메뉴 건너뛰기




Volumn 48, Issue 1, 2011, Pages 8-19

Myeloperoxidase-derived oxidation: Mechanisms of biological damage and its prevention

Author keywords

Chloramines; Hypochlorous acid; Myeloperoxidase; Neutrophil; Protein oxidation

Indexed keywords

ALDEHYDE; BROMAMINE; CERULOPLASMIN; CHLORAMINE DERIVATIVE; CYANIC ACID; HYDRAZIDE; HYDRAZINE; HYDROGEN PEROXIDE; HYDROPEROXIDE; HYPOBROMOUS ACID; HYPOCHLOROUS ACID; HYPOTHIOCYANOUS ACID; MYELOPEROXIDASE; NITRIC OXIDE; NITRITE; PEROXIDASE; PEROXYNITRITE; RADICAL; SUPEROXIDE; UNCLASSIFIED DRUG;

EID: 78650750400     PISSN: 09120009     EISSN: None     Source Type: Journal    
DOI: 10.3164/jcbn.11-006FR     Document Type: Review
Times cited : (334)

References (227)
  • 1
    • 0001097874 scopus 로고
    • The respiratory burst oxidase
    • Babior BM. The respiratory burst oxidase. TIBS 1987; 12: 241-243.
    • (1987) TIBS , vol.12 , pp. 241-243
    • Babior, B.M.1
  • 2
    • 0029053451 scopus 로고
    • Superoxide radical and superoxide dismutases
    • Fridovich I. Superoxide radical and superoxide dismutases. Annu Rev Biochem 1995; 64: 97-112.
    • (1995) Annu Rev Biochem , vol.64 , pp. 97-112
    • Fridovich, I.1
  • 3
    • 0034725724 scopus 로고    scopus 로고
    • Phagocytes and oxidative stress
    • Babior BM. Phagocytes and oxidative stress. Am J Med 2000; 109: 33-44.
    • (2000) Am J Med , vol.109 , pp. 33-44
    • Babior, B.M.1
  • 4
    • 0000807647 scopus 로고
    • Myeloperoxidase of the leucocyte of normal human blood. I. Content and localization
    • Schultz J, Kaminker K. Myeloperoxidase of the leucocyte of normal human blood. I. Content and localization. Arch Biochem Biophys 1962; 96: 465-467.
    • (1962) Arch Biochem Biophys , vol.96 , pp. 465-467
    • Schultz, J.1    Kaminker, K.2
  • 5
    • 0028292033 scopus 로고
    • Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions
    • Daugherty A, Dunn JL, Rateri DL, Heinecke JW. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest 1994; 94: 437-444.
    • (1994) J Clin Invest , vol.94 , pp. 437-444
    • Daugherty, A.1    Dunn, J.L.2    Rateri, D.L.3    Heinecke, J.W.4
  • 6
    • 0001059250 scopus 로고    scopus 로고
    • 2/halide system in human atherosclerotic lesions - Colocalization of myeloperoxidase and hypochlorite-modified proteins
    • 2/halide system in human atherosclerotic lesions - Colocalization of myeloperoxidase and hypochlorite-modified proteins. Eur J Biochem 2000; 267: 4495-4503.
    • (2000) Eur J Biochem , vol.267 , pp. 4495-4503
    • Malle, E.1    Waeg, G.2    Schreiber, R.3    Gröne, E.F.4    Sattler, W.S.5    Gröne, H.J.6
  • 9
    • 0014292067 scopus 로고
    • Myeloperoxidase-halide-hydrogen peroxide antibacterial system
    • Klebanoff SJ. Myeloperoxidase-halide-hydrogen peroxide antibacterial system. J Bacteriol 1968; 95: 2131-2138.
    • (1968) J Bacteriol , vol.95 , pp. 2131-2138
    • Klebanoff, S.J.1
  • 10
    • 43049173503 scopus 로고    scopus 로고
    • Mammalian heme peroxidases: From molecular mechanisms to health implications
    • Davies MJ, Hawkins CL, Pattison DI, Rees MD. Mammalian heme peroxidases: from molecular mechanisms to health implications. Antioxid Redox Signal 2008; 10: 1199-1234.
    • (2008) Antioxid Redox Signal , vol.10 , pp. 1199-1234
    • Davies, M.J.1    Hawkins, C.L.2    Pattison, D.I.3    Rees, M.D.4
  • 11
    • 0030915481 scopus 로고    scopus 로고
    • Myeloperoxidase: A key regulator of neutrophil oxidant production
    • Kettle AJ, Winterbourn CC. Myeloperoxidase: a key regulator of neutrophil oxidant production. Redox Rep 1997; 3: 3-15.
    • (1997) Redox Rep , vol.3 , pp. 3-15
    • Kettle, A.J.1    Winterbourn, C.C.2
  • 12
    • 73449143528 scopus 로고    scopus 로고
    • Myeloperoxidase: Molecular mechanisms of action and their relevance to human health and disease
    • van der Veen BS, de Winther MP, Heeringa P. Myeloperoxidase: molecular mechanisms of action and their relevance to human health and disease. Antioxid Redox Signal 2009; 11: 2899-2937.
    • (2009) Antioxid Redox Signal , vol.11 , pp. 2899-2937
    • Van Der Veen, B.S.1    De Winther, M.P.2    Heeringa, P.3
  • 13
    • 0034697020 scopus 로고    scopus 로고
    • X-ray crystal structure and characterization of halide-binding sites of human myeloperoxidase at 1.8 a resolution
    • Fiedler TJ, Davey CA, Fenna RE. X-ray crystal structure and characterization of halide-binding sites of human myeloperoxidase at 1.8 A resolution. J Biol Chem 2000; 275: 11964-11971.
    • (2000) J Biol Chem , vol.275 , pp. 11964-11971
    • Fiedler, T.J.1    Davey, C.A.2    Fenna, R.E.3
  • 14
    • 0026625050 scopus 로고
    • X-ray crystal structure of canine myeloperoxidase at 3 a resolution
    • Zeng J, Fenna RE. X-ray crystal structure of canine myeloperoxidase at 3 A resolution. J Mol Biol 1992; 226: 185-207.
    • (1992) J Mol Biol , vol.226 , pp. 185-207
    • Zeng, J.1    Fenna, R.E.2
  • 15
    • 0021139728 scopus 로고
    • A kinetic study of the reaction between human myeloperoxidase, hydroperoxides and cyanide. Inhibition by chloride and thiocyanate
    • Bolscher BG, Wever R. A kinetic study of the reaction between human myeloperoxidase, hydroperoxides and cyanide. Inhibition by chloride and thiocyanate. Biochim Biophys Acta 1984; 788: 1-10.
    • (1984) Biochim Biophys Acta , vol.788 , pp. 1-10
    • Bolscher, B.G.1    Wever, R.2
  • 16
    • 30544454226 scopus 로고    scopus 로고
    • Active site structure and catalytic mechanisms of human peroxidases
    • Furtmüller PG, Zederbauer M, Jantschko W, and et al. Active site structure and catalytic mechanisms of human peroxidases. Arch Biochem Biophys 2006; 445: 199-213.
    • (2006) Arch Biochem Biophys , vol.445 , pp. 199-213
    • Furtmüller, P.G.1    Zederbauer, M.2    Jantschko, W.3
  • 17
    • 0027093234 scopus 로고
    • Eosinophil granule proteins in peripheral blood granulocytes
    • Abu-Ghazaleh RI, Dunnette SL, Loegering DA, and et al. Eosinophil granule proteins in peripheral blood granulocytes. J Leukoc Biol 1992; 52: 611-618.
    • (1992) J Leukoc Biol , vol.52 , pp. 611-618
    • Abu-Ghazaleh, R.I.1    Dunnette, S.L.2    Loegering, D.A.3
  • 18
    • 0024508002 scopus 로고
    • Molecular cloning of the human eosinophil peroxidase. Evidence for the existence of a peroxidase multigene family
    • Ten RM, Pease LR, McKean DJ, Bell MP, Gleich GJ. Molecular cloning of the human eosinophil peroxidase. Evidence for the existence of a peroxidase multigene family. J Exp Med 1989; 169: 1757-1769.
