-
1
-
-
7444220645
-
Electric field effect in atomically thin carbon films
-
Novoselov K, Geim A, Morozov S, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666-669.
-
(2004)
Science
, vol.306
, Issue.5696
, pp. 666-669
-
-
Novoselov, K.1
Geim, A.2
Morozov, S.3
-
2
-
-
33746764451
-
From graphene to graphite: Electronic structure around the K point
-
075404-1-11
-
Partoens B, Peeters F. From graphene to graphite: electronic structure around the K point. Phys. Rev. B, 2006, 74(7): 075404-1-11.
-
(2006)
Phys. Rev. B
, vol.74
, Issue.7
-
-
Partoens, B.1
Peeters, F.2
-
3
-
-
33847690144
-
The rise of graphene
-
Geim A, Novoselov K. The rise of graphene. Nat. Mater., 2007, 6(3): 183-191.
-
(2007)
Nat. Mater.
, vol.6
, Issue.3
, pp. 183-191
-
-
Geim, A.1
Novoselov, K.2
-
4
-
-
47749150628
-
Measurement of the elastic properties and intrinsic strength of monolayer graphene
-
Lee C, Wei X, Kysar J, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385-388.
-
(2008)
Science
, vol.321
, Issue.5887
, pp. 385-388
-
-
Lee, C.1
Wei, X.2
Kysar, J.3
-
5
-
-
33947176113
-
Room-temperature quantum Hall effect in graphene
-
Novoselov K, Jiang Z, Zhang Y, et al. Room-temperature quantum Hall effect in graphene. Science, 2007, 315(5817): 1379.
-
(2007)
Science
, vol.315
, Issue.5817
, pp. 1379
-
-
Novoselov, K.1
Jiang, Z.2
Zhang, Y.3
-
6
-
-
34948858511
-
Carbon-based electronics
-
Avouris P, Chen Z, Perebeinos V. Carbon-based electronics. Nat. Nanotechnol., 2007, 2(10): 605-615.
-
(2007)
Nat. Nanotechnol.
, vol.2
, Issue.10
, pp. 605-615
-
-
Avouris, P.1
Chen, Z.2
Perebeinos, V.3
-
7
-
-
27744475163
-
Experimental observation of the quantum Hall effect and Berry's phase in graphene
-
Zhang Y, Tan Y, Stormer H, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 2005, 438(7065): 201-204.
-
(2005)
Nature
, vol.438
, Issue.7065
, pp. 201-204
-
-
Zhang, Y.1
Tan, Y.2
Stormer, H.3
-
8
-
-
34548388792
-
Detection of individual gas molecules by graphene sensors
-
Schedin F, Novoselov K S, Morozov S V, et al. Detection of individual gas molecules by graphene sensors. Nat. Mater., 2007, 6(9): 652-655.
-
(2007)
Nat. Mater.
, vol.6
, Issue.9
, pp. 652-655
-
-
Schedin, F.1
Novoselov, K.S.2
Morozov, S.V.3
-
9
-
-
33845628173
-
Graphene: Carbon in two dimensions
-
Katsnelson M. Graphene: carbon in two dimensions. Mater. Today, 2007, 10(1/2): 20-27.
-
(2007)
Mater. Today
, vol.10
, Issue.1-2
, pp. 20-27
-
-
Katsnelson, M.1
-
10
-
-
27744534165
-
Two-dimensional gas of massless Dirac fermions in graphene
-
Novoselov K, Geim A, Morozov S, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197-200.
-
(2005)
Nature
, vol.438
, Issue.7065
, pp. 197-200
-
-
Novoselov, K.1
Geim, A.2
Morozov, S.3
-
11
-
-
3442881546
-
Condensed-matter simulation of a three-dimensional anomaly
-
Semenoff G. Condensed-matter simulation of a three-dimensional anomaly. Phys. Rev. Lett., 1984, 53(26): 2449-2452.
-
(1984)
Phys. Rev. Lett.
, vol.53
, Issue.26
, pp. 2449-2452
-
-
Semenoff, G.1
-
12
-
-
80855126973
-
-
Chinese source
-
2008, 23(2): 97-103.
-
(2008)
, vol.23
, Issue.2
, pp. 97-103
-
-
-
14
-
-
1142298818
-
A route to high surface area, porosity and inclusion of large molecules in crystals
-
Chae H, Siberio-Pérez D, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature, 2004, 427(6974): 523-527.
-
(2004)
Nature
, vol.427
, Issue.6974
, pp. 523-527
-
-
Chae, H.1
Siberio-Pérez, D.2
Kim, J.3
-
15
-
-
33745672992
-
Quantum Hall ferromagnetism in graphene
-
256602-1-4
-
Nomura K, MacDonald A. Quantum Hall ferromagnetism in graphene. Phys. Rev. Lett., 2006, 96(25): 256602-1-4.
-
(2006)
Phys. Rev. Lett.
