메뉴 건너뛰기




Volumn 22, Issue 2, 2011, Pages 45-52

Obesity and nutrient sensing TOR pathway in flies and vertebrates: Functional conservation of genetic mechanisms

Author keywords

[No Author keywords available]

Indexed keywords

GLUCOSE; INSULIN; INSULIN LIKE PEPTIDE; INSULIN RECEPTOR; INSULIN RECEPTOR SUBSTRATE; LIPID; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA COACTIVATOR 1ALPHA; PHOSPHATIDYLINOSITOL 3 KINASE; PHOSPHATIDYLINOSITOL 3,4,5 TRISPHOSPHATE 3 PHOSPHATASE; PROTEIN KINASE B; SOMATOMEDIN C; STEROL REGULATORY ELEMENT BINDING PROTEIN; TARGET OF RAPAMYCIN KINASE; TRANSCRIPTION FACTOR FOXO; TRIACYLGLYCEROL; UNCLASSIFIED DRUG;

EID: 79251646185     PISSN: 10432760     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tem.2010.11.002     Document Type: Review
Times cited : (63)

References (101)
  • 1
    • 34548847172 scopus 로고    scopus 로고
    • Diabetic larvae and obese flies-emerging studies of metabolism in Drosophila
    • Baker K.D., Thummel C.S. Diabetic larvae and obese flies-emerging studies of metabolism in Drosophila. Cell Metab. 2007, 6:257-266.
    • (2007) Cell Metab. , vol.6 , pp. 257-266
    • Baker, K.D.1    Thummel, C.S.2
  • 2
    • 76049085521 scopus 로고    scopus 로고
    • Drosophila as a lipotoxicity model organism - more than a promise?
    • Kühnlein R.P. Drosophila as a lipotoxicity model organism - more than a promise?. Biochimica. et Biophysica. Acta. 2010, 1801:215-221.
    • (2010) Biochimica. et Biophysica. Acta. , vol.1801 , pp. 215-221
    • Kühnlein, R.P.1
  • 3
    • 0037306190 scopus 로고    scopus 로고
    • Insulin/IGF and target of rapamycin signaling: a TOR de force in growth control
    • Oldham S., Hafen E. Insulin/IGF and target of rapamycin signaling: a TOR de force in growth control. Trends Cell Biol. 2003, 13:79-85.
    • (2003) Trends Cell Biol. , vol.13 , pp. 79-85
    • Oldham, S.1    Hafen, E.2
  • 4
    • 4644242353 scopus 로고    scopus 로고
    • Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells
    • Kim S.K., Rulifson E.J. Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells. Nature 2004, 431:316-320.
    • (2004) Nature , vol.431 , pp. 316-320
    • Kim, S.K.1    Rulifson, E.J.2
  • 5
    • 36049044765 scopus 로고    scopus 로고
    • Drosophila and the genetics of the internal milieu
    • Leopold P., Perrimon N. Drosophila and the genetics of the internal milieu. Nature 2007, 450:186-188.
    • (2007) Nature , vol.450 , pp. 186-188
    • Leopold, P.1    Perrimon, N.2
  • 6
    • 33846982972 scopus 로고    scopus 로고
    • Coordinated transcriptional and translational control in metabolic homeostasis in flies
    • Lasko P., Sonenberg N. Coordinated transcriptional and translational control in metabolic homeostasis in flies. Genes Dev. 2007, 21:235-237.
    • (2007) Genes Dev. , vol.21 , pp. 235-237
    • Lasko, P.1    Sonenberg, N.2
  • 7
    • 71949119173 scopus 로고    scopus 로고
    • Regulation of fat cell mass by insulin in Drosophila melanogaster
    • DiAngelo J.R., Birnbaum M.J. Regulation of fat cell mass by insulin in Drosophila melanogaster. Mol. Cell. Biol. 2009, 29:6341-6352.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 6341-6352
    • DiAngelo, J.R.1    Birnbaum, M.J.2
  • 8
    • 0032453237 scopus 로고    scopus 로고
    • Type II diabetes, essential hypertension, and obesity as 'syndromes of impaired genetic homeostasis': the 'thrifty genotype' hypothesis enters the 21st century
    • Neel J.V., et al. Type II diabetes, essential hypertension, and obesity as 'syndromes of impaired genetic homeostasis': the 'thrifty genotype' hypothesis enters the 21st century. Perspect. Biol. Med. 1998, 42:44-74.
    • (1998) Perspect. Biol. Med. , vol.42 , pp. 44-74
    • Neel, J.V.1
  • 9
    • 78049425280 scopus 로고    scopus 로고
    • High fat diet-induced obesity and heart dysfunction is regulated by the TOR pathway in Drosophila
    • Birse R., et al. High fat diet-induced obesity and heart dysfunction is regulated by the TOR pathway in Drosophila. Cell Metab. 2010, 12:533-544.