    • (1989) J Exp Med , vol.169 , pp. 1757-1769
    • Ten, R.M.1    Pease, L.R.2    McKean, D.J.3    Bell, M.P.4    Gleich, G.J.5
  • 19
    • 30544441504 scopus 로고    scopus 로고
    • Origin, structure, and biological activities of peroxidases in human saliva
    • Ihalin R, Loimaranta V, Tenovuo J. Origin, structure, and biological activities of peroxidases in human saliva. Arch Biochem Biophys 2006; 445: 261-268.
    • (2006) Arch Biochem Biophys , vol.445 , pp. 261-268
    • Ihalin, R.1    Loimaranta, V.2    Tenovuo, J.3
  • 20
    • 0031038425 scopus 로고    scopus 로고
    • Molecular cloning and characterization of the chromosomal gene for human lactoperoxidase
    • Ueda T, Sakamaki K, Kuroki T, Yano I, Nagata S. Molecular cloning and characterization of the chromosomal gene for human lactoperoxidase. Eur J Biochem 1997; 243: 32-41.
    • (1997) Eur J Biochem , vol.243 , pp. 32-41
    • Ueda, T.1    Sakamaki, K.2    Kuroki, T.3    Yano, I.4    Nagata, S.5
  • 21
    • 0023220197 scopus 로고
    • Role of high avidity binding of human neutrophil myeloperoxidase in the killing of Actinobacillus actinomycetemcomitans
    • Miyasaki KT, Zambon JJ, Jones CA, Wilson ME. Role of high avidity binding of human neutrophil myeloperoxidase in the killing of Actinobacillus actinomycetemcomitans. Infect Immun 1987; 55: 1029-1036.
    • (1987) Infect Immun , vol.55 , pp. 1029-1036
    • Miyasaki, K.T.1    Zambon, J.J.2    Jones, C.A.3    Wilson, M.E.4
  • 23
    • 0020061059 scopus 로고
    • Arming of mononuclear phagocytes by eosinophil peroxidase bound to Staphylococcus aureus
    • Ramsey PG, Martin T, Chi E, Klebanoff SJ. Arming of mononuclear phagocytes by eosinophil peroxidase bound to Staphylococcus aureus. J Immunol 1982; 128: 415-420.
    • (1982) J Immunol , vol.128 , pp. 415-420
    • Ramsey, P.G.1    Martin, T.2    Chi, E.3    Klebanoff, S.J.4
  • 24
    • 0035667004 scopus 로고    scopus 로고
    • Endothelial transcytosis of myeloperoxidase confers specificity to vascular ECM proteins as targets of tyrosine nitration
    • Baldus S, Eiserich JP, Mani A, and et al. Endothelial transcytosis of myeloperoxidase confers specificity to vascular ECM proteins as targets of tyrosine nitration. J Clin Invest 2001; 108: 1759-1770.
    • (2001) J Clin Invest , vol.108 , pp. 1759-1770
    • Baldus, S.1    Eiserich, J.P.2    Mani, A.3
  • 25
    • 34547693434 scopus 로고    scopus 로고
    • Myeloperoxidase interacts with endothelial cell-surface cytokeratin 1 and modulates bradykinin production by the plasma kallikrein-kinin system
    • Astern JM, Pendergraft WF, Falk RJ, and et al. Myeloperoxidase interacts with endothelial cell-surface cytokeratin 1 and modulates bradykinin production by the plasma kallikrein-kinin system. Am J Pathol 2007; 171: 349-360.
    • (2007) Am J Pathol , vol.171 , pp. 349-360
    • Astern, J.M.1    Pendergraft, W.F.2    Falk, R.J.3
  • 26
    • 43049163872 scopus 로고    scopus 로고
    • Glycosaminoglycan-dependent sequestration of myeloperoxidase within extracellular matrix
    • Kubala L, Baldus S, Eiserich JP. Glycosaminoglycan-dependent sequestration of myeloperoxidase within extracellular matrix. Free Radic Biol Med 2004; 37 (Suppl. 1): S52.
    • (2004) Free Radic Biol Med , vol.37 , Issue.SUPPL. 1
    • Kubala, L.1    Baldus, S.2    Eiserich, J.P.3
  • 27
    • 73449122598 scopus 로고    scopus 로고
    • Myeloperoxidase-derived oxidants selectively disrupt the protein core of the heparan sulfate proteoglycan perlecan
    • Rees MD, Whitelock JM, Malle E, and et al. Myeloperoxidase-derived oxidants selectively disrupt the protein core of the heparan sulfate proteoglycan perlecan. Matrix Biol 2010; 29: 63-73.
    • (2010) Matrix Biol , vol.29 , pp. 63-73
    • Rees, M.D.1    Whitelock, J.M.2    Malle, E.3
  • 28
    • 0031800368 scopus 로고    scopus 로고
    • Association of myeloperoxidase with heparin: Oxidative inactivation of proteins on the surface of endothelial cells by the bound enzyme
    • Daphna EM, Michaela S, Eynat P, Irit A, Rimon S. Association of myeloperoxidase with heparin: oxidative inactivation of proteins on the surface of endothelial cells by the bound enzyme. Mol Cell Biochem 1998; 183: 55-61.
    • (1998) Mol Cell Biochem , vol.183 , pp. 55-61
    • Daphna, E.M.1    Michaela, S.2    Eynat, P.3    Irit, A.4    Rimon, S.5
  • 29
    • 0025615119 scopus 로고
    • Depolymerization of synovial fluid hyaluronic acid (HA) by the complete myeloperoxidase (MPO) system may involve the formation of a HA-MPO ionic complex
    • Green SP, Baker MS, Lowther DA. Depolymerization of synovial fluid hyaluronic acid (HA) by the complete myeloperoxidase (MPO) system may involve the formation of a HA-MPO ionic complex. J Rheumatol 1990; 17: 1670-1675.
    • (1990) J Rheumatol , vol.17 , pp. 1670-1675
    • Green, S.P.1    Baker, M.S.2    Lowther, D.A.3
  • 30
  • 31
    • 0030894460 scopus 로고    scopus 로고
    • Binding and inhibition of myeloperoxidase (MPO): A major function of ceruloplasmin?
    • Segelmark M, Persson B, Hellmark T, Wieslander J. Binding and inhibition of myeloperoxidase (MPO): a major function of ceruloplasmin? Clin Exp Immunol 1997; 108: 167-174.
    • (1997) Clin Exp Immunol , vol.108 , pp. 167-174
    • Segelmark, M.1    Persson, B.2    Hellmark, T.3    Wieslander, J.4
  • 32
    • 33847179099 scopus 로고    scopus 로고
    • Differential effects of flavonols on inactivation of alpha1-antitrypsin induced by hypohalous acids and the myeloperoxidase-hydrogen peroxide-halide system
    • Bouriche H, Salavei P, Lessig J, Arnhold J. Differential effects of flavonols on inactivation of alpha1-antitrypsin induced by hypohalous acids and the myeloperoxidase-hydrogen peroxide-halide system. Arch Biochem Biophys 2007; 459: 137-142.