, vol.96
, Issue.25
-
-
Nomura, K.1
MacDonald, A.2
-
16
-
-
53549119409
-
Facile synthesis and characterization of graphene nanosheets
-
Wang G, Yang J, Park J, et al. Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C, 2008, 112(22): 8192-8195.
-
(2008)
J. Phys. Chem. C
, vol.112
, Issue.22
, pp. 8192-8195
-
-
Wang, G.1
Yang, J.2
Park, J.3
-
17
-
-
42349087225
-
Superior thermal conductivity of single-layer graphene
-
Balandin A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene. Nano Lett., 2008, 8(3): 902-907.
-
(2008)
Nano Lett.
, vol.8
, Issue.3
, pp. 902-907
-
-
Balandin, A.1
Ghosh, S.2
Bao, W.3
-
18
-
-
29344440042
-
Bright fluorescent nanodiamonds: No photobleaching and low cytotoxicity
-
Yu S, Kang M, Chang H, et al. Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J. Am. Chem. Soc., 2005, 127(50): 17604-17605.
-
(2005)
J. Am. Chem. Soc.
, vol.127
, Issue.50
, pp. 17604-17605
-
-
Yu, S.1
Kang, M.2
Chang, H.3
-
19
-
-
35048821132
-
Carbon dots for multiphoton bioimaging
-
Cao L, Wang X, Meziani M, et al. Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc., 2007, 129(37): 11318-11319.
-
(2007)
J. Am. Chem. Soc.
, vol.129
, Issue.37
, pp. 11318-11319
-
-
Cao, L.1
Wang, X.2
Meziani, M.3
-
20
-
-
40049093097
-
Chemically derived, ultrasmooth graphene nanoribbon semiconductors
-
Li X, Wang X, Zhang L, et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science, 2008, 319(5867): 1229-1232.
-
(2008)
Science
, vol.319
, Issue.5867
, pp. 1229-1232
-
-
Li, X.1
Wang, X.2
Zhang, L.3
-
21
-
-
65249133533
-
Narrow graphene nanoribbons from carbon nanotubes
-
Jiao L, Zhang L, Wang X, et al. Narrow graphene nanoribbons from carbon nanotubes. Nature, 2009, 458(7240): 877-880.
-
(2009)
Nature
, vol.458
, Issue.7240
, pp. 877-880
-
-
Jiao, L.1
Zhang, L.2
Wang, X.3
-
22
-
-
65249185111
-
Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons
-
Kosynkin D, Higginbotham A, Sinitskii A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 2009, 458(7240): 872-876.
-
(2009)
Nature
, vol.458
, Issue.7240
, pp. 872-876
-
-
Kosynkin, D.1
Higginbotham, A.2
Sinitskii, A.3
-
23
-
-
65249119339
-
Simple method of preparing graphene flakes by an arc-discharge method
-
Subrahmanyam K, Panchakarla L, Govindaraj A, et al. Simple method of preparing graphene flakes by an arc-discharge method. J. Phys. Chem. C, 2009, 113(11): 4257-4259.
-
(2009)
J. Phys. Chem. C
, vol.113
, Issue.11
, pp. 4257-4259
-
-
Subrahmanyam, K.1
Panchakarla, L.2
Govindaraj, A.3
-
24
-
-
58149234825
-
Gram-scale production of graphene based on solvothermal synthesis and sonication
-
Choucair M, Thordarson P, Stride J. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol., 2008, 4(1): 30-33.
-
(2008)
Nat. Nanotechnol.
, vol.4
, Issue.1
, pp. 30-33
-
-
Choucair, M.1
Thordarson, P.2
Stride, J.3
-
25
-
-
80855123055
-
-
Chinese source
-
2009, 21(12): 79-87.
-
(2009)
, vol.21
, Issue.12
, pp. 79-87
-
-
-
26
-
-
77955025197
-
-
Chinese source
-
HU Yao-Juan, et al. Acta Phys-Chim. Sin., 2010, 26(8): 2073-2086.
-
(2010)
Acta Phys-Chim. Sin.
, vol.26
, Issue.8
, pp. 2073-2086
-
-
Hu, Y.-J.1
-
27
-
-
80855123054
-
-
Chinese source
-
2009, 28(1): 35-39.
-
(2009)
, vol.28
, Issue.1
, pp. 35-39
-
-
-
28
-
-
80855123057
-
-
Chinese source
-
2008, 22(8): 48-52.
-
(2008)
, vol.22
, Issue.8
, pp. 48-52
-
-
-
29
-
-
80855123053
-
-
Chinese source
-
2010, 32(3): 105-110.
-
(2010)
, vol.32
, Issue.3
, pp. 105-110
-
-
-
30
-
-
80855159155
-
-
Chinese source
-
2009, 21(4): 44-47.
-
(2009)
, vol.21
, Issue.4
, pp. 44-47
-
-
-
31
-
-
33744469329
-
Electronic confinement and coherence in patterned epitaxial graphene
-
Berger C, Song Z, Li X, et al. Electronic confinement and coherence in patterned epitaxial graphene. Science, 2006, 312(5777): 1191-1196.