    • (2010) Cell Metab. , vol.12 , pp. 533-544
    • Birse, R.1
  • 10
    • 0035856949 scopus 로고    scopus 로고
    • Insulin signalling and the regulation of glucose and lipid metabolism
    • Saltiel A.R., Kahn C.R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001, 414:799-806.
    • (2001) Nature , vol.414 , pp. 799-806
    • Saltiel, A.R.1    Kahn, C.R.2
  • 11
    • 0033603208 scopus 로고    scopus 로고
    • Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4
    • Boehni R., et al. Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4. Cell 1999, 97:865-875.
    • (1999) Cell , vol.97 , pp. 865-875
    • Boehni, R.1
  • 12
    • 0029070611 scopus 로고
    • The Drosophila insulin receptor homolog: a gene essential for embryonic development encodes two receptor isoforms with different signaling potential
    • Fernandez R., et al. The Drosophila insulin receptor homolog: a gene essential for embryonic development encodes two receptor isoforms with different signaling potential. EMBO J. 1995, 14:3373-3384.
    • (1995) EMBO J. , vol.14 , pp. 3373-3384
    • Fernandez, R.1
  • 13
    • 2342496712 scopus 로고    scopus 로고
    • FoxOs at the crossroads of cellular metabolism, differentiation, and transformation
    • Accili D., Arden K.C. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 2004, 117:421-426.
    • (2004) Cell , vol.117 , pp. 421-426
    • Accili, D.1    Arden, K.C.2
  • 14
    • 0036629251 scopus 로고    scopus 로고
    • Cell cycle and death control: long live Forkheads
    • Burgering B.M., Kops G.J. Cell cycle and death control: long live Forkheads. Trends Biochem. Sci. 2002, 27:352-360.
    • (2002) Trends Biochem. Sci. , vol.27 , pp. 352-360
    • Burgering, B.M.1    Kops, G.J.2
  • 15
    • 0037418528 scopus 로고    scopus 로고
    • The many forks in FOXO's road
    • Tran H., et al. The many forks in FOXO's road. Sci STKE 2003, 2003:RE5.
    • (2003) Sci STKE , vol.2003
    • Tran, H.1
  • 16
    • 0030659557 scopus 로고    scopus 로고
    • The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans
    • Ogg S., et al. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 1997, 389:994-999.
    • (1997) Nature , vol.389 , pp. 994-999
    • Ogg, S.1
  • 17
    • 0030657540 scopus 로고    scopus 로고
    • Daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans
    • Lin K., et al. daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 1997, 278:1319-1322.
    • (1997) Science , vol.278 , pp. 1319-1322
    • Lin, K.1
  • 18
    • 0242539698 scopus 로고    scopus 로고
    • The Drosophila Forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling
    • Junger M., et al. The Drosophila Forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling. J. Biol. 2003, 2:20-30.
    • (2003) J. Biol. , vol.2 , pp. 20-30
    • Junger, M.1
  • 19
    • 2942689828 scopus 로고    scopus 로고
    • Expression of Drosophila FOXO regulates growth and can phenocopy starvation
    • Kramer J.M., et al. Expression of Drosophila FOXO regulates growth and can phenocopy starvation. BMC Dev. Biol. 2003, 3:5-19.
    • (2003) BMC Dev. Biol. , vol.3 , pp. 5-19
    • Kramer, J.M.1
  • 20
    • 0042161896 scopus 로고    scopus 로고
    • Control of cell number by Drosophila FOXO: downstream and feedback regulation of the insulin receptor pathway
    • Puig O., et al. Control of cell number by Drosophila FOXO: downstream and feedback regulation of the insulin receptor pathway. Genes Dev. 2003, 17:2006-2020.
    • (2003) Genes Dev. , vol.17 , pp. 2006-2020
    • Puig, O.1
  • 21
    • 0037052544 scopus 로고    scopus 로고
    • Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes
    • Rulifson E.J., et al. Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science 2002, 296:1118-1120.
    • (2002) Science , vol.296 , pp. 1118-1120
    • Rulifson, E.J.1
  • 22
    • 20044393471 scopus 로고    scopus 로고
    • Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands
    • Broughton S.J., et al. Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc. Natl. Acad. Sci. U. S. A. 2005, 102:3105-3110.
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , pp. 3105-3110
    • Broughton, S.J.1
  • 23
    • 33746564095 scopus 로고    scopus 로고
    • Activated FOXO-mediated insulin resistance is blocked by reduction of TOR activity
    • Luong N., et al. Activated FOXO-mediated insulin resistance is blocked by reduction of TOR activity. Cell Metab. 2006, 4:133-142.