    • (2007) Arch Biochem Biophys , vol.459 , pp. 137-142
    • Bouriche, H.1    Salavei, P.2    Lessig, J.3    Arnhold, J.4
  • 34
    • 0034731356 scopus 로고    scopus 로고
    • Myeloperoxidase binds to low-density lipoprotein: Potential implications for atherosclerosis
    • DOI 10.1016/S0014-5793(00)02227-4, PII S0014579300022274
    • Carr AC, Myzak MC, Stocker R, McCall MR, Frei B. Myeloperoxidase binds to low-density lipoprotein: potential implications for atherosclerosis. FEBS Lett 2000; 487: 176-180. (Pubitemid 32057108)
    • (2000) FEBS Letters , vol.487 , Issue.2 , pp. 176-180
    • Carr, A.C.1    Myzak, M.C.2    Stocker, R.3    McCall, M.R.4    Frei, B.5
  • 35
    • 34249809407 scopus 로고    scopus 로고
    • Heme to protein linkages in mammalian peroxidases: Impact on spectroscopic, redox and catalytic properties
    • DOI 10.1039/b604178g
    • Zederbauer M, Furtmüller PG, Brogioni S, Jakopitsch C, Smulevich G, Obinger C. Heme to protein linkages in mammalian peroxidases: impact on spectroscopic, redox and catalytic properties. Nat Prod Rep 2007; 24: 571-584. (Pubitemid 46848706)
    • (2007) Natural Product Reports , vol.24 , Issue.3 , pp. 571-584
    • Zederbauer, M.1    Furtmuller, P.G.2    Brogioni, S.3    Jakopitsch, C.4    Smulevich, G.5    Obinger, C.6
  • 36
    • 30544452572 scopus 로고    scopus 로고
    • Formation of reactive halide species by myeloperoxidase and eosinophil peroxidase
    • DOI 10.1016/j.abb.2005.06.025, PII S0003986105002821
    • Spalteholz H, Panasenko OM, Arnhold J. Formation of reactive halide species by myeloperoxidase and eosinophil peroxidase. Arch Biochem Biophys 2006; 445: 225-234. (Pubitemid 43082215)
    • (2006) Archives of Biochemistry and Biophysics , vol.445 , Issue.2 , pp. 225-234
    • Spalteholz, H.1    Panasenko, O.M.2    Arnhold, J.3
  • 37
    • 0025265381 scopus 로고
    • Reaction of compound III of myeloperoxidase with ascorbic acid
    • Marquez LA, Dunford HB. Reaction of compound-III of myeloperoxidase with ascorbic acid. J Biol Chem 1990; 265: 6074-6078. (Pubitemid 20148142)
    • (1990) Journal of Biological Chemistry , vol.265 , Issue.11 , pp. 6074-6078
    • Marquez, L.A.1    Dunford, H.B.2
  • 38
    • 0027180068 scopus 로고
    • Interaction of acetaminophen with myeloperoxidase intermediates: Optimum stimulation of enzyme activity
    • DOI 10.1006/abbi.1993.1440
    • Marquez LA, Dunford HB. Interaction of acetaminophen with myeloperoxidase intermediates: optimum stimulation of enzyme activity. Arch Biochem Biophys 1993; 305: 414-420. (Pubitemid 23282925)
    • (1993) Archives of Biochemistry and Biophysics , vol.305 , Issue.2 , pp. 414-420
    • Marquez, L.A.1    Dunford, H.B.2
  • 42
    • 59849120642 scopus 로고    scopus 로고
    • Hypobromous acid and bromamine production by neutrophils and modulation by superoxide
    • Chapman AL, Skaff O, Senthilmohan R, Kettle AJ, Davies MJ. Hypobromous acid and bromamine production by neutrophils and modulation by superoxide. Biochem J 2009; 417: 773-781.
    • (2009) Biochem J , vol.417 , pp. 773-781
    • Chapman, A.L.1    Skaff, O.2    Senthilmohan, R.3    Kettle, A.J.4    Davies, M.J.5
  • 43
    • 0035881517 scopus 로고    scopus 로고
    • Substrates and products of eosinophil peroxidase
    • van Dalen CJ, Kettle AJ. Substrates and products of eosinophil peroxidase. Biochem J 2001; 358: 233-239.
    • (2001) Biochem J , vol.358 , pp. 233-239
    • Van Dalen, C.J.1    Kettle, A.J.2
  • 45
    • 10344256217 scopus 로고    scopus 로고
    • Redox buffering of hypochlorous acid by thiocyanate in physiologic fluids
    • Ashby MT, Carlson AC, Scott MJ. Redox buffering of hypochlorous acid by thiocyanate in physiologic fluids. J Am Chem Soc 2004; 126: 15976-15977.
    • (2004) J Am Chem Soc , vol.126 , pp. 15976-15977
    • Ashby, M.T.1    Carlson, A.C.2    Scott, M.J.3
  • 46
    • 33646078598 scopus 로고    scopus 로고
    • Thiocyanate is an efficient endogenous scavenger of the phagocytic killing agent hypobromous acid
    • Nagy P, Beal JL, Ashby MT. Thiocyanate is an efficient endogenous scavenger of the phagocytic killing agent hypobromous acid. Chem Res Toxicol 2006; 19: 587-593.
    • (2006) Chem Res Toxicol , vol.19 , pp. 587-593
    • Nagy, P.1    Beal, J.L.2    Ashby, M.T.3
  • 47
    • 8544251150 scopus 로고
    • The acid ionization constant of HOCl from 5°C to 35°C
    • Morris JC. The acid ionization constant of HOCl from 5°C to 35°C. J Phys Chem 1966; 70: 3798-3805.
    • (1966) J Phys Chem , vol.70 , pp. 3798-3805
    • Morris, J.C.1
  • 48
    • 0034254665 scopus 로고    scopus 로고
    • On the irreversible destruction of reduced nicotinamide nucleotides by hypohalous acids
    • DOI 10.1006/abbi.2000.1914
    • Prütz WA, Kissner R, Koppenol WH, Rüegger H. On the irreversible destruction of reduced nicotinamide nucleotides by hypohalous acids. Arch Biochem Biophys 2000; 380: 181-191. (Pubitemid 30616785)
    • (2000) Archives of Biochemistry and Biophysics , vol.380 , Issue.1 , pp. 181-191
    • Prutz, W.A.1    Kissner, R.2    Koppenol, W.H.3    Ruegger, H.4
  • 49
    • 72749119238 scopus 로고    scopus 로고
    • Kinetics and mechanisms of the reaction of hypothiocyanous acid with 5-thio-2-nitrobenzoic acid and reduced glutathione
    • Nagy P, Jameson GN, Winterbourn CC. Kinetics and mechanisms of the reaction of hypothiocyanous acid with 5-thio-2-nitrobenzoic acid and reduced glutathione. Chem Res Toxicol 2009; 22: 1833-1840.
    • (2009) Chem Res Toxicol , vol.22 , pp. 1833-1840
    • Nagy, P.1    Jameson, G.N.2    Winterbourn, C.C.3
  • 50
    • 0023653201 scopus 로고
    • A study of ligand binding to spleen myeloperoxidase
    • Ikeda-Saito M. A study of ligand binding to spleen myeloperoxidase. Biochemistry 1987; 26: 4344-4349.
    • (1987) Biochemistry , vol.26 , pp. 4344-4349
    • Ikeda-Saito, M.1
  • 51
    • 0028245251 scopus 로고
    • Chlorination of taurine by myeloperoxidase. Kinetic evidence for an enzyme-bound intermediate
    • Marquez LA, Dunford HB. Chlorination of taurine by myeloperoxidase. Kinetic evidence for an enzyme-bound intermediate. J Biol Chem 1994; 269: 7950-7956. (Pubitemid 24200195)
    • (1994) Journal of Biological Chemistry , vol.269 , Issue.11 , pp. 7950-7956
    • Marquez, L.A.1    Dunford, H.B.2
  • 52
    • 77249152615 scopus 로고    scopus 로고
    • Acetaminophen (paracetamol) inhibits myeloperoxidase-catalyzed oxidant production and biological damage at therapeutically achievable concentrations
    • Koelsch M, Mallak R, Graham GG, and et al. Acetaminophen (paracetamol) inhibits myeloperoxidase-catalyzed oxidant production and biological damage at therapeutically achievable concentrations. Biochem Pharmacol 2010; 79: 1156-1164.