-
(2006)
Science
, vol.312
, Issue.5777
, pp. 1191-1196
-
-
Berger, C.1
Song, Z.2
Li, X.3
-
32
-
-
19944428003
-
Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics
-
Berger C, Song Z, Li T, et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B, 2004, 108(52): 19912-19916.
-
(2004)
J. Phys. Chem. B
, vol.108
, Issue.52
, pp. 19912-19916
-
-
Berger, C.1
Song, Z.2
Li, T.3
-
33
-
-
75749147189
-
Graphene formation on SiC substrates
-
VanMil B L, Myers-Ward R L, Tedesco J L, et al. Graphene formation on SiC substrates. Mater. Sci. Forum, 2009, 615-617: 211-214.
-
(2009)
Mater. Sci. Forum
, vol.615-617
, pp. 211-214
-
-
VanMil, B.L.1
Myers-Ward, R.L.2
Tedesco, J.L.3
-
34
-
-
70350719411
-
Anisotropic growth of long isolated graphene ribbons on the C face of graphite-capped 6H-SiC
-
125410-1-8
-
Camara N, Huntzinger J, Rius G, et al. Anisotropic growth of long isolated graphene ribbons on the C face of graphite-capped 6H-SiC. Phys. Rev. B, 2009, 80(12): 125410-1-8.
-
(2009)
Phys. Rev. B
, vol.80
, Issue.12
-
-
Camara, N.1
Huntzinger, J.2
Rius, G.3
-
35
-
-
52949132214
-
Selective epitaxial growth of graphene on SiC
-
123503-1-3
-
Camara N, Rius G, Huntzinger J, et al. Selective epitaxial growth of graphene on SiC. Appl. Phys. Lett., 2008, 93(12): 123503-1-3.
-
(2008)
Appl. Phys. Lett.
, vol.93
, Issue.12
-
-
Camara, N.1
Rius, G.2
Huntzinger, J.3
-
36
-
-
57749104855
-
Homogeneous large-area graphene layer growth on 6H-SiC (0001)
-
245403-1-6
-
Virojanadara C, Syvjarvi M, Yakimova R, et al. Homogeneous large-area graphene layer growth on 6H-SiC (0001). Phys. Rev. B, 2008, 78(24): 245403-1-6.
-
(2008)
Phys. Rev. B
, vol.78
, Issue.24
-
-
Virojanadara, C.1
Syvjarvi, M.2
Yakimova, R.3
-
37
-
-
70450284546
-
Transfer of graphene layers grown on SiC wafers to other substrates and their integration into field effect transistors
-
202101-1-3
-
Unarunotai S, Murata Y, Chialvo C, et al. Transfer of graphene layers grown on SiC wafers to other substrates and their integration into field effect transistors. Appl. Phys. Lett., 2009, 95(20): 202101-1-3.
-
(2009)
Appl. Phys. Lett.
, vol.95
, Issue.20
-
-
Unarunotai, S.1
Murata, Y.2
Chialvo, C.3
-
38
-
-
68949218930
-
Epitaxial growth of graphene on 6H-SiC (0001) by thermal annealing
-
088104
-
Tang Jun, Liu Zhong-Liang, Kang Chao-Yang, et al. Epitaxial growth of graphene on 6H-SiC (0001) by thermal annealing. Chin. Phys. Lett., 2009, 26(8): 088104.
-
(2009)
Chin. Phys. Lett.
, vol.26
, Issue.8
-
-
Tang, J.1
Liu, Z.-L.2
Kang, C.-Y.3
-
39
-
-
78650401410
-
Graphene growth by molecular beam epitaxy on the carbon-face of SiC
-
241907-1-3
-
Moreau E, Godey S, Ferrer F, et al. Graphene growth by molecular beam epitaxy on the carbon-face of SiC. Appl. Phys. Lett., 2010, 97(24): 241907-1-3.
-
(2010)
Appl. Phys. Lett.
, vol.97
, Issue.24
-
-
Moreau, E.1
Godey, S.2
Ferrer, F.3
-
40
-
-
67649354231
-
Substrate orientation: A way towards higher quality monolayer graphene growth on 6H-SiC (0001)
-
Virojanadara C, Yakimova R, Osiecki J, et al. Substrate orientation: a way towards higher quality monolayer graphene growth on 6H-SiC (0001). Surf. Sci., 2009, 603(15): L87-L90.
-
(2009)
Surf. Sci.
, vol.603
, Issue.15
-
-
Virojanadara, C.1
Yakimova, R.2
Osiecki, J.3
-
41
-
-
70349453623
-
Stacking domains of epitaxial few-layer graphene on SiC(0001)
-
085406-1-6
-
Hibino H, Mizuno S, Kageshima H, et al. Stacking domains of epitaxial few-layer graphene on SiC(0001). Phys. Rev. B, 2009, 80(8): 085406-1-6.
