-
1
-
-
0025725905
-
Instance-based learning algorithms
-
DOI 10.1023/A:1022689900470
-
Aha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-based learning algorithms. Machine Learning, 6, 37-66. (Pubitemid 21727227)
-
(1991)
Machine Learning
, vol.6
, Issue.1
, pp. 37-66
-
-
Aha David, W.1
Kibler Dennis2
Albert Marc, K.3
-
4
-
-
25444531678
-
Decision boundary preserving prototype selection for nearest neighbor classification
-
DOI 10.1142/S0218001405004332, PII S0218001405004332
-
Barandela, R., Ferri, F. J., & Sánchez, J. S. (2005). Decision boundary preserving prototype selection for nearest neighbor classification. International Journal of Pattern Recognition and Artificial Intelligence, 19(6), 787-806. (Pubitemid 41374104)
-
(2005)
International Journal of Pattern Recognition and Artificial Intelligence
, vol.19
, Issue.6
, pp. 787-806
-
-
Barandela, R.1
Ferri, F.J.2
Sanchez, J.S.3
-
5
-
-
0031334221
-
Selection of relevant features and examples in machine learning
-
PII S0004370297000635
-
Blum, A., & Langley, P. (1997). Selection of relevant features and examples in machine learning. Artificial Intelligence, 97, 245-271. (Pubitemid 127401106)
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 245-271
-
-
Blum, A.L.1
Langley, P.2
-
6
-
-
25444469991
-
Active coevolutionary learning of deterministic finite automata
-
Bongard, J., & Lipson, H. (2005a). Active coevolutionary learning of deterministic finite automata. Journal of Machine Learning Research, 6, 1651-1678.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1651-1678
-
-
Bongard, J.1
Lipson, H.2
-
7
-
-
24144463742
-
Nonlinear system identification using coevolution of models and tests
-
DOI 10.1109/TEVC.2005.850293
-
Bongard, J. C., & Lipson, H. (2005b). Nonlinear system identification using coevolution of models and tests. IEEE Transactions on Evolutionary Computation, 9(4), 361-384. (Pubitemid 41226911)
-
(2005)
IEEE Transactions on Evolutionary Computation
, vol.9
, Issue.4
, pp. 361-384
-
-
Bongard, J.C.1
Lipson, H.2
-
8
-
-
0036104537
-
Advances in instance selection for instance-based learning algorithms
-
DOI 10.1023/A:1014043630878
-
Brighton, H., & Mellish, C. (2002). Advances in instance selection for instance-based learning algorithms. Data Mining and Knowledge Discovery, 6, 153-172. (Pubitemid 37113870)
-
(2002)
Data Mining and Knowledge Discovery
, vol.6
, Issue.2
, pp. 153-172
-
-
Brighton, H.1
Mellish, C.2
-
9
-
-
0002976263
-
Recursive automatic bias selection for classifier construction
-
Brodley, C. E. (1995). Recursive automatic bias selection for classifier construction. Machine Learning, 20(1/2), 63-94.
-
(1995)
Machine Learning
, vol.20
, Issue.1-2
, pp. 63-94
-
-
Brodley, C.E.1
-
10
-
-
0347763609
-
Using evolutionary algorithms as instance selection for data reduction in KDD: An experimental study
-
Cano, J. R., Herrera, F., & Lozano, M. (2003). Using evolutionary algorithms as instance selection for data reduction in KDD: an experimental study. IEEE Transactions on Evolutionary Computation, 7(6), 561-575.