    • (2010) Biochem Pharmacol , vol.79 , pp. 1156-1164
    • Koelsch, M.1    Mallak, R.2    Graham, G.G.3
  • 55
    • 0029557684 scopus 로고
    • Kinetics of oxidation of tyrosine and dityrosine by myeloperoxidase compounds I and II. Implications for lipoprotein peroxidation studies
    • DOI 10.1074/jbc.270.51.30434
    • Marquez LA, Dunford HB. Kinetics of oxidation of tyrosine and dityrosine by myeloperoxidase compounds I and II. Implications for lipoprotein peroxidation studies. J Biol Chem 1995; 270: 30434-30440. (Pubitemid 26005098)
    • (1995) Journal of Biological Chemistry , vol.270 , Issue.51 , pp. 30434-30440
    • Marquez, L.A.1    Dunford, H.B.2
  • 57
    • 0034781061 scopus 로고    scopus 로고
    • Absolute rate constants for the reaction of hypochlorous acid with protein side-chains and peptide bonds
    • Pattison DI, Davies MJ. Absolute rate constants for the reaction of hypochlorous acid with protein side-chains and peptide bonds. Chem Res Toxicol 2001; 14: 1453-1464.
    • (2001) Chem Res Toxicol , vol.14 , pp. 1453-1464
    • Pattison, D.I.1    Davies, M.J.2
  • 58
    • 33750564770 scopus 로고    scopus 로고
    • Reactions of myeloperoxidase-derived oxidants with biological substrates: Gaining chemical insight into human inflammatory diseases
    • Pattison DI, Davies MJ. Reactions of myeloperoxidase-derived oxidants with biological substrates: Gaining chemical insight into human inflammatory diseases. Curr Med Chem 2006; 13: 3271-3290.
    • (2006) Curr Med Chem , vol.13 , pp. 3271-3290
    • Pattison, D.I.1    Davies, M.J.2
  • 59
    • 0037398256 scopus 로고    scopus 로고
    • Hypochlorous acid-mediated oxidation of lipid components and antioxidants present in low-density lipoproteins: Absolute rate constants, product analysis and computational modeling
    • Pattison DI, Hawkins CL, Davies MJ. Hypochlorous acid-mediated oxidation of lipid components and antioxidants present in low-density lipoproteins: absolute rate constants, product analysis and computational modeling. Chem Res Toxicol 2003; 16: 439-449.
    • (2003) Chem Res Toxicol , vol.16 , pp. 439-449
    • Pattison, D.I.1    Hawkins, C.L.2    Davies, M.J.3
  • 60
    • 0030708939 scopus 로고    scopus 로고
    • Oxidation of neutrophil glutathione and protein thiols by myeloperoxidase-derived hypochlorous acid
    • Carr AC, Winterbourn CC. Oxidation of neutrophil glutathione and protein thiols by myeloperoxidase-derived hypochlorous acid. Biochem J 1997; 327: 275-281. (Pubitemid 27455490)
    • (1997) Biochemical Journal , vol.327 , Issue.1 , pp. 275-281
    • Carr, A.C.1    Winterbourn, C.C.2
  • 61
    • 0034468846 scopus 로고    scopus 로고
    • Hypochlorite-induced oxidation of thiols: Formation of thiyl radicals and the role of sulfenyl chlorides as intermediates
    • Davies MJ, Hawkins CL. Hypochlorite-induced oxidation of thiols: formation of thiyl radicals and the role of sulfenyl chlorides as intermediates. Free Radic Res 2000; 33: 719-729.
    • (2000) Free Radic Res , vol.33 , pp. 719-729
    • Davies, M.J.1    Hawkins, C.L.2
  • 62
    • 0028940342 scopus 로고
    • Oxidation of intracellular glutathione after exposure of human red blood cells to hypochlorous acid
    • Vissers MC, Winterbourn CC. Oxidation of intracellular glutathione after exposure of human red blood cells to hypochlorous acid. Biochem J 1995; 307: 57-62.
    • (1995) Biochem J , vol.307 , pp. 57-62
    • Vissers, M.C.1    Winterbourn, C.C.2
  • 63
    • 50949098899 scopus 로고    scopus 로고
    • Hypothiocyanous acid is a more potent inducer of apoptosis and protein thiol depletion in murine macrophage cells than hypochlorous acid or hypobromous acid
    • Lloyd MM, van Reyk DM, Davies MJ, Hawkins CL. Hypothiocyanous acid is a more potent inducer of apoptosis and protein thiol depletion in murine macrophage cells than hypochlorous acid or hypobromous acid. Biochem J 2008; 414: 271-280.
    • (2008) Biochem J , vol.414 , pp. 271-280
    • Lloyd, M.M.1    Van Reyk, D.M.2    Davies, M.J.3    Hawkins, C.L.4
  • 64
    • 0344410068 scopus 로고    scopus 로고
    • Hypochlorite-induced oxidation of amino acids, peptides and proteins
    • DOI 10.1007/s00726-003-0016-x
    • Hawkins CL, Pattison DI, Davies MJ. Hypochlorite-induced oxidation of amino acids, peptides and proteins. Amino Acids 2003; 25: 259-274. (Pubitemid 38041264)
    • (2003) Amino Acids , vol.25 , Issue.3-4 , pp. 259-274
    • Hawkins, C.L.1    Pattison, D.I.2    Davies, M.J.3
  • 65
    • 0037192149 scopus 로고    scopus 로고
    • Generation of intramolecular and intermolecular sulfenamides, sulfinamides, and sulfonamides by hypochlorous acid: A potential pathway for oxidative cross-linking of low-density lipoprotein by myeloperoxidase
    • DOI 10.1021/bi015777z
    • Fu X, Mueller DM, Heinecke JW. Generation of intramolecular and intermolecular sulfenamides, sulfinamides, and sulfonamides by hypochlorous acid: a potential pathway for oxidative cross-linking of low-density lipoprotein by myeloperoxidase. Biochemistry 2002; 41: 1293-1301. (Pubitemid 34083782)
    • (2002) Biochemistry , vol.41 , Issue.4 , pp. 1293-1301
    • Fu, X.1    Mueller, D.M.2    Heinecke, J.W.3
  • 66
    • 33749422853 scopus 로고    scopus 로고
    • Production of glutathione sulfonamide and dehydroglutathione from GSH by myeloperoxidase-derived oxidants and detection using a novel LC-MS/MS method
    • Harwood DT, Kettle AJ, Winterbourn CC. Production of glutathione sulfonamide and dehydroglutathione from GSH by myeloperoxidase-derived oxidants and detection using a novel LC-MS/MS method. Biochem J 2006; 399: 161-168.
    • (2006) Biochem J , vol.399 , pp. 161-168
    • Harwood, D.T.1    Kettle, A.J.2    Winterbourn, C.C.3
  • 67
    • 0035823537 scopus 로고    scopus 로고
    • Novel Intra- and Inter-molecular Sulfinamide Bonds in S100A8 Produced by Hypochlorite Oxidation
    • DOI 10.1074/jbc.M101566200
    • Raftery MJ, Yang Z, Valenzuela SM, Geczy CL. Novel intra- and intermolecular sulfinamide bonds in S100A8 produced by hypochlorite oxidation. J Biol Chem 2001; 276: 33393-33401. (Pubitemid 37384547)
    • (2001) Journal of Biological Chemistry , vol.276 , Issue.36 , pp. 33393-33401
    • Raftery, M.J.1    Yang, Z.2    Valenzuela, S.M.3    Geczy, C.L.4
  • 68
    • 0035933821 scopus 로고    scopus 로고
    • Glutathione Oxidation by Hypochlorous Acid in Endothelial Cells Produces Glutathione Sulfonamide as a Major Product but Not Glutathione Disulfide
    • DOI 10.1074/jbc.M102088200
    • Pullar JM, Vissers MC, Winterbourn CC. Glutathione oxidation by hypochlorous acid in endothelial cells produces glutathione sulfonamide as a major product but not glutathione disulfide. J Biol Chem 2001; 276: 22120-22125. (Pubitemid 37410877)
    • (2001) Journal of Biological Chemistry , vol.276 , Issue.25 , pp. 22120-22125
    • Pullar, J.M.1    Vissers, M.C.M.2    Winterbourn, C.C.3
  • 69
    • 70249098135 scopus 로고    scopus 로고
    • Simultaneous determination of reduced glutathione, glutathione disulphide and glutathione sulphonamide in cells and physiological fluids by isotope dilution liquid chromatography-tandem mass spectrometry
    • Harwood DT, Kettle AJ, Brennan S, Winterbourn CC. Simultaneous determination of reduced glutathione, glutathione disulphide and glutathione sulphonamide in cells and physiological fluids by isotope dilution liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877: 3393-3399.