-
(2009)
Phys. Rev. B
, vol.80
, Issue.8
-
-
Hibino, H.1
Mizuno, S.2
Kageshima, H.3
-
42
-
-
77956811594
-
Wafer-scale epitaxial graphene growth on the Si-face of hexagonal SiC (0001) for high frequency transistors
-
Dimitrakopoulos C, Lin Y, Grill A, et al. Wafer-scale epitaxial graphene growth on the Si-face of hexagonal SiC (0001) for high frequency transistors. J. Vac. Sci. Technol., B, 2010, 28(5): 985-992.
-
(2010)
J. Vac. Sci. Technol., B
, vol.28
, Issue.5
, pp. 985-992
-
-
Dimitrakopoulos, C.1
Lin, Y.2
Grill, A.3
-
43
-
-
77955193417
-
AFM study of ridges in few-layer epitaxial graphene grown on the carbon-face of 4H-SiC (000(1) over-bar
-
Prakash G, Capano M A, Bolen M, et al. AFM study of ridges in few-layer epitaxial graphene grown on the carbon-face of 4H-SiC (000(1) over-bar). Carbon, 2010, 48: 2383-2393.
-
(2010)
Carbon
, vol.48
, pp. 2383-2393
-
-
Prakash, G.1
Capano, M.A.2
Bolen, M.3
-
44
-
-
67650391952
-
Comparison of epitaxial graphene on Si-face and C-face 4H SiC formed by ultrahigh vacuum and RF furnace production
-
Jernigan G, VanMil B, Tedesco J, et al. Comparison of epitaxial graphene on Si-face and C-face 4H SiC formed by ultrahigh vacuum and RF furnace production. Nano Lett., 2009, 9(7): 2605-2609.
-
(2009)
Nano Lett.
, vol.9
, Issue.7
, pp. 2605-2609
-
-
Jernigan, G.1
VanMil, B.2
Tedesco, J.3
-
45
-
-
77149151250
-
Epitaxial graphene growth on SiC wafers
-
Gaskill D, Jernigan G, Campbell P, et al. Epitaxial graphene growth on SiC wafers. ECS Trans., 2009, 19(5): 117-124.
-
(2009)
ECS Trans.
, vol.19
, Issue.5
, pp. 117-124
-
-
Gaskill, D.1
Jernigan, G.2
Campbell, P.3
-
46
-
-
68049126257
-
Graphene formation on a 3C-SiC (111) thin film grown on Si (110) substrate
-
Suemitsu M, Miyamoto Y, Handa H, et al. Graphene formation on a 3C-SiC (111) thin film grown on Si (110) substrate. J. Surf. Sci. Nanotech., 2009, 7: 311-313.
-
(2009)
J. Surf. Sci. Nanotech.
, vol.7
, pp. 311-313
-
-
Suemitsu, M.1
Miyamoto, Y.2
Handa, H.3
-
47
-
-
77958510677
-
Structural coherency of epitaxial graphene on 3C-SiC (111) epilayers on Si (111)
-
161905-1-3
-
Ouerghi A, Belkhou R, Marangolo M, et al. Structural coherency of epitaxial graphene on 3C-SiC (111) epilayers on Si (111). Appl. Phys. Lett., 2010, 97(16): 161905-1-3.
-
(2010)
Appl. Phys. Lett.
, vol.97
, Issue.16
-
-
Ouerghi, A.1
Belkhou, R.2
Marangolo, M.3
-
48
-
-
58149218430
-
High-throughput solution processing of large-scale graphene
-
Tung V, Allen M, Yang Y, et al. High-throughput solution processing of large-scale graphene. Nat. Nanotechnol., 2008, 4(1): 25-29.
-
(2008)
Nat. Nanotechnol.
, vol.4
, Issue.1
, pp. 25-29
-
-
Tung, V.1
Allen, M.2
Yang, Y.3
-
49
-
-
42549089580
-
Epitaxial graphene on ruthenium
-
Sutter P, Flege J, Sutter E. Epitaxial graphene on ruthenium. Nat. Mater., 2008, 7(5): 406-411.
-
(2008)
Nat. Mater.
, vol.7
, Issue.5
, pp. 406-411
-
-
Sutter, P.1
Flege, J.2
Sutter, E.3
-
50
-
-
49249104123
-
Controlling graphene corrugation on lattice-mismatched substrates
-
073401-1-4
-
Preobrajenski A, Ng M, Vinogradov A, et al. Controlling graphene corrugation on lattice-mismatched substrates. Phys. Rev. B, 2008, 78(7): 073401-1-4.
-
(2008)
Phys. Rev. B
, vol.78
, Issue.7
-
-
Preobrajenski, A.1
Ng, M.2
Vinogradov, A.3
-
51
-
-
67651115578
-
Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001)
-
Pan Y, Zhang H, Shi D, et al. Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001). Adv. Mater., 2009, 21(27): 2777-2780.
-
(2009)
Adv. Mater.