-
(2003)
IEEE Transactions on Evolutionary Computation
, vol.7
, Issue.6
, pp. 561-575
-
-
Cano, J.R.1
Herrera, F.2
Lozano, M.3
-
11
-
-
17444379003
-
Stratification for scaling up evolutionary prototype selection
-
DOI 10.1016/j.patrec.2004.09.043, PII S0167865504002909
-
Cano, J. R., Herrera, F., & Lozano, M. (2005). Stratification for scaling up evolutionary prototype selection. Pattern Recognition Letters, 26(7), 953-963. (Pubitemid 40538755)
-
(2005)
Pattern Recognition Letters
, vol.26
, Issue.7
, pp. 953-963
-
-
Cano, J.R.1
Herrera, F.2
Lozano, M.3
-
12
-
-
33845982223
-
Evolutionary stratified training set selection for extracting classification rules with trade off precision-interpretability
-
DOI 10.1016/j.datak.2006.01.008, PII S0169023X0600019X
-
Cano, J. R., Herrera, F., & Lozano, M. (2007). Evolutionary stratified training set selection for extracting classification rules with trade off precision-interpretability. Data & Knowledge Engineering, 60(1), 90-108. (Pubitemid 46053591)
-
(2007)
Data and Knowledge Engineering
, vol.60
, Issue.1
, pp. 90-108
-
-
Cano, J.R.1
Herrera, F.2
Lozano, M.3
-
13
-
-
0032089874
-
Random sampling for histogram construction: How much is enough?
-
Chaudhuri, S., Motwani, R., & Narasayya, V. (1998). Random sampling for histogram construction: how much is enough? In L. Haas & A. Tiwary (Eds.), Proceedings of ACM SIGMOD, international conference on management of data (pp. 436-447). New York, USA. (Pubitemid 128655989)
-
(1998)
SIGMOD Record
, vol.27
, Issue.2
, pp. 436-447
-
-
Chaudhuri, S.1
Motwani, R.2
Narasayya, V.3
-
14
-
-
0033325801
-
Evolving neural networks to play checkers without relying on expert knowledge
-
DOI 10.1109/72.809083
-
Chellapilla, K., & Fogel, D. B. (1999). Evolving neural networks to play checkers without relying on expert knowledge. IEEE Transactions on Neural Networks, 10(6), 1382-1391. (Pubitemid 30536588)
-
(1999)
IEEE Transactions on Neural Networks
, vol.10
, Issue.6
, pp. 1382-1391
-
-
Chellapilla, K.1
Fogel, D.B.2
-
15
-
-
18144454135
-
Design of nearest neighbor classifiers: Multi-objective approach
-
Chen, J. H., Chen, H.M., & Ho, S. Y. (2005). Design of nearest neighbor classifiers: multi-objective approach. International Journal of Approximate Reasoning, 40(1-2), 3-22.
-
(2005)
International Journal of Approximate Reasoning
, vol.40
, Issue.1-2
, pp. 3-22
-
-
Chen, J.H.1
Chen, H.M.2
Ho, S.Y.3
-
18
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7, 1-30. (Pubitemid 43022939)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1-30
-
-
Demsar, J.1
-
19
-
-
0000259511
-
Approximate statistical tests for comparing supervised classification learning algorithms
-
Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10(7), 1895-1923. (Pubitemid 128463689)
-
(1998)
Neural Computation
, vol.10
, Issue.7
, pp. 1895-1923
-
-
Dietterich, T.G.1
-
20
-
-
0034250160
-
An experimental comparison of threemethods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
Dietterich, T. G. (2000). An experimental comparison of threemethods for constructing ensembles of decision trees: bagging, boosting, and randomization. Machine Learning, 40, 139-157.
-
(2000)
Machine Learning
, vol.40
, pp. 139-157
-
-
Dietterich, T.G.1
-
22
-
-
33847409306
-
Immune network based ensembles
-
DOI 10.1016/j.neucom.2006.11.005, PII S092523120600467X, Advances in Computational Intelligence and Learning 14th European Symposium on Artificial Neural Networks 2006
-
García-Pedrajas, N., & Fyfe, C. (2007) Immune network based ensembles. In Neurocomputing (pp. 1155-1166). (Pubitemid 46336774)
-
(2007)
Neurocomputing
, vol.70
, Issue.7-9
, pp. 1155-1166
-
-
Garcia-Pedrajas, N.1
Fyfe, C.2
-
23
-
-
33749251505
-
A cooperative constructive method for neural networks for pattern recognition
-
García-Pedrajas, N., & Ortiz-Boyer, D. (2007). A cooperative constructive method for neural networks for pattern recognition. Pattern Recognition, 40(1), 80-99.