    • (2009) J Chromatogr B Analyt Technol Biomed Life Sci , vol.877 , pp. 3393-3399
    • Harwood, D.T.1    Kettle, A.J.2    Brennan, S.3    Winterbourn, C.C.4
  • 70
    • 0032742579 scopus 로고    scopus 로고
    • Loss of GSH and thiol enzymes in endothelial cells exposed to sublethal concentrations of hypochlorous acid
    • Pullar JM, Winterbourn CC, Vissers MC. Loss of GSH and thiol enzymes in endothelial cells exposed to sublethal concentrations of hypochlorous acid. Am J Physiol 1999; 277: H1505-H1512.
    • (1999) Am J Physiol , vol.277
    • Pullar, J.M.1    Winterbourn, C.C.2    Vissers, M.C.3
  • 71
    • 0035798684 scopus 로고    scopus 로고
    • Hypochlorous Acid Oxygenates the Cysteine Switch Domain of Pro-matrilysin (MMP-7): A mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase
    • DOI 10.1074/jbc.M106958200
    • Fu X, Kassim SY, Parks WC, Heinecke JW. Hypochlorous acid oxygenates the cysteine switch domain of pro-matrilysin (MMP-7). A mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase. J Biol Chem 2001; 276: 41279-41287. (Pubitemid 37373286)
    • (2001) Journal of Biological Chemistry , vol.276 , Issue.44 , pp. 41279-41287
    • Fu, X.1    Kassimm, S.Y.2    Parks, W.C.3    Heinecke, J.W.4
  • 72
    • 27144440590 scopus 로고    scopus 로고
    • Inactivation of protease inhibitors and lysozyme by hypochlorous acid: Role of side-chain oxidation and protein unfolding in loss of biological function
    • Hawkins CL, Davies MJ. Inactivation of protease inhibitors and lysozyme by hypochlorous acid: role of side-chain oxidation and protein unfolding in loss of biological function. Chem Res Toxicol 2005; 18: 1600-1610.
    • (2005) Chem Res Toxicol , vol.18 , pp. 1600-1610
    • Hawkins, C.L.1    Davies, M.J.2
  • 73
    • 34548206228 scopus 로고    scopus 로고
    • Hypochlorous acid-mediated protein oxidation: How important are chloramine transfer reactions and protein tertiary structure?
    • Pattison DI, Hawkins CL, Davies MJ. Hypochlorous acid-mediated protein oxidation: How important are chloramine transfer reactions and protein tertiary structure? Biochemistry 2007; 46: 9853-9864.
    • (2007) Biochemistry , vol.46 , pp. 9853-9864
    • Pattison, D.I.1    Hawkins, C.L.2    Davies, M.J.3
  • 74
    • 35748932403 scopus 로고    scopus 로고
    • Methionine sulfoxide reductases: Selenoprotein forms and roles in antioxidant protein repair in mammals
    • Kim HY, Gladyshev VN. Methionine sulfoxide reductases: selenoprotein forms and roles in antioxidant protein repair in mammals. Biochem J 2007; 407: 321-329.
    • (2007) Biochem J , vol.407 , pp. 321-329
    • Kim, H.Y.1    Gladyshev, V.N.2
  • 75
    • 0022254404 scopus 로고
    • 1-proteinase inhibitor and human neutrophil myeloperoxidase
    • DOI 10.1021/bi00329a021
    • Matheson NR, Travis J. Differential effects of oxidizing agents on human plasma alpha-1-proteinase inhibitor and human neutrophil myeloperoxidase. Biochemistry 1985; 24: 1941-1945. (Pubitemid 15019790)
    • (1985) Biochemistry , vol.24 , Issue.8 , pp. 1941-1945
    • Matheson, N.R.1    Travis, J.2
  • 76
    • 0023370351 scopus 로고
    • Myeloperoxidase-dependent oxidative inactivation of neutrophil neutral proteinases and microbicidal enzymes
    • Vissers MC, Winterbourn CC. Myeloperoxidase-dependent oxidative inactivation of neutrophil neutral proteinases and microbicidal enzymes. Biochem J 1987; 245: 277-280.
    • (1987) Biochem J , vol.245 , pp. 277-280
    • Vissers, M.C.1    Winterbourn, C.C.2
  • 77
    • 2442456741 scopus 로고    scopus 로고
    • -)
    • DOI 10.1074/jbc.M310045200
    • Khor HK, Fisher MT, Schöneich C. Potential role of methionine sulfoxide in the inactivation of the chaperone GroEL by hypochlorous acid (HOCl) and peroxynitrite (ONOO-). J Biol Chem 2004; 279: 19486-19493. (Pubitemid 38623383)
    • (2004) Journal of Biological Chemistry , vol.279 , Issue.19 , pp. 19486-19493
    • Khor, H.K.1    Fisher, M.T.2    Schoneich, C.3
  • 78
    • 33646761969 scopus 로고    scopus 로고
    • IkappaB is a sensitive target for oxidation by cell-permeable chloramines: Inhibition of NF-kappaB activity by glycine chloramine through methionine oxidation
    • DOI 10.1042/BJ20052026
    • Midwinter RG, Cheah FC, Moskovitz J, Vissers MC, Winterbourn CC. IkappaB is a sensitive target for oxidation by cell-permeable chloramines: inhibition of NF-kappaB activity by glycine chloramine through methionine oxidation. Biochem J 2006; 396: 71-78. (Pubitemid 43764498)
    • (2006) Biochemical Journal , vol.396 , Issue.1 , pp. 71-78
    • Midwinter, R.G.1    Cheah, F.-C.2    Moskovitz, J.3    Vissers, M.C.4    Winterbourn, C.C.5
  • 79
    • 0018386333 scopus 로고
    • Myeloperoxidase, hydrogen peroxide, chloride antimicrobial system: Nitrogen-chlorine derivatives of bacterial components in bactericidal action against Escherichia coli
    • Thomas EL. Myeloperoxidase, hydrogen peroxide, chloride antimicrobial system: nitrogen-chlorine derivatives of bacterial components in bactericidal action against Escherichia coli. Infect Immun 1979; 23: 522-531.
    • (1979) Infect Immun , vol.23 , pp. 522-531
    • Thomas, E.L.1
  • 80
    • 0021807129 scopus 로고
    • Comparative reactivities of various biological compounds with myeloperoxidase-hydrogen peroxide-chloride, and similarity of the oxidant to hypochlorite
    • Winterbourn CC. Comparative reactivities of various biological compounds with myeloperoxidase-hydrogen peroxide-chloride, and similarity of the oxidant to hypochlorite. Biochim Biophys Acta 1985; 840: 204-210.
    • (1985) Biochim Biophys Acta , vol.840 , pp. 204-210
    • Winterbourn, C.C.1
  • 82
    • 0030220396 scopus 로고    scopus 로고
    • Hypochlorous acid interactions with thiols, nucleotides, DNA, and other biological substrates
    • Prütz WA. Hypochlorous acid interactions with thiols, nucleotides, DNA, and other biological substrates. Arch Biochem Biophys 1996; 332: 110-120.