    • (2006) Cell Metab. , vol.4 , pp. 133-142
    • Luong, N.1
  • 24
    • 0035916357 scopus 로고    scopus 로고
    • An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control
    • Brogiolo W., et al. An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr. Biol. 2001, 11:213-221.
    • (2001) Curr. Biol. , vol.11 , pp. 213-221
    • Brogiolo, W.1
  • 25
    • 0037031147 scopus 로고    scopus 로고
    • Nutrient-dependent expression of Insulin-like Peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila
    • Ikeya T., et al. Nutrient-dependent expression of Insulin-like Peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr. Biol. 2002, 12:1293-1300.
    • (2002) Curr. Biol. , vol.12 , pp. 1293-1300
    • Ikeya, T.1
  • 26
    • 1642370615 scopus 로고    scopus 로고
    • Mouse models of insulin resistance
    • Nandi A., et al. Mouse models of insulin resistance. Physiol. Rev. 2004, 84:623-647.
    • (2004) Physiol. Rev. , vol.84 , pp. 623-647
    • Nandi, A.1
  • 27
    • 0035125526 scopus 로고    scopus 로고
    • IRS proteins and beta-cell function
    • Burks D.J., White M.F. IRS proteins and beta-cell function. Diabetes 2001, 50(Suppl. 1):S140-145.
    • (2001) Diabetes , vol.50 , Issue.SUPPL. 1
    • Burks, D.J.1    White, M.F.2
  • 28
    • 0031740792 scopus 로고    scopus 로고
    • Genetics of mouse growth
    • Efstratiadis A. Genetics of mouse growth. Int. J. Dev. Biol. 1998, 42:955-976.
    • (1998) Int. J. Dev. Biol. , vol.42 , pp. 955-976
    • Efstratiadis, A.1
  • 29
    • 33645982255 scopus 로고    scopus 로고
    • FROM MICE TO MEN: Insights into the insulin resistance syndromes
    • Biddinger S.B., Kahn C.R. FROM MICE TO MEN: Insights into the insulin resistance syndromes. Ann. Rev. Physiol. 2006, 68:123-158.
    • (2006) Ann. Rev. Physiol. , vol.68 , pp. 123-158
    • Biddinger, S.B.1    Kahn, C.R.2
  • 30
    • 0033524937 scopus 로고    scopus 로고
    • Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes
    • Kulkarni R.N., et al. Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 1999, 96:329-339.
    • (1999) Cell , vol.96 , pp. 329-339
    • Kulkarni, R.N.1
  • 31
    • 77957236816 scopus 로고    scopus 로고
    • MTORC1 and mTORC2 in energy homeostasis
    • Elsevier, M.N. Hall, F. Tamanoi (Eds.)
    • Cornu M., Hall M.N. mTORC1 and mTORC2 in energy homeostasis. The Enzymes (Vol. 28) 2010, 263-278. Elsevier. M.N. Hall, F. Tamanoi (Eds.).
    • (2010) The Enzymes (Vol. 28) , pp. 263-278
    • Cornu, M.1    Hall, M.N.2
  • 33
    • 77954922619 scopus 로고    scopus 로고
    • Regulation of mTOR Signaling in mammals
    • Elsevier, M.N. Hall, F. Tamanoi (Eds.)
    • Lamming D., Sabatini D. Regulation of mTOR Signaling in mammals. The Enzymes (Vol. 27) 2010, 21-38. Elsevier. M.N. Hall, F. Tamanoi (Eds.).
    • (2010) The Enzymes (Vol. 27) , pp. 21-38
    • Lamming, D.1    Sabatini, D.2
  • 34
    • 37449029143 scopus 로고    scopus 로고
    • Nutritional control of protein biosynthetic capacity by insulin via Myc in Drosophila
    • Teleman A.A., et al. Nutritional control of protein biosynthetic capacity by insulin via Myc in Drosophila. Cell Metab. 2008, 7:21-32.
    • (2008) Cell Metab. , vol.7 , pp. 21-32
    • Teleman, A.A.1
  • 35
    • 63849149937 scopus 로고    scopus 로고
    • LKB1 and AMP-activated protein kinase control of mTOR signalling and growth
    • Shaw R.J. LKB1 and AMP-activated protein kinase control of mTOR signalling and growth. Acta Physiologica 2009, 196:65-80.
    • (2009) Acta Physiologica , vol.196 , pp. 65-80
    • Shaw, R.J.1
  • 36
    • 48649085816 scopus 로고    scopus 로고
    • Regulation of TORC1 by Rag GTPases in nutrient response
    • Kim E., et al. Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol. 2008, 10:935-945.
