메뉴 건너뛰기




Volumn 21, Issue 1-2, 2011, Pages 99-135

An analysis of students' gaming behaviors in an intelligent tutoring system: Predictors and impacts

Author keywords

Bayesian network parameter learning; Educational data mining; Gaming; Utility of hints

Indexed keywords

COGNITIVE TUTORS; DATA MINING TECHNIQUES; EDUCATIONAL DATA MINING; GAMING; HIGH SCHOOL STUDENTS; INSTRUCTIONAL SYSTEM; INTELLIGENT TUTORING SYSTEM; IT IMPACT; LEARNING OUTCOME; LOG DATA; MACHINE-LEARNING; NETWORK PARAMETERS; RESEARCH QUESTIONS; UTILITY OF HINTS;

EID: 79955795644     PISSN: 09241868     EISSN: 15731391     Source Type: Journal    
DOI: 10.1007/s11257-010-9086-0     Document Type: Article
Times cited : (76)

References (68)
  • 2
    • 85013573198 scopus 로고    scopus 로고
    • Toward meta-cognitive tutoring: A model of help seeking with a cognitive tutor
    • V. Aleven B. McLaren I. Roll K. Koedinger 2006 Toward meta-cognitive tutoring: a model of help seeking with a cognitive tutor Int. J. Artif. Intell. Educ. 16 101 128
    • (2006) Int. J. Artif. Intell. Educ. , vol.16 , pp. 101-128
    • Aleven, V.1    McLaren, B.2    Roll, I.3    Koedinger, K.4
  • 5
    • 70349863712 scopus 로고    scopus 로고
    • Is gaming the system state-or-trait? educational data mining through the multi-contextual application of a validated behavioral model
    • Corfu, Greece
    • Baker, R.: Is gaming the system state-or-trait? educational data mining through the multi-contextual application of a validated behavioral model. In: Proceedings of the Workshop on Data Mining for User Modeling, Corfu, Greece, pp. 76-80 (2007)
    • (2007) Proceedings of the Workshop on Data Mining for User Modeling , pp. 76-80
    • Baker, R.1
  • 11
    • 45449102857 scopus 로고    scopus 로고
    • Developing a generalizable detector of when students game the system
    • 10.1007/s11257-007-9045-6
    • R. Baker A. Corbett I. Roll K. Koedinger 2008 Developing a generalizable detector of when students game the system User Model. User-Adap. Inter. 18 3 287 314 10.1007/s11257-007-9045-6
    • (2008) User Model. User-Adap. Inter. , vol.18 , Issue.3 , pp. 287-314
    • Baker, R.1    Corbett, A.2    Roll, I.3    Koedinger, K.4
  • 14
    • 84884445817 scopus 로고    scopus 로고
    • Data mining for education
    • B. McGaw P. Peterson E. Baker (eds). 3 Elsevier Oxford UK. 10.1016/B978-0-08-044894-7.01318-X
    • Baker R.: Data mining for education. In: McGaw, B., Peterson, P., Baker, E., (eds) International Encyclopedia of Education, vol. 7, 3rd edn, pp. 112-118. Elsevier Oxford, UK (2010)
    • (2010) International Encyclopedia of Education, Vol. 7 , pp. 112-118
    • Baker, R.1
  • 15
    • 33646071915 scopus 로고    scopus 로고
    • Using automated questions to assess reading comprehension, vocabulary, and effects of tutorial interventions
    • J.E. Beck P. Jia J. Mostow 2004 Using automated questions to assess reading comprehension, vocabulary, and effects of tutorial interventions Technol. Instr. Cogn. Learn. (TICL) 2 97 134
    • (2004) Technol. Instr. Cogn. Learn. (TICL) , vol.2 , pp. 97-134
    • Beck, J.E.1    Jia, P.2    Mostow, J.3
  • 18
    • 84906455905 scopus 로고    scopus 로고
    • Carnegie Learning Inc.: Retrieved April 1, 2010
    • Carnegie Learning Inc.: Retrieved April 1, 2010, from http://www.carnegielearning.com/ (2010)
    • (2010)
  • 21