    • (1996) Arch Biochem Biophys , vol.332 , pp. 110-120
    • Prütz, W.A.1
  • 83
    • 0031820996 scopus 로고    scopus 로고
    • Interactions of hypochlorous acid with pyrimidine nucleotides, and secondary reactions of chlorinated pyrimidines with GSH, NADH, and other substrates
    • Prütz WA. Interactions of hypochlorous acid with pyrimidine nucleotides, and secondary reactions of chlorinated pyrimidines with GSH, NADH, and other substrates. Arch Biochem Biophys 1998; 349: 183-191.
    • (1998) Arch Biochem Biophys , vol.349 , pp. 183-191
    • Prütz, W.A.1
  • 84
    • 0242407243 scopus 로고    scopus 로고
    • Hypochlorite-mediated fragmentation of hyaluronan, chondritin sulfates, and related N-acetyl glycosamines: Evidence for chloramide intermediates, free radical transfer reactios, and site-specific fragmentation
    • Rees MD, Hawkins CL, Davies MJ. Hypochlorite-mediated fragmentation of hyaluronan, chondritin sulfates, and related N-acetyl glycosamines: evidence for chloramide intermediates, free radical transfer reactios, and site-specific fragmentation. J Am Chem Soc 2003; 125: 13719-13733.
    • (2003) J Am Chem Soc , vol.125 , pp. 13719-13733
    • Rees, M.D.1    Hawkins, C.L.2    Davies, M.J.3
  • 85
    • 33751584261 scopus 로고    scopus 로고
    • Hypochlorous acid-derived modification of phospholipids: Characterization of aminophospholipids as regulatory molecules for lipid peroxidation
    • DOI 10.1021/bi0610909
    • Kawai Y, Kiyokawa H, Kimura Y, Kato Y, Tsuchiya K, Terao J. Hypochlorous acid-derived modification of phospholipids: characterization of aminophospholipids as regulatory molecules for lipid peroxidation. Biochemistry 2006; 45: 14201-14211. (Pubitemid 44846209)
    • (2006) Biochemistry , vol.45 , Issue.47 , pp. 14201-14211
    • Kawai, Y.1    Kiyokawa, H.2    Kimura, Y.3    Kato, Y.4    Tsuchiya, K.5    Terao, J.6
  • 86
    • 0030046117 scopus 로고    scopus 로고
    • Neutrophils convert tyrosyl residues in albumin to chlorotyrosine
    • Kettle AJ. Neutrophils convert tyrosyl residues in albumin to chlorotyrosine. FEBS Lett 1996; 379: 103-106.
    • (1996) FEBS Lett , vol.379 , pp. 103-106
    • Kettle, A.J.1
  • 87
    • 0037184780 scopus 로고    scopus 로고
    • Biological reactivity and biomarkers of the neutrophil oxidant, hypochlorous acid
    • Winterbourn CC. Biological reactivity and biomarkers of the neutrophil oxidant, hypochlorous acid. Toxicology 2002; 181-182: 223-227.
    • (2002) Toxicology , vol.181-182 , pp. 223-227
    • Winterbourn, C.C.1
  • 89
    • 0021136560 scopus 로고
    • The formation of stable organic chloramines during the aqueous chlorination of cytosine and 5-methylcytosine
    • Gould JP, Richards JT, Miles MG. The formation of stable organic chloramines during the aqueous chlorination of cytosine and 5-methylcytosine. Water Res 1984; 18: 991-999.
    • (1984) Water Res , vol.18 , pp. 991-999
    • Gould, J.P.1    Richards, J.T.2    Miles, M.G.3
  • 91
    • 0035896545 scopus 로고    scopus 로고
    • Production of brominating intermediates by myeloperoxidase. A transhalogenation pathway for generating mutagenic nucleobases during inflammation
    • DOI 10.1074/jbc.M005379200
    • Henderson JP, Byun J, Williams MV, Mueller DM, McCormick ML, Heinecke JW. Production of brominating intermediates by myeloperoxidase. A transhalogenation pathway for generating mutagenic nucleobases during inflammation. J Biol Chem 2001; 276: 7867-7875. (Pubitemid 37385581)
    • (2001) Journal of Biological Chemistry , vol.276 , Issue.11 , pp. 7867-7875
    • Henderson, J.P.1    Byun, J.2    Williams, M.V.3    Mueller, D.M.4    McCormick, M.L.5    Heinecke, J.W.6
  • 92
    • 0038268570 scopus 로고    scopus 로고
    • Phagocytes produce 5-chlorouracil and 5-bromouracil, two mutagenic products of myeloperoxidase, in human inflammatory tissue
    • DOI 10.1074/jbc.M303928200
    • Henderson JP, Byun J, Takeshita J, Heinecke JW. Phagocytes produce 5-chlorouracil and 5-bromouracil, two mutagenic products of myeloperoxidase, in human inflammatory tissue. J Biol Chem 2003; 278: 23522-23528. (Pubitemid 36830171)
    • (2003) Journal of Biological Chemistry , vol.278 , Issue.26 , pp. 23522-23528
    • Henderson, J.P.1    Byun, J.2    Takeshita, J.3    Heinecke, J.W.4
  • 93
    • 0035916312 scopus 로고    scopus 로고
    • The eosinophil peroxidase-hydrogen peroxide-bromide system of human eosinophils generates 5-bromouracil, a mutagenic thymine analogue
    • DOI 10.1021/bi002015f
    • Henderson JP, Byun J, Mueller DM, Heinecke JW. The eosinophil peroxidasehydrogen peroxide-bromide system of human eosinophils generates 5-bromouracil, a mutagenic thymine analogue. Biochemistry 2001; 40: 2052-2059. (Pubitemid 32165674)
    • (2001) Biochemistry , vol.40 , Issue.7 , pp. 2052-2059
    • Henderson, J.P.1    Byun, J.2    Mueller, D.M.3    Heinecke, J.W.4
  • 94
    • 0035798575 scopus 로고    scopus 로고
    • Chlorination of guanosine and other nucleosides by hypochlorous acid and myeloperoxidase of activated human neutrophils: Catalysis by nicotine and trimethylamine
    • DOI 10.1074/jbc.M102700200
    • Masuda M, Suzuki T, Friesen MD, and et al. Chlorination of guanosine and other nucleosides by hypochlorous acid and myeloperoxidase of activated human neutrophils. Catalysis by nicotine and trimethylamine. J Biol Chem 2001; 276: 40486-40496. (Pubitemid 37373187)
    • (2001) Journal of Biological Chemistry , vol.276 , Issue.44 , pp. 40486-40496
    • Masuda, M.1    Suzuki, T.2    Friesen, M.D.3    Ravanat, J.-L.4    Cadet, J.5    Pignatelli, B.6    Nishino, H.7    Ohshima, H.8
  • 95
    • 0036173648 scopus 로고    scopus 로고
    • Detection and quantification of 5-chlorocytosine in DNA by stable isotope dilution and gas chromatography/negative ion chemical ionization/mass spectrometry
    • DOI 10.1021/tx015578g
    • Chen HJ, Row SW, Hong CL. Detection and quantification of 5-chlorocytosine in DNA by stable isotope dilution and gas chromatography/ negative ion chemical ionization/mass spectrometry. Chem Res Toxicol 2002; 15: 262-268. (Pubitemid 34163807)
    • (2002) Chemical Research in Toxicology , vol.15 , Issue.2 , pp. 262-268
    • Chen, H.-J.C.1    Row, S.-W.2    Hong, C.-L.3
  • 96
    • 0030777056 scopus 로고    scopus 로고
    • Hypochlorous acid-induced base modifications in isolated calf thymus DNA
    • Whiteman M, Jenner A, Halliwell B. Hypochlorous acid-induced base modifications in isolated calf thymus DNA. Chem Res Toxicol 1997; 10: 1240-1246.
    • (1997) Chem Res Toxicol , vol.10 , pp. 1240-1246
    • Whiteman, M.1    Jenner, A.2    Halliwell, B.3
  • 97
    • 0032856568 scopus 로고    scopus 로고
    • 8-Chloroadenine: A novel product formed from hypochlorous acid-induced damage to calf thymus DNA
    • Whiteman M, Jenner A, Halliwell B. 8-Chloroadenine: a novel product formed from hypochlorous acid-induced damage to calf thymus DNA. Biomarkers 1999; 4: 303-310.