    • (2008) Nat. Cell Biol. , vol.10 , pp. 935-945
    • Kim, E.1
  • 37
    • 38649116056 scopus 로고    scopus 로고
    • Selective versus total insulin resistance: a pathogenic paradox
    • Brown M.S., Goldstein J.L. Selective versus total insulin resistance: a pathogenic paradox. Cell Metab. 2008, 7:95-96.
    • (2008) Cell Metab. , vol.7 , pp. 95-96
    • Brown, M.S.1    Goldstein, J.L.2
  • 38
    • 69149110896 scopus 로고    scopus 로고
    • Remote control of insulin secretion by fat cells in Drosophila
    • Geminard C., et al. Remote control of insulin secretion by fat cells in Drosophila. Cell Metab. 2009, 10:199-207.
    • (2009) Cell Metab. , vol.10 , pp. 199-207
    • Geminard, C.1
  • 39
    • 62649089279 scopus 로고    scopus 로고
    • Insulin and JNK: optimizing metabolic homeostasis and lifespan
    • Karpac J., Jasper H. Insulin and JNK: optimizing metabolic homeostasis and lifespan. Trends Endocrinol. Metab. 2009, 20:100-106.
    • (2009) Trends Endocrinol. Metab. , vol.20 , pp. 100-106
    • Karpac, J.1    Jasper, H.2
  • 40
    • 73949119966 scopus 로고    scopus 로고
    • D4eBP acts downstream of both dTOR and dFoxo to modulate cardiac functional aging in Drosophila
    • Wessells R.J., et al. d4eBP acts downstream of both dTOR and dFoxo to modulate cardiac functional aging in Drosophila. Aging Cell 2009, 8:542-552.
    • (2009) Aging Cell , vol.8 , pp. 542-552
    • Wessells, R.J.1
  • 41
    • 78650918920 scopus 로고    scopus 로고
    • FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging
    • Demontis F., Perrimon N. FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell 2010, 143:813-825.
    • (2010) Cell , vol.143 , pp. 813-825
    • Demontis, F.1    Perrimon, N.2
  • 42
    • 4544220704 scopus 로고    scopus 로고
    • Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity
    • Um S.H., et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 2004, 431:200-205.
    • (2004) Nature , vol.431 , pp. 200-205
    • Um, S.H.1
  • 43
    • 54849431380 scopus 로고    scopus 로고
    • Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration
    • Polak P., et al. Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration. Cell Metab. 2008, 8:399-410.
    • (2008) Cell Metab. , vol.8 , pp. 399-410
    • Polak, P.1
  • 44
    • 9444234587 scopus 로고    scopus 로고
    • Signaling elements involved in the metabolic regulation of mTOR by nutrients, incretins, and growth factors in islets
    • Kwon G., et al. Signaling elements involved in the metabolic regulation of mTOR by nutrients, incretins, and growth factors in islets. Diabetes 2004, 53(Suppl. 3):S225-232.
    • (2004) Diabetes , vol.53 , Issue.SUPPL. 3
    • Kwon, G.1
  • 45
    • 0036787462 scopus 로고    scopus 로고
    • Metabolic and autocrine regulation of the mammalian target of rapamycin by pancreatic beta-cells
    • McDaniel M.L., et al. Metabolic and autocrine regulation of the mammalian target of rapamycin by pancreatic beta-cells. Diabetes 2002, 51:2877-2885.
    • (2002) Diabetes , vol.51 , pp. 2877-2885
    • McDaniel, M.L.1
  • 46
    • 0035145602 scopus 로고    scopus 로고
    • Metabolic regulation by leucine of translation initiation through the mTOR-signaling pathway by pancreatic beta-cells
    • Xu G., et al. Metabolic regulation by leucine of translation initiation through the mTOR-signaling pathway by pancreatic beta-cells. Diabetes 2001, 50:353-360.
    • (2001) Diabetes , vol.50 , pp. 353-360
    • Xu, G.1
  • 47
    • 0035877778 scopus 로고    scopus 로고
    • Differential activation of protein kinase B and p70S6K by glucose and insulin-like growth factor 1 in pancreatic β-cells (INS-1)
    • Dickson L.M., et al. Differential activation of protein kinase B and p70S6K by glucose and insulin-like growth factor 1 in pancreatic β-cells (INS-1). J. Biol. Chem. 2001, 276:21110-21120.
    • (2001) J. Biol. Chem. , vol.276 , pp. 21110-21120
    • Dickson, L.M.1
  • 48
    • 0037192853 scopus 로고    scopus 로고
    • Genetic regulation of metabolic pathways in β-cells disrupted by hyperglycemia
    • Laybutt D.R., et al. Genetic regulation of metabolic pathways in β-cells disrupted by hyperglycemia. J. Biol. Chem. 2002, 277:10912-10921.