, vol.21
, Issue.27
, pp. 2777-2780
-
-
Pan, Y.1
Zhang, H.2
Shi, D.3
-
52
-
-
78649574020
-
Graphene growth on epitaxial Ru thin films on sapphire
-
213101-1-3
-
Sutter P, Albrecht P, Sutter E. Graphene growth on epitaxial Ru thin films on sapphire. Appl. Phys. Lett., 2010, 97(21): 213101-1-3.
-
(2010)
Appl. Phys. Lett.
, vol.97
, Issue.21
-
-
Sutter, P.1
Albrecht, P.2
Sutter, E.3
-
53
-
-
40449136109
-
Structural coherency of graphene on Ir (111)
-
Coraux J, Busse C, Michely T. Structural coherency of graphene on Ir (111). Nano Lett., 2008, 8(2): 565-570.
-
(2008)
Nano Lett.
, vol.8
, Issue.2
, pp. 565-570
-
-
Coraux, J.1
Busse, C.2
Michely, T.3
-
54
-
-
62649174812
-
Growth of graphene on Ir (111)
-
023006
-
Coraux J. Growth of graphene on Ir (111). New J. Phys., 2009, 11(2): 023006.
-
(2009)
New J. Phys.
, vol.11
, Issue.2
-
-
Coraux, J.1
-
55
-
-
60749107706
-
Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition
-
Reina A, Jia X, Ho J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett., 2008, 9(1): 30-35.
-
(2008)
Nano Lett.
, vol.9
, Issue.1
, pp. 30-35
-
-
Reina, A.1
Jia, X.2
Ho, J.3
-
56
-
-
59649099717
-
Large-scale pattern growth of graphene films for stretchable transparent electrodes
-
Kim K, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457(7230): 706-710.
-
(2009)
Nature
, vol.457
, Issue.7230
, pp. 706-710
-
-
Kim, K.1
Zhao, Y.2
Jang, H.3
-
57
-
-
78650085486
-
Large-diameter graphene nanotubes synthesized using Ni nanowire templates
-
Wang R, Hao Y, Wang Z, et al. Large-diameter graphene nanotubes synthesized using Ni nanowire templates. Nano Lett., 2010, 10(12): 4844-4850.
-
(2010)
Nano Lett.
, vol.10
, Issue.12
, pp. 4844-4850
-
-
Wang, R.1
Hao, Y.2
Wang, Z.3
-
58
-
-
38949213621
-
A possible source of spin-polarized electrons: the inert graphene/Ni (111) system
-
052506-1-3
-
Dedkov Y, Fonin M, Laubschat C. A possible source of spin-polarized electrons: the inert graphene/Ni (111) system. Appl. Phys. Lett., 2008, 92(5): 052506-1-3.
-
(2008)
Appl. Phys. Lett.
, vol.92
, Issue.5
-
-
Dedkov, Y.1
Fonin, M.2
Laubschat, C.3
-
59
-
-
77955413063
-
Bulk growth of mono-to few-layer graphene on nickel particles by chemical vapor deposition from methane
-
Chen Z, Ren W, Liu B, et al. Bulk growth of mono-to few-layer graphene on nickel particles by chemical vapor deposition from methane. Carbon, 2010, 48(12): 3543-3550.
-
(2010)
Carbon
, vol.48
, Issue.12
, pp. 3543-3550
-
-
Chen, Z.1
Ren, W.2
Liu, B.3
-
60
-
-
78649279457
-
Growth of large-area graphene films from metal-carbon melts
-
094321
-
Amini S, Garay J, Liu G, et al. Growth of large-area graphene films from metal-carbon melts. J. Appl. Phys., 2010, 108(9): 094321.
-
(2010)
J. Appl. Phys.
, vol.108
, Issue.9
-
-
Amini, S.1
Garay, J.2
Liu, G.3
-
61
-
-
66749119012
-
Large-area synthesis of high-quality and uniform graphene films on copper foils
-
Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324(5932): 1312-1314.
-
(2009)
Science
, vol.324
, Issue.5932
, pp. 1312-1314
-
-
Li, X.1
Cai, W.2
An, J.3
-
62
-
-
79957494809
-
Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapor deposition
-
Yu Q, Jauregui L, Wu W, et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapor deposition. Nat. Mater., 2011, 10: 443-449.
-
(2011)
Nat. Mater.
, vol.10
, pp. 443-449
-
-
Yu, Q.1
Jauregui, L.2
Wu, W.3
-
63
-
-
77956445130
-
Epitaxial graphene on Cu (111)
-
Gao L, Guest J, Guisinger N. Epitaxial graphene on Cu (111). Nano Lett., 2010, 10(9): 3512-3516.
-
(2010)
Nano Lett.
, vol.10
, Issue.9
, pp. 3512-3516
-
-
Gao, L.1
Guest, J.2
Guisinger, N.3
-
64
-
-
78650079536
-
The Atomic-scale growth of large-area monolayer graphene on single-crystal copper substrates
-
Preprint at
-
Zhao L, Rim K, Zhou H, et al. The Atomic-scale growth of large-area monolayer graphene on single-crystal copper substrates. Preprint at http://arxiv.org/abs/1008.3542, 2010.