-
(2007)
Pattern Recognition
, vol.40
, Issue.1
, pp. 80-99
-
-
García-Pedrajas, N.1
Ortiz-Boyer, D.2
-
24
-
-
0036887498
-
Multiobjective cooperative coevolution of artificial neural networks (multi-objective cooperative networks
-
García-Pedrajas, N., Hervás-Martínez, C., & Muñoz-Pérez, J. (2002). Multiobjective cooperative coevolution of artificial neural networks (multi-objective cooperative networks). Neural Networks, 15(10), 1255-1274.
-
(2002)
Neural Networks
, vol.15
, Issue.10
, pp. 1255-1274
-
-
García-Pedrajas, N.1
Hervás-Martínez, C.2
Muñoz-Pérez, J.3
-
25
-
-
21044454599
-
Cooperative coevolution of artificial neural network ensembles for pattern classification
-
DOI 10.1109/TEVC.2005.844158
-
García-Pedrajas, N., Hervás-Martínez, C., & Ortiz-Boyer, D. (2005). Cooperative coevolution of artificial neural network ensembles for pattern classification. IEEE Transactions on Evolutionary Computation, 9(3), 271-302. (Pubitemid 40871133)
-
(2005)
IEEE Transactions on Evolutionary Computation
, vol.9
, Issue.3
, pp. 271-302
-
-
Garcia-Pedrajas, N.1
Hervas-Martinez, C.2
Ortiz-Boyer, D.3
-
28
-
-
0002773716
-
Incorporating problem specific knowledge into genetic algorithms
-
In L. Davis (Ed.), San Mateo: Morgan Kaufmann
-
Grefenstette, J. J. (1987). Incorporating problem specific knowledge into genetic algorithms. In L. Davis (Ed.), Genetic algorithms and simulated annealing (pp. 42-60). San Mateo: Morgan Kaufmann.
-
(1987)
Genetic Algorithms and Simulated Annealing
, pp. 42-60
-
-
Grefenstette, J.J.1
-
30
-
-
0000157651
-
Co-evolving parasites improves simulated evolution as an optimization procedure
-
In C. G. Langton, C. Taylor, J. D. Farmer, & S. Rasmussen (Eds.)
-
Hillis, W. D. (1991). Co-evolving parasites improves simulated evolution as an optimization procedure. In C. G. Langton, C. Taylor, J. D. Farmer, & S. Rasmussen (Eds.), In Artificial Life II (pp. 313-384).
-
(1991)
Artificial Life
, vol.2
, pp. 313-384
-
-
Hillis, W.D.1
-
32
-
-
0003095081
-
-
School of Computing, National University of Singapore
-
Hussain, F., Liu, H., Tan, C., & Dash, M. (1999). Discretization: an enabling technique (Technical Report TRC6/99). School of Computing, National University of Singapore.
-
(1999)
Discretization: An Enabling Technique (Technical Report TRC6/99)
-
-
Hussain, F.1
Liu, H.2
Tan, C.3
Dash, M.4
-
33
-
-
60849116742
-
Pattern and feature selection by genetic algorithms in nearest neighbor classification
-
Ishibuchi, H., & Nakashima, T. (2000). Pattern and feature selection by genetic algorithms in nearest neighbor classification. Journal of Advanced Computational Intelligence and Intelligent Informatics, 4(2), 138-145.
-
(2000)
Journal of Advanced Computational Intelligence and Intelligent Informatics
, vol.4
, Issue.2
, pp. 138-145
-
-
Ishibuchi, H.1
Nakashima, T.2
-
34
-
-
0027927896
-
The power of sampling in knowledge discovery
-
Minneapolis, Minnesota, USA
-
Kivinen, J., & Mannila, H. (1994). The power of sampling in knowledge discovery. In Proceedings of the thirteenth ACM SIGACT-SIGMOD-SIGART symposium on principles of database systems (pp. 77-85). Minneapolis, Minnesota, USA.
-
(1994)
Proceedings of the Thirteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
, pp. 77-85
-
-
Kivinen, J.1
Mannila, H.2
-
35
-
-
0000935031
-
Editing for the k-nearest neighbors rule by a genetic algorithm
-
Kuncheva, L. (1995). Editing for the k-nearest neighbors rule by a genetic algorithm. Pattern Recognition Letters, 16, 809-814.