    • (2002) J. Biol. Chem. , vol.277 , pp. 10912-10921
    • Laybutt, D.R.1
  • 49
    • 48249146208 scopus 로고    scopus 로고
    • Disruption of Tsc2 in pancreatic cells induces cell mass expansion and improved glucose tolerance in a TORC1-dependent manner
    • Rachdi L., et al. Disruption of Tsc2 in pancreatic cells induces cell mass expansion and improved glucose tolerance in a TORC1-dependent manner. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:9250-9255.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 9250-9255
    • Rachdi, L.1
  • 50
    • 70350449081 scopus 로고    scopus 로고
    • Critical roles for the TSC-mTOR pathway in β-cell function
    • Mori H., et al. Critical roles for the TSC-mTOR pathway in β-cell function. Am. J. Physiol. Endocrinol. Metab. 2009, 297:E1013-E1022.
    • (2009) Am. J. Physiol. Endocrinol. Metab. , vol.297
    • Mori, H.1
  • 51
    • 42349086872 scopus 로고    scopus 로고
    • Biphasic response of pancreatic β-cell mass to ablation of Tuberous Sclerosis Complex 2 in mice
    • Shigeyama Y., et al. Biphasic response of pancreatic β-cell mass to ablation of Tuberous Sclerosis Complex 2 in mice. Mol. Cell. Biol. 2008, 28:2971-2979.
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 2971-2979
    • Shigeyama, Y.1
  • 52
    • 40649104735 scopus 로고    scopus 로고
    • Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis
    • Ozcan U., et al. Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis. Mol. Cell 2008, 29:541-551.
    • (2008) Mol. Cell , vol.29 , pp. 541-551
    • Ozcan, U.1
  • 53
    • 0034700456 scopus 로고    scopus 로고
    • Hypoinsulinaemia, glucose intolerance and diminished beta-cell size in S6K1-deficient mice
    • Pende M., et al. Hypoinsulinaemia, glucose intolerance and diminished beta-cell size in S6K1-deficient mice. Nature 2000, 408:994-997.
    • (2000) Nature , vol.408 , pp. 994-997
    • Pende, M.1
  • 54
    • 0034770191 scopus 로고    scopus 로고
    • Adipose tissue reduction in mice lacking the translational inhibitor 4E-BP1
    • Tsukiyama-Kohara K., et al. Adipose tissue reduction in mice lacking the translational inhibitor 4E-BP1. Nat. Med. 2001, 7:1128-1132.
    • (2001) Nat. Med. , vol.7 , pp. 1128-1132
    • Tsukiyama-Kohara, K.1
  • 56
    • 42949116365 scopus 로고    scopus 로고
    • Lipid accumulation in non-adipose tissue and lipotoxicity
    • van Herpen N.A., Schrauwen-Hinderling V.B. Lipid accumulation in non-adipose tissue and lipotoxicity. Physiol. Behav. 2008, 94:231-241.
    • (2008) Physiol. Behav. , vol.94 , pp. 231-241
    • van Herpen, N.A.1    Schrauwen-Hinderling, V.B.2
  • 57
    • 0028959673 scopus 로고
    • Heart development in Drosophila and its relationship to vertebrate systems
    • Bodmer R. Heart development in Drosophila and its relationship to vertebrate systems. Trends Cardiovasc. Med. 1995, 5:21-27.
    • (1995) Trends Cardiovasc. Med. , vol.5 , pp. 21-27
    • Bodmer, R.1
  • 58
    • 34250212943 scopus 로고    scopus 로고
    • Genetic control of heart function and aging in Drosophila
    • Ocorr K., et al. Genetic control of heart function and aging in Drosophila. Trends Cardiovasc. Med. 2007, 17:177-182.
    • (2007) Trends Cardiovasc. Med. , vol.17 , pp. 177-182
    • Ocorr, K.1
  • 59
    • 9644278037 scopus 로고    scopus 로고
    • Insulin regulation of heart function in aging fruit flies
    • Wessells R.J., et al. Insulin regulation of heart function in aging fruit flies. Nat. Genet. 2004, 36:1275-1281.
    • (2004) Nat. Genet. , vol.36 , pp. 1275-1281
    • Wessells, R.J.1
  • 60
    • 64949151149 scopus 로고    scopus 로고
    • A new method for detection and quantification of heartbeat parameters in Drosophila, zebrafish, and embryonic mouse hearts
    • Fink M., et al. A new method for detection and quantification of heartbeat parameters in Drosophila, zebrafish, and embryonic mouse hearts. Biotechniques 2009, 46:101-113.