    • 79955827449 scopus 로고    scopus 로고
    • The impact of explicit strategy instruction on problem-solving behaviors across intelligent tutoring systems
    • Nashville, Tennessee
    • Chi, M., VanLehn, K.: The impact of explicit strategy instruction on problem-solving behaviors across intelligent tutoring systems. In: Proceedings of the 29th annual conference of the cognitive science society, Nashville, Tennessee, pp. 167-172 (2007a)
    • (2007) Proceedings of the 29th Annual Conference of the Cognitive Science Society , pp. 167-172
    • Chi, M.1    Vanlehn, K.2
  • 23
    • 0040577762 scopus 로고
    • Self-explanations: How students study and use examples in learning to solve problems
    • M.T.H. Chi M. Bassok M. Lewis P. Reimann R. Glaser 1989 Self-explanations: how students study and use examples in learning to solve problems Cogn. Sci. 15 145 182
    • (1989) Cogn. Sci. , vol.15 , pp. 145-182
    • Chi, M.T.H.1    Bassok, M.2    Lewis, M.3    Reimann, P.4    Glaser, R.5
  • 25
    • 41449089865 scopus 로고    scopus 로고
    • Observing tutoring collaboratively: Insights about tutoring effectiveness from vicarious learning
    • 10.1080/03640210701863396
    • M.T.H. Chi M. Roy R. Hausmann 2008 Observing tutoring collaboratively: insights about tutoring effectiveness from vicarious learning Cogn. Sci. 32 2 301 341 10.1080/03640210701863396
    • (2008) Cogn. Sci. , vol.32 , Issue.2 , pp. 301-341
    • Chi, M.T.H.1    Roy, M.2    Hausmann, R.3
  • 29
    • 79952290590 scopus 로고    scopus 로고
    • Temporal data mining for educational applications
    • P. Cohen C. Beal 2009 Temporal data mining for educational applications Int. J. Softw. Inform. 3 1 31 46
    • (2009) Int. J. Softw. Inform. , vol.3 , Issue.1 , pp. 31-46
    • Cohen, P.1    Beal, C.2
  • 30
    • 0036961606 scopus 로고    scopus 로고
    • Using Bayesian networks to manage uncertainty in student modeling
    • 10.1023/A:1021258506583 1030.68630
    • C. Conati A. Gertner K. VanLehn 2002 Using Bayesian networks to manage uncertainty in student modeling User Model. User-Adap. Inter. 12 4 371 417 10.1023/A:1021258506583 1030.68630
    • (2002) User Model. User-Adap. Inter. , vol.12 , Issue.4 , pp. 371-417
    • Conati, C.1    Gertner, A.2    Vanlehn, K.3
  • 31
    • 68149100832 scopus 로고    scopus 로고
    • Empirically building and evaluating a probabilistic model of user affect
    • 10.1007/s11257-009-9062-8
    • C. Conati H. Maclaren 2009 Empirically building and evaluating a probabilistic model of user affect User Model. User-Adap. Inter. 19 3 267 303 10.1007/s11257-009-9062-8
    • (2009) User Model. User-Adap. Inter. , vol.19 , Issue.3 , pp. 267-303
    • Conati, C.1    MacLaren, H.2
  • 32
    • 0000262490 scopus 로고
    • Knowledge tracing: Modeling the acquisition of procedural knowledge
    • 10.1007/BF01099821
    • A.T. Corbett J.R. Anderson 1995 Knowledge tracing: modeling the acquisition of procedural knowledge User Model. User-Adap. Inter. 4 4 253 278 10.1007/BF01099821
    • (1995) User Model. User-Adap. Inter. , vol.4 , Issue.4 , pp. 253-278
    • Corbett, A.T.1    Anderson, J.R.2
  • 33
    • 85013610638 scopus 로고    scopus 로고
    • Predicting affective states expressed through an emote-aloud procedure from autotutor's mixed-initiative dialogue
    • S. D'Mello S. Craig J. Sullins A. Graesser 2006 Predicting affective states expressed through an emote-aloud procedure from autotutor's mixed-initiative dialogue Int. J. Artif. Intell. Educ. 16 1 3 28