-
(1995)
Pattern Recognition Letters
, vol.16
, pp. 809-814
-
-
Kuncheva, L.1
-
36
-
-
0035247566
-
An orthogonal genetic algorithm with quantization for global numerical optimization
-
Leung, Y. W., & Wang, Y. P. (2001). An orthogonal genetic algorithm with quantization for global numerical optimization. IEEE Transactions on Evolutionary Computation, 5(1), 41-53.
-
(2001)
IEEE Transactions on Evolutionary Computation
, vol.5
, Issue.1
, pp. 41-53
-
-
Leung, Y.W.1
Wang, Y.P.2
-
37
-
-
33746242351
-
Prototype classifier design with pruning
-
Li, J., Manry, M. T., Yu, C., & Wilson, D. R. (2005). Prototype classifier design with pruning. International Journal of Artificial Intelligence Tools, 14(1-2), 261-280.
-
(2005)
International Journal of Artificial Intelligence Tools
, vol.14
, Issue.1-2
, pp. 261-280
-
-
Li, J.1
Manry, M.T.2
Yu, C.3
Wilson, D.R.4
-
39
-
-
0141688336
-
On issues of instance selection
-
DOI 10.1023/A:1014056429969
-
Liu, H., & Motoda, H. (2002). On issues of instance selection. Data Mining and Knowledge Discovery, 6, 115-130. (Pubitemid 37113868)
-
(2002)
Data Mining and Knowledge Discovery
, vol.6
, Issue.2
, pp. 115-130
-
-
Liu, H.1
Motoda, H.2
-
40
-
-
84955565984
-
Combining control strategies using genetic algorithms with memory
-
Evolutionary Programming VI
-
Louis, S. J., & Li, G. (1997). Combining robot control strategies using genetic algorithms with memory. In Lecture notes in computer science: Vol. 1213. Evolutionary programming VI (pp. 431-442). Berlin: Springer. (Pubitemid 127053276)
-
(1997)
Lecture Notes In Computer Science
, Issue.1213
, pp. 431-442
-
-
Louis, S.J.1
Li, G.2
-
42
-
-
21844502480
-
Discovering complex Othello strategies through evolutionary neural networks
-
Moriarty, D. E., & Miikkulainen, R. (1995). Discovering complex Othello strategies through evolutionary neural networks. Connection Science, 7(3), 195-209.
-
(1995)
Connection Science
, vol.7
, Issue.3
, pp. 195-209
-
-
Moriarty, D.E.1
Miikkulainen, R.2
-
43
-
-
0002318273
-
Efficient reinforcement learning through symbiotic evolution
-
Moriarty, D. E., & Miikkulainen, R. (1996). Efficient reinforcement learning through symbiotic evolution. Machine Learning, 22, 11-32. (Pubitemid 126724361)
-
(1996)
Machine Learning
, vol.22
, Issue.1-3
, pp. 11-32
-
-
Moriarty, D.E.1
Miikkulainen, R.2
-
45
-
-
0034153728
-
Cooperative coevolution: An architecture for evolving coadapted subcomponents
-
Potter, M. A., & De Jong, K. A. (2000). Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evolutionary Computation, 8(1), 1-29.
-
(2000)
Evolutionary Computation
, vol.8
, Issue.1
, pp. 1-29
-
-
Potter, M.A.1
De Jong, K.A.2
-
46
-
-
0141771188
-
A survey of methods for scaling up inductive learning algorithms
-
Provost, F. J., & Kolluri, V. (1999). A survey of methods for scaling up inductive learning algorithms. Data Mining and Knowledge Discovery, 2, 131-169.
-
(1999)
Data Mining and Knowledge Discovery
, vol.2
, pp. 131-169
-
-
Provost, F.J.1
Kolluri, V.2
-
47
-
-
0346238443
-
Using genetic algorithms for training data selection in RBF networks
-
In H. Liu & H. Motoda (Eds.), Norwell: Kluwer
-
Reeves, C. R., & Bush, D. R. (2001). Using genetic algorithms for training data selection in RBF networks. In H. Liu & H. Motoda (Eds.), Instances selection and construction for data mining (pp. 339-356). Norwell: Kluwer.
