortiz-Boyer, D.2
  • 24
    • 0036887498 scopus 로고    scopus 로고
    • Multiobjective cooperative coevolution of artificial neural networks (multi-objective cooperative networks
    • García-Pedrajas, N., Hervás-Martínez, C., & Muñoz-Pérez, J. (2002). Multiobjective cooperative coevolution of artificial neural networks (multi-objective cooperative networks). Neural Networks, 15(10), 1255-1274.
    • (2002) Neural Networks , vol.15 , Issue.10 , pp. 1255-1274
    • García-Pedrajas, N.1    Hervás-Martínez, C.2    Muñoz-Pérez, J.3
  • 25
    • 21044454599 scopus 로고    scopus 로고
    • Cooperative coevolution of artificial neural network ensembles for pattern classification
    • DOI 10.1109/TEVC.2005.844158
    • García-Pedrajas, N., Hervás-Martínez, C., & Ortiz-Boyer, D. (2005). Cooperative coevolution of artificial neural network ensembles for pattern classification. IEEE Transactions on Evolutionary Computation, 9(3), 271-302. (Pubitemid 40871133)
    • (2005) IEEE Transactions on Evolutionary Computation , vol.9 , Issue.3 , pp. 271-302
    • Garcia-Pedrajas, N.1    Hervas-Martinez, C.2    Ortiz-Boyer, D.3
  • 28
    • 0002773716 scopus 로고
    • Incorporating problem specific knowledge into genetic algorithms
    • In L. Davis (Ed.), San Mateo: Morgan Kaufmann
    • Grefenstette, J. J. (1987). Incorporating problem specific knowledge into genetic algorithms. In L. Davis (Ed.), Genetic algorithms and simulated annealing (pp. 42-60). San Mateo: Morgan Kaufmann.
    • (1987) Genetic Algorithms and Simulated Annealing , pp. 42-60
    • Grefenstette, J.J.1
  • 30
    • 0000157651 scopus 로고
    • Co-evolving parasites improves simulated evolution as an optimization procedure
    • In C. G. Langton, C. Taylor, J. D. Farmer, & S. Rasmussen (Eds.)
    • Hillis, W. D. (1991). Co-evolving parasites improves simulated evolution as an optimization procedure. In C. G. Langton, C. Taylor, J. D. Farmer, & S. Rasmussen (Eds.), In Artificial Life II (pp. 313-384).
    • (1991) Artificial Life , vol.2 , pp. 313-384
    • Hillis, W.D.1
  • 35
    • 0000935031 scopus 로고
    • Editing for the k-nearest neighbors rule by a genetic algorithm
    • Kuncheva, L. (1995). Editing for the k-nearest neighbors rule by a genetic algorithm. Pattern Recognition Letters, 16, 809-814.
    • (1995) Pattern Recognition Letters , vol.16 , pp. 809-814
    • Kuncheva, L.1
  • 36
    • 0035247566 scopus 로고    scopus 로고
    • An orthogonal genetic algorithm with quantization for global numerical optimization
    • Leung, Y. W., & Wang, Y. P. (2001). An orthogonal genetic algorithm with quantization for global numerical optimization. IEEE Transactions on Evolutionary Computation, 5(1), 41-53.
    • (2001) IEEE Transactions on Evolutionary Computation , vol.5 , Issue.1 , pp. 41-53
    • Leung, Y.W.1    Wang, Y.P.2
  • 39
    • 0141688336 scopus 로고    scopus 로고
    • On issues of instance selection
    • DOI 10.1023/A:1014056429969
    • Liu, H., & Motoda, H. (2002). On issues of instance selection. Data Mining and Knowledge Discovery, 6, 115-130. (Pubitemid 37113868)
    • (2002) Data Mining and Knowledge Discovery , vol.6 , Issue.2 , pp. 115-130
    • Liu, H.1    Motoda, H.2
  • 40
    • 84955565984 scopus 로고    scopus 로고
    • Combining control strategies using genetic algorithms with memory
    • Evolutionary Programming VI
    • Louis, S. J., & Li, G. (1997). Combining robot control strategies using genetic algorithms with memory. In Lecture notes in computer science: Vol. 1213. Evolutionary programming VI (pp. 431-442). Berlin: Springer. (Pubitemid 127053276)
    • (1997) Lecture Notes In Computer Science , Issue.1213 , pp. 431-442
    • Louis, S.J.1    Li, G.2
  • 42
    • 21844502480 scopus 로고
    • Discovering complex Othello strategies through evolutionary neural networks
    • Moriarty, D. E., & Miikkulainen, R. (1995). Discovering complex Othello strategies through evolutionary neural networks. Connection Science, 7(3), 195-209.