    • (2006) Int. J. Artif. Intell. Educ. , vol.16 , Issue.1 , pp. 3-28
    • D'Mello, S.1    Craig, S.2    Sullins, J.3    Graesser, A.4
  • 34
    • 27744450079 scopus 로고    scopus 로고
    • The interactive effects of goal orientation and feedback specificity on task performance
    • DOI 10.1207/s15327043hup1804-7
    • W. Davis C. Carson A. Ammeter D. Treadway 2005 The interactive effects of goal orientation and feedback specificity on task performance Human Perform. 18 409 426 10.1207/s15327043hup1804-7 (Pubitemid 41634648)
    • (2005) Human Performance , vol.18 , Issue.4 , pp. 409-426
    • Davis, W.D.1    Carson, C.M.2    Ammeter, A.P.3    Treadway, D.C.4
  • 35
    • 84990553353 scopus 로고
    • A model for reasoning about persistence and causation
    • 10.1111/j.1467-8640.1989.tb00324.x
    • T. Dean K. Kanazawa 1989 A model for reasoning about persistence and causation Comput. Intell. 5 3 142 150 10.1111/j.1467-8640.1989.tb00324.x
    • (1989) Comput. Intell. , vol.5 , Issue.3 , pp. 142-150
    • Dean, T.1    Kanazawa, K.2
  • 36
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • 0364.62022 501537
    • L. Dempster N. Laird D. Rubin 1977 Maximum likelihood from incomplete data via the EM algorithm J. R. Stat. Soc. 39 1 1 38 0364.62022 501537
    • (1977) J. R. Stat. Soc. , vol.39 , Issue.1 , pp. 1-38
    • Dempster, L.1    Laird, N.2    Rubin, D.3
  • 37
    • 77958153363 scopus 로고    scopus 로고
    • Using learning decomposition and bootstrapping with randomization to compare the impact of different educational interventions on learning
    • Cordoba, Spain
    • Feng, M., Beck, J., Heffernan, N.T.: Using learning decomposition and bootstrapping with randomization to compare the impact of different educational interventions on learning. In: Proceedings of the 2nd International Conference on Educational Data Mining (EDM'09), Cordoba, Spain, pp. 51-60 (2009)
    • (2009) Proceedings of the 2nd International Conference on Educational Data Mining (EDM'09) , pp. 51-60
    • Feng, M.1    Beck, J.2    Heffernan, N.T.3
  • 38
    • 1842714928 scopus 로고    scopus 로고
    • Understanding tuberculosis epidemiology using structured statistical models
    • DOI 10.1016/j.artmed.2003.11.003, PII S0933365703001337
    • L. Getoor J. Rhee D. Koller P. Small 2004 Understanding tuberculosis epidemiology using probabilistic relational models J. Artif. Intell. Med. 30 233 256 10.1016/j.artmed.2003.11.003 (Pubitemid 38471895)
    • (2004) Artificial Intelligence in Medicine , vol.30 , Issue.3 , pp. 233-256
    • Getoor, L.1    Rhee, J.T.2    Koller, D.3    Small, P.4
  • 40
    • 4344578226 scopus 로고    scopus 로고
    • Bayesian Networks for Data Mining
    • DOI 10.1023/A:1009730122752
    • D. Heckerman 1997 Bayesian networks for data mining Data Min. Knowl. Discov. 1 79 119 10.1023/A:1009730122752 (Pubitemid 127078360)
    • (1997) Data Mining and Knowledge Discovery , vol.1 , Issue.1 , pp. 79-120
    • Heckerman, D.1
  • 42
    • 0012491648 scopus 로고    scopus 로고
    • Optimizing ITS behaviour with Bayesian networks and decision theory
    • M. Mayo A. Mitrovic 2001 Optimizing ITS behaviour with Bayesian networks and decision theory Int. J. Artif. Intell. Educ. 12 124 153
    • (2001) Int. J. Artif. Intell. Educ. , vol.12 , pp. 124-153