-
(2001)
Instances Selection and Construction for Data Mining
, pp. 339-356
-
-
Reeves, C.R.1
Bush, D.R.2
-
48
-
-
0016569790
-
An algorithm for selective nearest neighbor decision rule
-
Ritter, G. L., Woodruff, H. B., Lowry, S. R., & Isenhour, T. L. (1975). An algorithm for selective nearest neighbor decision rule. IEEE Transactions on Information Theory, 21(6), 665-669.
-
(1975)
IEEE Transactions on Information Theory
, vol.21
, Issue.6
, pp. 665-669
-
-
Ritter, G.L.1
Woodruff, H.B.2
Lowry, S.R.3
Isenhour, T.L.4
-
49
-
-
0031082536
-
New methods for competitive coevolution
-
Rosin, C. D., & Belew, R. K. (1997). New methods for competitive coevolution. Evolutionary Computation, 5(1), 1-29. (Pubitemid 127717836)
-
(1997)
Evolutionary Computation
, vol.5
, Issue.1
, pp. 1-29
-
-
Rosin, C.D.1
Belew, R.K.2
-
53
-
-
0001842954
-
A study of reproduction in generational and steady-state genetic algorithms
-
In G. Rawlins (Ed.), San Mateo: Morgan Kaufmann
-
Syswerda, G. (1991). A study of reproduction in generational and steady-state genetic algorithms. In G. Rawlins (Ed.), Foundations of genetic algorithms (pp. 94-101). San Mateo: Morgan Kaufmann.
-
(1991)
Foundations of Genetic Algorithms
, pp. 94-101
-
-
Syswerda, G.1
-
54
-
-
0017024036
-
Two modifications of CNN
-
Tomek, I. (1976). Two modifications of CNN. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, SMC-6, 769-772.
-
(1976)
IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, SMC-6
, pp. 769-772
-
-
Tomek, I.1
-
55
-
-
0003389370
-
The GENITOR algorithm and selective pressure
-
In M. K. Publishers (Ed.), Los Altos, CA
-
Whitley, D. (1989). The GENITOR algorithm and selective pressure. In M. K. Publishers (Ed.), Proc. 3rd international conf. on genetic algorithms (pp. 116-121). Los Altos, CA.
-
(1989)
Proc. 3rd International Conf. on Genetic Algorithms
, pp. 116-121
-
-
Whitley, D.1
-
58
-
-
0015361129
-
Asymptotic properties of nearest neighbor rules using edited data
-
Wilson, D. L. (1972). Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions on Systems, Man, and Cybernetics, 2(3), 408-421.
-
(1972)
IEEE Transactions on Systems, Man, and Cybernetics
, vol.2
, Issue.3
, pp. 408-421
-
-
Wilson, D.L.1
-
59
-
-
0001569643
-
Instance pruning techniques
-
In D. Fisher (Ed.), San Francisco, CA, USA
-
Wilson, D. R., & Martinez, A. R. (1997). Instance pruning techniques. In D. Fisher (Ed.), Proceedings of the fourteenth international conference on machine learning (pp. 404-411). San Francisco, CA, USA.
-
(1997)
Proceedings of the Fourteenth International Conference on Machine Learning
, pp. 404-411
-
-
Wilson, D.R.1
Martinez, A.R.2
-
60
-
-
0343081513
-
Reduction techniques for instance-based learning algorithms
-
DOI 10.1023/A:1007626913721
-
Wilson, D. R., & Martinez, T. R. (2000). Reduction techniques for instance-based learning algorithms. Machine Learning, 38, 257-286. (Pubitemid 30572450)
-
(2000)
Machine Learning
, vol.38
, Issue.3
, pp. 257-286
-
-
Randall Wilson, D.1
Martinez, T.R.2
-
61
-
-
0037936618
-
Performance assesment of multiobjective optimizers: An analysis and review
-
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., & Grunert, V. (2003). Performance assesment of multiobjective optimizers: an analysis and review. IEEE Transactions on Evolutionary Computation, 7(2), 117-132.
-
(2003)
IEEE Transactions on Evolutionary Computation
, vol.7
, Issue.2
, pp. 117-132
-
-
Zitzler, E.1
Thiele, L.2
Laumanns, M.3
Fonseca, C.M.4
Grunert, V.5
|