    • (1995) Connection Science , vol.7 , Issue.3 , pp. 195-209
    • Moriarty, D.E.1    Miikkulainen, R.2
  • 43
    • 0002318273 scopus 로고    scopus 로고
    • Efficient reinforcement learning through symbiotic evolution
    • Moriarty, D. E., & Miikkulainen, R. (1996). Efficient reinforcement learning through symbiotic evolution. Machine Learning, 22, 11-32. (Pubitemid 126724361)
    • (1996) Machine Learning , vol.22 , Issue.1-3 , pp. 11-32
    • Moriarty, D.E.1    Miikkulainen, R.2
  • 45
    • 0034153728 scopus 로고    scopus 로고
    • Cooperative coevolution: An architecture for evolving coadapted subcomponents
    • Potter, M. A., & De Jong, K. A. (2000). Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evolutionary Computation, 8(1), 1-29.
    • (2000) Evolutionary Computation , vol.8 , Issue.1 , pp. 1-29
    • Potter, M.A.1    De Jong, K.A.2
  • 46
    • 0141771188 scopus 로고    scopus 로고
    • A survey of methods for scaling up inductive learning algorithms
    • Provost, F. J., & Kolluri, V. (1999). A survey of methods for scaling up inductive learning algorithms. Data Mining and Knowledge Discovery, 2, 131-169.
    • (1999) Data Mining and Knowledge Discovery , vol.2 , pp. 131-169
    • Provost, F.J.1    Kolluri, V.2
  • 47
    • 0346238443 scopus 로고    scopus 로고
    • Using genetic algorithms for training data selection in RBF networks
    • In H. Liu & H. Motoda (Eds.), Norwell: Kluwer
    • Reeves, C. R., & Bush, D. R. (2001). Using genetic algorithms for training data selection in RBF networks. In H. Liu & H. Motoda (Eds.), Instances selection and construction for data mining (pp. 339-356). Norwell: Kluwer.
    • (2001) Instances Selection and Construction for Data Mining , pp. 339-356
    • Reeves, C.R.1    Bush, D.R.2
  • 49
    • 0031082536 scopus 로고    scopus 로고
    • New methods for competitive coevolution
    • Rosin, C. D., & Belew, R. K. (1997). New methods for competitive coevolution. Evolutionary Computation, 5(1), 1-29. (Pubitemid 127717836)
    • (1997) Evolutionary Computation , vol.5 , Issue.1 , pp. 1-29
    • Rosin, C.D.1    Belew, R.K.2
  • 53
    • 0001842954 scopus 로고
    • A study of reproduction in generational and steady-state genetic algorithms
    • In G. Rawlins (Ed.), San Mateo: Morgan Kaufmann
    • Syswerda, G. (1991). A study of reproduction in generational and steady-state genetic algorithms. In G. Rawlins (Ed.), Foundations of genetic algorithms (pp. 94-101). San Mateo: Morgan Kaufmann.
    • (1991) Foundations of Genetic Algorithms , pp. 94-101
    • Syswerda, G.1
  • 55
    • 0003389370 scopus 로고
    • The GENITOR algorithm and selective pressure
    • In M. K. Publishers (Ed.), Los Altos, CA
    • Whitley, D. (1989). The GENITOR algorithm and selective pressure. In M. K. Publishers (Ed.), Proc. 3rd international conf. on genetic algorithms (pp. 116-121). Los Altos, CA.
    • (1989) Proc. 3rd International Conf. on Genetic Algorithms , pp. 116-121
    • Whitley, D.1
  • 58
    • 0015361129 scopus 로고
    • Asymptotic properties of nearest neighbor rules using edited data
    • Wilson, D. L. (1972). Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions on Systems, Man, and Cybernetics, 2(3), 408-421.
    • (1972) IEEE Transactions on Systems, Man, and Cybernetics , vol.2 , Issue.3 , pp. 408-421
    • Wilson, D.L.1
  • 60
    • 0343081513 scopus 로고    scopus 로고
    • Reduction techniques for instance-based learning algorithms
    • DOI 10.1023/A:1007626913721
    • Wilson, D. R., & Martinez, T. R. (2000). Reduction techniques for instance-based learning algorithms. Machine Learning, 38, 257-286. (Pubitemid 30572450)
    • (2000) Machine Learning , vol.38 , Issue.3 , pp. 257-286
    • Randall Wilson, D.1    Martinez, T.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.