    • (1999) Biomarkers , vol.4 , pp. 303-310
    • Whiteman, M.1    Jenner, A.2    Halliwell, B.3
  • 98
    • 0035916221 scopus 로고    scopus 로고
    • Eosinophil peroxidase catalyzes bromination of free nucleosides and double-stranded DNA
    • Shen Z, Mitra SN, Wu W, and et al. Eosinophil peroxidase catalyzes bromination of free nucleosides and double-stranded DNA. Biochemistry 2001; 40: 2041-2051.
    • (2001) Biochemistry , vol.40 , pp. 2041-2051
    • Shen, Z.1    Mitra, S.N.2    Wu, W.3
  • 99
    • 10944248830 scopus 로고    scopus 로고
    • Endogenous formation of novel halogenated 2′-deoxycytidine. Hypohalous acid-mediated DNA modification at the site of inflammation
    • Kawai Y, Morinaga H, Kondo H, and et al. Endogenous formation of novel halogenated 2′-deoxycytidine. Hypohalous acid-mediated DNA modification at the site of inflammation. J Biol Chem 2004; 279: 51241-51249.
    • (2004) J Biol Chem , vol.279 , pp. 51241-51249
    • Kawai, Y.1    Morinaga, H.2    Kondo, H.3
  • 100
    • 33645638306 scopus 로고    scopus 로고
    • Myeloperoxidase generates 5-chlorouracil in human atherosclerotic tissue. A potential pathway for somatic mutagenesis by macrophages
    • Takeshita J, Byun J, Nhan TQ, and et al. Myeloperoxidase generates 5-chlorouracil in human atherosclerotic tissue. A potential pathway for somatic mutagenesis by macrophages. J Biol Chem 2006; 281: 3096-3104.
    • (2006) J Biol Chem , vol.281 , pp. 3096-3104
    • Takeshita, J.1    Byun, J.2    Nhan, T.Q.3
  • 101
    • 0027360402 scopus 로고
    • Hypochlorous acid-mediated modification of cholesterol and phospholipid: Analysis of reaction products by gas chromatography-mass spectrometry
    • van den Berg JJ, Winterbourn CC, Kuypers FA. Hypochlorous acid-mediated modification of cholesterol and phospholipid: analysis of reaction products by gas chromatography-mass spectrometry. J Lipid Res 1993; 34: 2005-2012.
    • (1993) J Lipid Res , vol.34 , pp. 2005-2012
    • Van Den Berg, J.J.1    Winterbourn, C.C.2    Kuypers, F.A.3
  • 102
    • 0028792292 scopus 로고
    • The action of hypochlorous acid on phosphatidylcholine liposomes in dependence on the content of double bonds. Stoichiometry and NMR analysis
    • Arnhold J, Panasenko OM, Schiller J, Vladimirov Yu A, Arnold K. The action of hypochlorous acid on phosphatidylcholine liposomes in dependence on the content of double bonds. Stoichiometry and NMR analysis. Chem Phys Lipids 1995; 78: 55-64.
    • (1995) Chem Phys Lipids , vol.78 , pp. 55-64
    • Arnhold, J.1    Panasenko, O.M.2    Schiller, J.3    Vladimirov, Yu.A.4    Arnold, K.5
  • 103
    • 0037371518 scopus 로고    scopus 로고
    • Myeloperoxidase-induced formation of chlorohydrins and lysophospholipids from unsaturated phosphatidylcholines
    • Panasenko OM, Spalteholz H, Schiller J, Arnhold J. Myeloperoxidase- induced formation of chlorohydrins and lysophospholipids from unsaturated phosphatidylcholines. Free Radic Biol Med 2003; 34: 553-562.
    • (2003) Free Radic Biol Med , vol.34 , pp. 553-562
    • Panasenko, O.M.1    Spalteholz, H.2    Schiller, J.3    Arnhold, J.4
  • 105
    • 0031835174 scopus 로고    scopus 로고
    • Differential reactivities of hypochlorous and hypobromous acids with purified Escherichia coli phospholipid: Formation of haloamines and halohydrins
    • Carr AC, van den Berg JJ, Winterbourn CC. Differential reactivities of hypochlorous and hypobromous acids with purified Escherichia coli phospholipid: formation of haloamines and halohydrins. Biochim Biophys Acta 1998; 1392: 254-264.
    • (1998) Biochim Biophys Acta , vol.1392 , pp. 254-264
    • Carr, A.C.1    Van Den Berg, J.J.2    Winterbourn, C.C.3
  • 106
    • 0034020050 scopus 로고    scopus 로고
    • Pathways of phospholipid oxidation by HOCl in human LDL detected by LC-MS
    • Jerlich A, Pitt AR, Schaur RJ, Spickett CM. Pathways of phospholipid oxidation by HOCl in human LDL detected by LC-MS. Free Radic Biol Med 2000; 28: 673-682.
    • (2000) Free Radic Biol Med , vol.28 , pp. 673-682
    • Jerlich, A.1    Pitt, A.R.2    Schaur, R.J.3    Spickett, C.M.4
  • 107
    • 0028023373 scopus 로고
    • Cholesterol chlorohydrin synthesis by the myeloperoxidase-hydrogen peroxide-chloride system: Potential markers for lipoproteins oxidatively damaged by phagocytes
    • Heinecke JW, Li W, Mueller DM, Bohrer A, Turk J. Cholesterol chlorohydrin synthesis by the myeloperoxidase-hydrogen peroxide-chloride system: potential markers for lipoproteins oxidatively damaged by phagocytes. Biochemistry 1994; 33: 10127-10136.
    • (1994) Biochemistry , vol.33 , pp. 10127-10136
    • Heinecke, J.W.1    Li, W.2    Mueller, D.M.3    Bohrer, A.4    Turk, J.5
  • 108
    • 48649109320 scopus 로고    scopus 로고
    • The vinyl ether linkages of plasmalogens are favored targets for myeloperoxidase-derived oxidants: A kinetic study
    • Skaff O, Pattison DI, Davies MJ. The vinyl ether linkages of plasmalogens are favored targets for myeloperoxidase-derived oxidants: a kinetic study. Biochemistry 2008; 47: 8237-8245.
    • (2008) Biochemistry , vol.47 , pp. 8237-8245
    • Skaff, O.1    Pattison, D.I.2    Davies, M.J.3
  • 109
    • 0038660600 scopus 로고    scopus 로고
    • Eosinophil peroxidase-derived reactive brominating species target the vinyl ether bond of plasmalogens generating a novel chemoattractant, alpha-bromo fatty aldehyde
    • Albert CJ, Thukkani AK, Heuertz RM, Slungaard A, Hazen SL, Ford DA. Eosinophil peroxidase-derived reactive brominating species target the vinyl ether bond of plasmalogens generating a novel chemoattractant, alpha-bromo fatty aldehyde. J Biol Chem 2003; 278: 8942-8950.
    • (2003) J Biol Chem , vol.278 , pp. 8942-8950
    • Albert, C.J.1    Thukkani, A.K.2    Heuertz, R.M.3    Slungaard, A.4    Hazen, S.L.5    Ford, D.A.6
  • 110
    • 0141592466 scopus 로고    scopus 로고
    • Myeloperoxidase-derived reactive chlorinating species from human monocytes target plasmalogens in low density lipoprotein
    • Thukkani AK, Albert CJ, Wildsmith KR, and et al. Myeloperoxidase-derived reactive chlorinating species from human monocytes target plasmalogens in low density lipoprotein. J Biol Chem 2003; 278: 36365-36372.