    • (2009) Biotechniques , vol.46 , pp. 101-113
    • Fink, M.1
  • 61
    • 31944438501 scopus 로고    scopus 로고
    • Drosophila as a model for the identification of genes causing adult human heart disease
    • Wolf M.J., et al. Drosophila as a model for the identification of genes causing adult human heart disease. Proc. Natl. Acad. Sci. U. S. A. 2006, 103:1394-1399.
    • (2006) Proc. Natl. Acad. Sci. U. S. A. , vol.103 , pp. 1394-1399
    • Wolf, M.J.1
  • 62
    • 33746530041 scopus 로고    scopus 로고
    • Control of cardiac rhythm by ORK1, a Drosophila two-pore domain potassium channel
    • Lalevee N., et al. Control of cardiac rhythm by ORK1, a Drosophila two-pore domain potassium channel. Curr. Biol. 2006, 16:1502-1508.
    • (2006) Curr. Biol. , vol.16 , pp. 1502-1508
    • Lalevee, N.1
  • 63
    • 0036608009 scopus 로고    scopus 로고
    • Control of cardiac development by an evolutionarily conserved transcriptional network
    • Cripps R.M., Olson E.N. Control of cardiac development by an evolutionarily conserved transcriptional network. Dev. Biol. 2002, 246:14-28.
    • (2002) Dev. Biol. , vol.246 , pp. 14-28
    • Cripps, R.M.1    Olson, E.N.2
  • 64
    • 79251636621 scopus 로고    scopus 로고
    • Development and aging of the Drosophila heart
    • Elsevier, N. Rosenthal, R. Harvey (Eds.)
    • Bodmer R., Frasch M. Development and aging of the Drosophila heart. Heart Development and Regeneration (Vol. 2) 2010, 47-86. Elsevier. N. Rosenthal, R. Harvey (Eds.).
    • (2010) Heart Development and Regeneration (Vol. 2) , pp. 47-86
    • Bodmer, R.1    Frasch, M.2
  • 65
    • 45449100540 scopus 로고    scopus 로고
    • Overweight, obesity, and the development of stage 3 CKD: the Framingham Heart Study
    • Foster M.C., et al. Overweight, obesity, and the development of stage 3 CKD: the Framingham Heart Study. Am. J. Kidney Dis. 2008, 52:39-48.
    • (2008) Am. J. Kidney Dis. , vol.52 , pp. 39-48
    • Foster, M.C.1
  • 66
    • 0027947379 scopus 로고
    • Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-beta-cell relationships
    • Lee Y., et al. Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-beta-cell relationships. Proc. Natl. Acad. Sci. U. S. A. 1994, 91:10878-10882.
    • (1994) Proc. Natl. Acad. Sci. U. S. A. , vol.91 , pp. 10878-10882
    • Lee, Y.1
  • 67
    • 33749440279 scopus 로고    scopus 로고
    • Cardiac cell death in early diabetes and its modulation by dietary fatty acids
    • Ghosh S., Rodrigues B. Cardiac cell death in early diabetes and its modulation by dietary fatty acids. Biochim. Biophys. Acta 2006, 1761:1148-1162.
    • (2006) Biochim. Biophys. Acta , vol.1761 , pp. 1148-1162
    • Ghosh, S.1    Rodrigues, B.2
  • 69
    • 67649422709 scopus 로고    scopus 로고
    • As a matter of fat
    • Brookheart R.T., et al. As a matter of fat. Cell Metab. 2009, 10:9-12.
    • (2009) Cell Metab. , vol.10 , pp. 9-12
    • Brookheart, R.T.1
  • 71
    • 77953356804 scopus 로고    scopus 로고
    • Gluttony, sloth and the metabolic syndrome: a roadmap to lipotoxicity
    • Unger R.H., Scherer P.E. Gluttony, sloth and the metabolic syndrome: a roadmap to lipotoxicity. Trends Endocrinol. Metab. 2010, 21:345-352.
    • (2010) Trends Endocrinol. Metab. , vol.21 , pp. 345-352
    • Unger, R.H.1    Scherer, P.E.2
  • 72
    • 0035061419 scopus 로고    scopus 로고
    • A novel mouse model of lipotoxic cardiomyopathy
    • Chiu H.C., et al. A novel mouse model of lipotoxic cardiomyopathy. J. Clin. Invest. 2001, 107:813-822.
    • (2001) J. Clin. Invest. , vol.107 , pp. 813-822
    • Chiu, H.C.1
  • 73
    • 13444268937 scopus 로고    scopus 로고
    • Transgenic expression of fatty acid transport protein 1 in the heart causes lipotoxic cardiomyopathy
    • Chiu H.C., et al. Transgenic expression of fatty acid transport protein 1 in the heart causes lipotoxic cardiomyopathy. Circ. Res. 2005, 96:225-233.