-
(2010)
-
-
Zhao, L.1
Rim, K.2
Zhou, H.3
-
65
-
-
25644458338
-
A molecular-beam study of the collision dynamics of methane and ethane upon a graphitic monolayer on Pt (111)
-
114712-1-7
-
Kondo T, Mori D, Okada R, et al. A molecular-beam study of the collision dynamics of methane and ethane upon a graphitic monolayer on Pt (111). J. Chem. Phys., 2005, 123(11): 114712-1-7.
-
(2005)
J. Chem. Phys.
, vol.123
, Issue.11
-
-
Kondo, T.1
Mori, D.2
Okada, R.3
-
66
-
-
69549118642
-
Graphene grown on Co (0001) films and islands: Electronic structure and its precise magnetization dependence
-
035437
-
Varykhalov A, Rader O. Graphene grown on Co (0001) films and islands: electronic structure and its precise magnetization dependence. Phys. Rev. B, 2009, 80(3): 035437.
-
(2009)
Phys. Rev. B
, vol.80
, Issue.3
-
-
Varykhalov, A.1
Rader, O.2
-
67
-
-
48249127559
-
Crystal plane dependent growth of aligned single-walled carbon nanotubes on sapphire
-
Ishigami N, Ago H, Imamoto K, et al. Crystal plane dependent growth of aligned single-walled carbon nanotubes on sapphire. J. Am. Chem. Soc., 2008, 130(30): 9918-9924.
-
(2008)
J. Am. Chem. Soc.
, vol.130
, Issue.30
, pp. 9918-9924
-
-
Ishigami, N.1
Ago, H.2
Imamoto, K.3
-
68
-
-
80855126969
-
Rapid growth of single-layer graphene on stainless steel substrates
-
Ashokreddy A, John R, Pradeep T, et al. Rapid growth of single-layer graphene on stainless steel substrates. http://arxiv.org/abs/1008.2289.
-
-
-
Ashokreddy, A.1
John, R.2
Pradeep, T.3
-
69
-
-
54949139227
-
Materials for electrochemical capacitors
-
Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat. Mater., 2008, 7(11): 845-854.
-
(2008)
Nat. Mater.
, vol.7
, Issue.11
, pp. 845-854
-
-
Simon, P.1
Gogotsi, Y.2
-
70
-
-
68349109573
-
Supercapacitor devices based on graphene materials
-
Wang Y, Shi Z, Huang Y, et al. Supercapacitor devices based on graphene materials. J. Phys. Chem. C, 2009, 113(30): 13103-13107.
-
(2009)
J. Phys. Chem. C
, vol.113
, Issue.30
, pp. 13103-13107
-
-
Wang, Y.1
Shi, Z.2
Huang, Y.3
-
71
-
-
80855159156
-
-
Chinese source
-
2010.
-
(2010)
-
-
-
72
-
-
40449114200
-
Graphene-based electrochemical supercapacitors
-
Vivekchand S, Rout C, Subrahmanyam K, et al. Graphene-based electrochemical supercapacitors. J. Chem. Sci., 2008, 120(1): 9-13.
-
(2008)
J. Chem. Sci.
, vol.120
, Issue.1
, pp. 9-13
-
-
Vivekchand, S.1
Rout, C.2
Subrahmanyam, K.3
-
73
-
-
56149113622
-
Graphene-based ultracapacitors
-
Stoller M, Park S, Zhu Y, et al. Graphene-based ultracapacitors. Nano Lett., 2008, 8(10): 3498-3502.
-
(2008)
Nano Lett.
, vol.8
, Issue.10
, pp. 3498-3502
-
-
Stoller, M.1
Park, S.2
Zhu, Y.3
-
74
-
-
77249116674
-
Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors
-
Yan J, Wei T, Shao B, et al. Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors. Carbon, 2010, 48(6): 1731-1737.
-
(2010)
Carbon
, vol.48
, Issue.6
, pp. 1731-1737
-
-
Yan, J.1
Wei, T.2
Shao, B.3
-
75
-
-
79751524234
-
Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors
-
Gómez H, Ram M, Alvi F, et al. Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors. J. Power Sources, 2010, 196(8): 4102-4108.
-
(2010)
J. Power Sources
, vol.196
, Issue.8
, pp. 4102-4108
-
-
Gómez, H.1
Ram, M.2
Alvi, F.3
-
76
-
-
73249119128
-
Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors
-
Yan J, Wei T, Fan Z, et al. Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. J. Power Sources, 2010, 195(9): 3041-3045.
-
(2010)
J. Power Sources
, vol.195
, Issue.9
, pp. 3041-3045
-
-
Yan, J.1
Wei, T.2
Fan, Z.3
-
77
-
-
77955430412
-
2 composites as supercapacitor electrodes
-
2 composites as supercapacitor electrodes. Carbon, 2010, 48(13): 3825-3833.