    • Mayo, M.1    Mitrovic, A.2
  • 45
    • 78650298992 scopus 로고    scopus 로고
    • Scaffolding meta-cognitive skills for effective analogical problem solving via tailored example selection
    • K. Muldner C. Conati 2010 Scaffolding meta-cognitive skills for effective analogical problem solving via tailored example selection Int. J. Artif. Intell. Educ. 20 2 99 136
    • (2010) Int. J. Artif. Intell. Educ. , vol.20 , Issue.2 , pp. 99-136
    • Muldner, K.1    Conati, C.2
  • 49
    • 0002224372 scopus 로고
    • Help-seeking behavior in learning review of research in education
    • S. Nelson-Le Gall 1985 Help-seeking behavior in learning review of research in education Rev. Res. Educ. 12 55 90
    • (1985) Rev. Res. Educ. , vol.12 , pp. 55-90
    • Nelson-Le Gall, S.1
  • 50
    • 84910622674 scopus 로고    scopus 로고
    • Retrieved March 1, 2010, from
    • Netica Reference Manual. Retrieved March 1, 2010, from www.norsys.com/netica-j/docs/NeticaJ-Man.pdf (2010)
    • (2010) Netica Reference Manual
  • 51
    • 38149146045 scopus 로고
    • Advice and feedback: Elements of practice for problem solving
    • 10.1006/ceps.1994.1022
    • G.D. Phye C. Sanders 1994 Advice and feedback: elements of practice for problem solving Contemp. Educ. Psychol. 19 3 286 301 10.1006/ceps.1994.1022
    • (1994) Contemp. Educ. Psychol. , vol.19 , Issue.3 , pp. 286-301
    • Phye, G.D.1    Sanders, C.2
  • 54
    • 0030640252 scopus 로고    scopus 로고
    • Learning from worked-examples: A study on individual differences
    • 10.1207/s15516709cog2101-1
    • A. Renkl 1997 Learning from worked-examples: a study on individual differences Cogn. Sci. 21 1 1 30 10.1207/s15516709cog2101-1
    • (1997) Cogn. Sci. , vol.21 , Issue.1 , pp. 1-30
    • Renkl, A.1
  • 55
    • 85006883126 scopus 로고    scopus 로고
    • Student modeling based on belief networks
    • J. Reye 2004 Student modeling based on belief networks Int. J. Artif. Intell. Educ. 14 1 33
    • (2004) Int. J. Artif. Intell. Educ. , vol.14 , pp. 1-33
    • Reye, J.1
  • 57
    • 13444304032 scopus 로고    scopus 로고
    • Mining genetic epidemiology data with Bayesian networks application to APOE gene variation and plasma lipid levels
    • DOI 10.1089/cmb.2005.12.1
    • A. Rodin T.H. Mosley A.G. Clark C.F. Sing E. Boerwinkle 2005 Mining genetic epidemiology data with Bayesian networks application to APOE gene variation and plasma lipid levels J. Comput. Biol. 12 1 1 11 10.1089/cmb.2005.12.1 (Pubitemid 40204478)
    • (2005) Journal of Computational Biology , vol.12 , Issue.1 , pp. 1-11
    • Rodin, A.1    Mosley Jr., T.H.2    Clark, A.G.3    Sing, C.F.4    Boerwinkle, E.5
  • 62
    • 40049092173 scopus 로고    scopus 로고
    • Focus on formative feedback
    • 10.3102/0034654307313795
    • V. Shute 2008 Focus on formative feedback Rev. Educ. Res. 78 1 153 189 10.3102/0034654307313795
    • (2008) Rev. Educ. Res. , vol.78 , Issue.1 , pp. 153-189
    • Shute, V.1
  • 63
    • 0032112525 scopus 로고    scopus 로고
    • Analogy events: How examples are used during problem solving
    • 10.1207/s15516709cog2203-4
    • K. VanLehn 1998 Analogy events: how examples are used during problem solving Cogn. Sci. 22 3 347 388 10.1207/s15516709cog2203-4
    • (1998) Cogn. Sci. , vol.22 , Issue.3 , pp. 347-388
    • Vanlehn, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.