    • (2005) Circ. Res. , vol.96 , pp. 225-233
    • Chiu, H.C.1
  • 74
    • 37549025047 scopus 로고    scopus 로고
    • A role for the transcriptional coactivator PGC-1alpha in muscle refueling
    • Wende A.R., et al. A role for the transcriptional coactivator PGC-1alpha in muscle refueling. J. Biol. Chem. 2007, 282:36642-36651.
    • (2007) J. Biol. Chem. , vol.282 , pp. 36642-36651
    • Wende, A.R.1
  • 75
    • 0027053153 scopus 로고
    • Lipid composition of subcellular membranes from larvae and prepupae of Drosophila melanogaster
    • Jones H.E., et al. Lipid composition of subcellular membranes from larvae and prepupae of Drosophila melanogaster. Lipids 1992, 27:984-987.
    • (1992) Lipids , vol.27 , pp. 984-987
    • Jones, H.E.1
  • 76
    • 0037012936 scopus 로고    scopus 로고
    • Cell biology. Fats, flies, and palmitate
    • Nohturfft A., Losick R. Cell biology. Fats, flies, and palmitate. Science 2002, 296:857-858.
    • (2002) Science , vol.296 , pp. 857-858
    • Nohturfft, A.1    Losick, R.2
  • 77
    • 0043172415 scopus 로고    scopus 로고
    • The SREBP pathway - insights from Insigs and insects
    • Rawson R.B. The SREBP pathway - insights from Insigs and insects. Nat. Rev. Mol. Cell Biol. 2003, 4:631-640.
    • (2003) Nat. Rev. Mol. Cell Biol. , vol.4 , pp. 631-640
    • Rawson, R.B.1
  • 78
    • 33744544947 scopus 로고    scopus 로고
    • Fatty acid auxotrophy in Drosophila larvae lacking SREBP
    • Kunte A.S., et al. Fatty acid auxotrophy in Drosophila larvae lacking SREBP. Cell Metab. 2006, 3:439-448.
    • (2006) Cell Metab. , vol.3 , pp. 439-448
    • Kunte, A.S.1
  • 79
    • 26944489689 scopus 로고    scopus 로고
    • Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila
    • Gronke S., et al. Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. Cell Metab. 2005, 1:323-330.
    • (2005) Cell Metab. , vol.1 , pp. 323-330
    • Gronke, S.1
  • 80
    • 75649131899 scopus 로고    scopus 로고
    • The Drosophila PGC-1 homologue Spargel coordinates mitochondrial activity to insulin signalling
    • Tiefenbock S.K., et al. The Drosophila PGC-1 homologue Spargel coordinates mitochondrial activity to insulin signalling. EMBO J. 2010, 29:171-183.
    • (2010) EMBO J. , vol.29 , pp. 171-183
    • Tiefenbock, S.K.1
  • 81
    • 44449095056 scopus 로고    scopus 로고
    • Functional genomic screen reveals genes involved in lipid-droplet formation and utilization
    • Guo Y., et al. Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 2008, 453:657-661.
    • (2008) Nature , vol.453 , pp. 657-661
    • Guo, Y.1
  • 82
    • 70350539531 scopus 로고    scopus 로고
    • Atf4 regulates obesity, glucose homeostasis, and energy expenditure
    • Seo J., et al. Atf4 regulates obesity, glucose homeostasis, and energy expenditure. Diabetes 2009, 58:2565-2573.
    • (2009) Diabetes , vol.58 , pp. 2565-2573
    • Seo, J.1
  • 83
    • 73349130440 scopus 로고    scopus 로고
    • Drosophila genome-wide obesity screen reveals hedgehog as a determinant of brown versus white adipose cell fate
    • Pospisilik J.A., et al. Drosophila genome-wide obesity screen reveals hedgehog as a determinant of brown versus white adipose cell fate. Cell 2010, 140:148-160.
    • (2010) Cell , vol.140 , pp. 148-160
    • Pospisilik, J.A.1
  • 84
    • 50049116472 scopus 로고    scopus 로고
    • SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth
    • Porstmann T., et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 2008, 8:224-236.
    • (2008) Cell Metab. , vol.8 , pp. 224-236
    • Porstmann, T.1
  • 85
    • 77749264562 scopus 로고    scopus 로고
    • Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies
    • Lee J.H., et al. Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies. Science 2010, 327:1223-1228.
    • (2010) Science , vol.327 , pp. 1223-1228
    • Lee, J.H.1
  • 86
    • 0037326196 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator
    • Puigserver P., Spiegelman B.M. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr. Rev. 2003, 24:78-90.