-
(2010)
Carbon
, vol.48
, Issue.13
, pp. 3825-3833
-
-
Yan, J.1
Fan, Z.2
Wei, T.3
-
78
-
-
77955191186
-
Graphene for ultracapacitors
-
Las Vegas, NV, USA
-
Moon K, Li Z, Yao Y, et al. Graphene for Ultracapacitors. Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 2010: 1323-1328.
-
(2010)
Electronic Components and Technology Conference (ECTC)
, pp. 1323-1328
-
-
Moon, K.1
Li, Z.2
Yao, Y.3
-
79
-
-
33646685492
-
Analysis of graphene nanoribbons as a channel material for field-effect transistors
-
142102-1-3
-
Obradovic B, Kotlyar R, Heinz F, et al. Analysis of graphene nanoribbons as a channel material for field-effect transistors. Appl. Phys. Lett., 2006, 88(14): 142102-1-3.
-
(2006)
Appl. Phys. Lett.
, vol.88
, Issue.14
-
-
Obradovic, B.1
Kotlyar, R.2
Heinz, F.3
-
80
-
-
44149119344
-
Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors
-
206803-1-4
-
Wang X, Ouyang Y, Li X, et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett., 2008, 100(20): 206803-1-4.
-
(2008)
Phys. Rev. Lett.
, vol.100
, Issue.20
-
-
Wang, X.1
Ouyang, Y.2
Li, X.3
-
81
-
-
40549133218
-
Top-gated graphene field-effect-transistors formed by decomposition of SiC
-
092102-1-3
-
Wu Y, Ye P, Capano M, et al. Top-gated graphene field-effect-transistors formed by decomposition of SiC. Appl. Phys. Lett., 2008, 92(9): 092102-1-3.
-
(2008)
Appl. Phys. Lett.
, vol.92
, Issue.9
-
-
Wu, Y.1
Ye, P.2
Capano, M.3
-
82
-
-
72949097851
-
Dual-gate graphene fets with f(t) of 50 GHz
-
Lin Y M, Chiu H Y, Jenkins K A, et al. Dual-gate graphene fets with f(t) of 50 GHz. IEEE Electr Device L., 2010, 31(1): 68-70.
-
(2010)
IEEE Electr Device L.
, vol.31
, Issue.1
, pp. 68-70
-
-
Lin, Y.M.1
Chiu, H.Y.2
Jenkins, K.A.3
-
83
-
-
76249106631
-
100-GHz transistors from wafer-scale epitaxial graphene
-
Lin Y, Dimitrakopoulos C, Jenkins K, et al. 100-GHz transistors from wafer-scale epitaxial graphene. Science, 2010, 327(5966): 662.
-
(2010)
Science
, vol.327
, Issue.5966
, pp. 662
-
-
Lin, Y.1
Dimitrakopoulos, C.2
Jenkins, K.3
-
84
-
-
77952375703
-
Top-gated graphene nanoribbon transistors with ultrathin high-k dielectrics
-
Liao L, Bai J, Cheng R, et al. Top-gated graphene nanoribbon transistors with ultrathin high-k dielectrics. Nano Lett., 2010, 10(5): 1917-1921.
-
(2010)
Nano Lett.
, vol.10
, Issue.5
, pp. 1917-1921
-
-
Liao, L.1
Bai, J.2
Cheng, R.3
-
85
-
-
77956939304
-
High-speed graphene transistors with a self-aligned nanowire gate
-
Liao L, Lin Y C, Bao M, et al. High-speed graphene transistors with a self-aligned nanowire gate. Nature, 2010, 467(7313): 305-308.
-
(2010)
Nature
, vol.467
, Issue.7313
, pp. 305-308
-
-
Liao, L.1
Lin, Y.C.2
Bao, M.3
-
86
-
-
66249123595
-
N-doping of graphene through electrothermal reactions with ammonia
-
Wang X, Li X, Zhang L, et al. N-doping of graphene through electrothermal reactions with ammonia. Science, 2009, 324(5928): 768-771.
-
(2009)
Science
, vol.324
, Issue.5928
, pp. 768-771
-
-
Wang, X.1
Li, X.2
Zhang, L.3
-
87
-
-
40049093097
-
Chemically derived, ultrasmooth graphene nanoribbon semiconductors
-
Li X, Wang X, Zhang L, et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science, 2008, 319(5867): 1229-1232.
-
(2008)
Science
, vol.319
, Issue.5867
, pp. 1229-1232
-
-
Li, X.1
Wang, X.2
Zhang, L.3
-
88
-
-
77955231284
-
Graphene transistors
-
Schwierz F. Graphene transistors. Nat. Nanotechnol., 2010, 5(7): 487-496.
-
(2010)
Nat. Nanotechnol.
, vol.5
, Issue.7
, pp. 487-496
-
-
Schwierz, F.1
-
89
-
-
33751348065
-
Energy gaps in graphene nanoribbons
-
216803-1-4
-
Son Y W, Cohen M L, Louie S G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett., 2006, 97(21): 216803-1-4.
-
(2006)
Phys. Rev. Lett.
, vol.97
, Issue.21
-
-
Son, Y.W.1
Cohen, M.L.2
Louie, S.G.3
-
90
-
-
34547334459
-
Energy band-gap engineering of graphene nanoribbons
-
206805-1-4
-
Han M Y, zyilmaz B, Zhang Y, et al. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett., 2007, 98(20): 206805-1-4.
-
(2007)
Phys. Rev. Lett.
, vol.98
, Issue.20
-
-
Han, M.Y.1
Zyilmaz, B.2
Zhang, Y.3
-
91
-
-
67149121054
-
Direct observation of a widely tunable bandgap in bilayer graphene
-
Zhang Y, Tang T T, Girit C, et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature, 2009, 459(7248): 820-823.
-
(2009)
Nature
, vol.459
, Issue.7248
, pp. 820-823
-
-
Zhang, Y.1
Tang, T.T.2
Girit, C.3
-
92
-
-
58849129737
-
Bulk production of a new form of sp2 carbon: Crystalline graphene nanoribbons
-
Campos-Delgado J, Romo-Herrera J M, Jia X, et al. Bulk production of a new form of sp2 carbon: crystalline graphene nanoribbons. Nano Lett., 2008, 8(9): 2773-2778.
-
(2008)
Nano Lett.
, vol.8
, Issue.9
, pp. 2773-2778
-
-
Campos-Delgado, J.1
Romo-Herrera, J.M.2
Jia, X.3
-
93
-
-
68249161925
-
Scalable synthesis of few-layer graphene ribbons with controlled morphologies by a template method and their applications in nanoelectromechanical switches
-
Wei D, Liu Y, Zhang H, et al. Scalable synthesis of few-layer graphene ribbons with controlled morphologies by a template method and their applications in nanoelectromechanical switches. J. Am. Chem. Soc., 2009, 131(31): 11147-11154.
-
(2009)
J. Am. Chem. Soc.
, vol.131
, Issue.31
, pp. 11147-11154
-
-
Wei, D.1
Liu, Y.2
Zhang, H.3
-
94
-
-
65249185111
-
Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons
-
Kosynkin D, Higginbotham A, Sinitskii A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 2009, 458(7240): 872-876.
-
(2009)
Nature
, vol.458
, Issue.7240
, pp. 872-876
-
-
Kosynkin, D.1
Higginbotham, A.2
Sinitskii, A.3
-
95
-
-
65249133533
-
Narrow graphene nanoribbons from carbon nanotubes
-
Jiao L, Zhang L, Wang X, et al. Narrow graphene nanoribbons from carbon nanotubes. Nature, 2009, 458(7240): 877-880.
-
(2009)
Nature
, vol.458
, Issue.7240
, pp. 877-880
-
-
Jiao, L.1
Zhang, L.2
Wang, X.3
-
96
-
-
45349092986
-
Fine structure constant defines visual transparency of graphene
-
Nair R, Blake P, Grigorenko A, et al. Fine structure constant defines visual transparency of graphene. Science, 2008, 320(5881): 1308.
-
(2008)
Science
, vol.320
, Issue.5881
, pp. 1308
-
-
Nair, R.1
Blake, P.2
Grigorenko, A.3
-
97
-
-
77957017614
-
Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes
-
175201
-
Jo G, Choe M, Cho C, et al. Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes. Nanotechnology, 2010, 21(17): 175201.
-
(2010)
Nanotechnology
, vol.21
, Issue.17
-
-
Jo, G.1
Choe, M.2
Cho, C.3
-
98
-
-
75749135283
-
Organic light-emitting diodes on solution-processed graphene transparent electrodes
-
Wu J, Agrawal M, Becerril H, et al. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano, 2009, 4(1): 43-48.
-
(2009)
ACS Nano
, vol.4
, Issue.1
, pp. 43-48
-
-
Wu, J.1
Agrawal, M.2
Becerril, H.3
-
99
-
-
78149398081
-
Transparent conductive graphene electrode in GaN-based ultra-violet light emitting diodes
-
Kim B, Mastro M, Hite J, et al. Transparent conductive graphene electrode in GaN-based ultra-violet light emitting diodes. Opt. Express, 2010, 18(22): 23030-23034.
-
(2010)
Opt. Express
, vol.18
, Issue.22
, pp. 23030-23034
-
-
Kim, B.1
Mastro, M.2
Hite, J.3
-
100
-
-
57049185903
-
Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries
-
Yoo E, Kim J, Hosono E, et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett., 2008, 8(8): 2277-2282.
-
(2008)
Nano Lett.
, vol.8
, Issue.8
, pp. 2277-2282
-
-
Yoo, E.1
Kim, J.2
Hosono, E.3
-
101
-
-
77950049754
-
Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries
-
Lian P C, Zhu X F, Liang S Z, et al. Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim. Acta, 2010, 55(12): 3909-3914.
-
(2010)
Electrochim. Acta
, vol.55
, Issue.12
, pp. 3909-3914
-
-
Lian, P.C.1
Zhu, X.F.2
Liang, S.Z.3
|