    • (2003) Endocr. Rev. , vol.24 , pp. 78-90
    • Puigserver, P.1    Spiegelman, B.M.2
  • 87
    • 67650944993 scopus 로고    scopus 로고
    • Rapamycin fed late in life extends lifespan in genetically heterogeneous mice
    • Harrison D.E., et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 2009, 460:392-395.
    • (2009) Nature , vol.460 , pp. 392-395
    • Harrison, D.E.1
  • 88
    • 70349669095 scopus 로고    scopus 로고
    • Ribosomal protein S6 kinase 1 signaling regulates mammalian life span
    • Selman C., et al. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 2009, 326:140-144.
    • (2009) Science , vol.326 , pp. 140-144
    • Selman, C.1
  • 89
    • 70349438679 scopus 로고    scopus 로고
    • 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila
    • Zid B.M., et al. 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell 2009, 139:149-160.
    • (2009) Cell , vol.139 , pp. 149-160
    • Zid, B.M.1
  • 90
    • 72649091698 scopus 로고    scopus 로고
    • Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster
    • Bjedov I., et al. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab. 2010, 11:35-46.
    • (2010) Cell Metab. , vol.11 , pp. 35-46
    • Bjedov, I.1
  • 91
    • 67650825231 scopus 로고    scopus 로고
    • Ageing: A midlife longevity drug?
    • Kaeberlein M., Kennedy B.K. Ageing: A midlife longevity drug?. Nature 2009, 460:331-332.
    • (2009) Nature , vol.460 , pp. 331-332
    • Kaeberlein, M.1    Kennedy, B.K.2
  • 92
    • 77954236943 scopus 로고    scopus 로고
    • Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago
    • El Albani A., et al. Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago. Nature 2010, 466:100-105.
    • (2010) Nature , vol.466 , pp. 100-105
    • El Albani, A.1
  • 93
    • 4544229464 scopus 로고    scopus 로고
    • The unicellular ancestry of animal development
    • King N. The unicellular ancestry of animal development. Dev. Cell 2004, 7:313-325.
    • (2004) Dev. Cell , vol.7 , pp. 313-325
    • King, N.1
  • 94
    • 0038267842 scopus 로고    scopus 로고
    • On the origin of differentiation
    • Bonner J.T. On the origin of differentiation. J. Biosciences 2003, 28:523-528.
    • (2003) J. Biosciences , vol.28 , pp. 523-528
    • Bonner, J.T.1
  • 95
    • 0035671395 scopus 로고    scopus 로고
    • Building a multicellular organism
    • Kaiser D. Building a multicellular organism. Ann. Rev. Genet. 2001, 35:103-123.
    • (2001) Ann. Rev. Genet. , vol.35 , pp. 103-123
    • Kaiser, D.1
  • 96
    • 0035917865 scopus 로고    scopus 로고
    • Cooperation and competition in the evolution of ATP-producing pathways
    • Pfeiffer T., et al. Cooperation and competition in the evolution of ATP-producing pathways. Science 2001, 292:504-507.
    • (2001) Science , vol.292 , pp. 504-507
    • Pfeiffer, T.1
  • 97
    • 0034700103 scopus 로고    scopus 로고
    • A chemical genomics approach toward understanding the global functions of the target of rapamycin protein (TOR)
    • Chan T.F., et al. A chemical genomics approach toward understanding the global functions of the target of rapamycin protein (TOR). Proc. Natl. Acad. Sci. U. S. A. 2000, 97:13227-13232.
    • (2000) Proc. Natl. Acad. Sci. U. S. A. , vol.97 , pp. 13227-13232
    • Chan, T.F.1
  • 98
    • 0033592983 scopus 로고    scopus 로고
    • Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins
    • Hardwick J.S., et al. Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc. Natl. Acad. Sci. U. S. A. 1999, 96:14866-14870.
    • (1999) Proc. Natl. Acad. Sci. U. S. A. , vol.96 , pp. 14866-14870
    • Hardwick, J.S.1
  • 99
    • 0034649569 scopus 로고    scopus 로고
    • Partitioning the transcriptional program induced by rapamycin among the effectors of the Tor proteins
    • Shamji A.F., et al. Partitioning the transcriptional program induced by rapamycin among the effectors of the Tor proteins. Curr. Biol. 2000, 10:1574-1581.
    • (2000) Curr. Biol. , vol.10 , pp. 1574-1581
    • Shamji, A.F.1
  • 100
    • 0036310982 scopus 로고    scopus 로고
    • The immunosuppressant rapamycin mimics a starvation-like signal distinct from amino acid and glucose deprivation
    • Peng T., et al. The immunosuppressant rapamycin mimics a starvation-like signal distinct from amino acid and glucose deprivation. Molec. Cell Biol. 2002, 22:5575-5584.
    • (2002) Molec. Cell Biol. , vol.22 , pp. 5575-5584
    • Peng, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.