    • (2003) J Biol Chem , vol.278 , pp. 36365-36372
    • Thukkani, A.K.1    Albert, C.J.2    Wildsmith, K.R.3
  • 111
    • 0348049466 scopus 로고    scopus 로고
    • Identification of alpha-chloro fatty aldehydes and unsaturated lysophosphatidylcholine molecular species in human atherosclerotic lesions
    • Thukkani AK, McHowat J, Hsu FF, Brennan ML, Hazen SL, Ford DA. Identification of alpha-chloro fatty aldehydes and unsaturated lysophosphatidylcholine molecular species in human atherosclerotic lesions. Circulation 2003; 108: 3128-3133.
    • (2003) Circulation , vol.108 , pp. 3128-3133
    • Thukkani, A.K.1    McHowat, J.2    Hsu, F.F.3    Brennan, M.L.4    Hazen, S.L.5    Ford, D.A.6
  • 112
    • 1942502782 scopus 로고    scopus 로고
    • Kinetic analysis of the reactions of hypobromous acid with protein components: Implications for cellular damage and the use of 3-bromotyrosine as a marker of oxidative stress
    • Pattison DI, Davies MJ. Kinetic analysis of the reactions of hypobromous acid with protein components: implications for cellular damage and the use of 3-bromotyrosine as a marker of oxidative stress. Biochemistry 2004; 43: 4799-4809.
    • (2004) Biochemistry , vol.43 , pp. 4799-4809
    • Pattison, D.I.1    Davies, M.J.2
  • 113
    • 38149073446 scopus 로고    scopus 로고
    • Kinetics of hypobromous acid-mediated oxidation of lipid components and antioxidants
    • Skaff O, Pattison DI, Davies MJ. Kinetics of hypobromous acid-mediated oxidation of lipid components and antioxidants. Chem Res Toxicol 2007; 20: 1980-1988.
    • (2007) Chem Res Toxicol , vol.20 , pp. 1980-1988
    • Skaff, O.1    Pattison, D.I.2    Davies, M.J.3
  • 114
    • 0032519779 scopus 로고    scopus 로고
    • Comparison of human red cell lysis by hypochlorous and hypobromous acids: Insights into the mechanism of lysis
    • Vissers MC, Carr AC, Chapman AL. Comparison of human red cell lysis by hypochlorous and hypobromous acids: insights into the mechanism of lysis. Biochem J 1998; 330: 131-138.
    • (1998) Biochem J , vol.330 , pp. 131-138
    • Vissers, M.C.1    Carr, A.C.2    Chapman, A.L.3
  • 115
    • 70449679220 scopus 로고    scopus 로고
    • The role of hypothiocyanous acid (HOSCN) in biological systems
    • Hawkins CL. The role of hypothiocyanous acid (HOSCN) in biological systems. Free Rad Res 2009; 43: 1147-1158.
    • (2009) Free Rad Res , vol.43 , pp. 1147-1158
    • Hawkins, C.L.1
  • 116
    • 0019986523 scopus 로고
    • Carboxyhaemoglobin and plasma thiocyanate: complementary indicators of smoking behaviour?
    • Saloojee Y, Vesey CJ, Cole PV, Russell MA. Carboxyhaemoglobin and plasma thiocyanate: complementary indicators of smoking behaviour? Thorax 1982; 37: 521-525.
    • (1982) Thorax , vol.37 , pp. 521-525
    • Saloojee, Y.1    Vesey, C.J.2    Cole, P.V.3    Russell, M.A.4
  • 117
    • 34948834705 scopus 로고    scopus 로고
    • Protein carbamylation links inflammation, smoking, uremia and atherogenesis
    • Wang Z, Nicholls SJ, Rodriguez ER, and et al. Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nat Med 2007; 13: 1176-1184.
    • (2007) Nat Med , vol.13 , pp. 1176-1184
    • Wang, Z.1    Nicholls, S.J.2    Rodriguez, E.R.3
  • 118
    • 67649986506 scopus 로고    scopus 로고
    • What are the plasma targets of the oxidant hypochlorous acid? A kinetic modeling approach
    • Pattison DI, Hawkins CL, Davies MJ. What are the plasma targets of the oxidant hypochlorous acid? A kinetic modeling approach. Chem Res Toxicol 2009; 22: 807-817.
    • (2009) Chem Res Toxicol , vol.22 , pp. 807-817
    • Pattison, D.I.1    Hawkins, C.L.2    Davies, M.J.3
  • 119
    • 68749097272 scopus 로고    scopus 로고
    • Hypothiocyanous acid reactivity with low-molecular-mass and protein thiols: Absolute rate constants and assessment of biological relevance
    • Skaff O, Pattison DI, Davies MJ. Hypothiocyanous acid reactivity with low-molecular-mass and protein thiols: Absolute rate constants and assessment of biological relevance. Biochem J 2009; 422: 111-117.
    • (2009) Biochem J , vol.422 , pp. 111-117
    • Skaff, O.1    Pattison, D.I.2    Davies, M.J.3
  • 120
    • 58949087905 scopus 로고    scopus 로고
    • Tryptophan residues are targets in hypothiocyanous acid-mediated protein oxidation
    • Hawkins CL, Pattison DI, Stanley NR, Davies MJ. Tryptophan residues are targets in hypothiocyanous acid-mediated protein oxidation. Biochem J 2008; 416: 441-452.
    • (2008) Biochem J , vol.416 , pp. 441-452
    • Hawkins, C.L.1    Pattison, D.I.2    Stanley, N.R.3    Davies, M.J.4
  • 121
    • 0017707017 scopus 로고
    • Lactoperoxidase-catalyzed incorporation of thiocyanate ion into a protein substrate
    • Aune TM, Thomas EL, Morrison M. Lactoperoxidase-catalyzed incorporation of thiocyanate ion into a protein substrate. Biochemistry 1977; 16: 4611-4615.
    • (1977) Biochemistry , vol.16 , pp. 4611-4615
    • Aune, T.M.1    Thomas, E.L.2    Morrison, M.3
  • 122
    • 77955474149 scopus 로고    scopus 로고
    • The myeloperoxidase- Derived oxidant HOSCN inhibits protein tyrosine phosphatases and modulates cell signalling via the mitogen-activated protein kinase (MAPK) pathway in macrophages
    • Lane AE, Tan JT, Hawkins CL, Heather AK, Davies MJ. The myeloperoxidase- derived oxidant HOSCN inhibits protein tyrosine phosphatases and modulates cell signalling via the mitogen-activated protein kinase (MAPK) pathway in macrophages. Biochem J 2010; 430: 161-169.
    • (2010) Biochem J , vol.430 , pp. 161-169
    • Lane, A.E.1    Tan, J.T.2    Hawkins, C.L.3    Heather, A.K.4    Davies, M.J.5
  • 124
    • 0026701776 scopus 로고
    • Oxidation of hydroquinone by myeloperoxidase. Mechanism of stimulation by benzoquinone
    • Kettle AJ, Winterbourn CC. Oxidation of hydroquinone by myeloperoxidase. Mechanism of stimulation by benzoquinone. J Biol Chem 1992; 267: 8319-8324.
    • (1992) J Biol Chem , vol.267 , pp. 8319-8324
    • Kettle, A.J.1    Winterbourn, C.C.2
  • 125
    • 0033825180 scopus 로고    scopus 로고
    • Oxidation of hydroquinone, 2,3-dimethylhydroquinone and 2,3,5-trimethylhydroquinone by human myeloperoxidase
    • Burner U, Krapfenbauer G, Furtmüler PG, Regelsberger G, Obinger C. Oxidation of hydroquinone, 2,3-dimethylhydroquinone and 2,3,5- trimethylhydroquinone by human myeloperoxidase. Redox Rep 2000; 5: 185-190.
    • (2000) Redox Rep , vol.5 , pp. 185-190
    • Burner, U.1    Krapfenbauer, G.2    Furtmüler, P.G.3    Regelsberger, G.4    Obinger, C.5
  • 127
    • 0028295663 scopus 로고
    • Aromatic hydroxylation during the myeloperoxidase-oxidase oxidation of hydrazines
    • van der Walt BJ, van Zyl JM, Kriegler A. Aromatic hydroxylation during the myeloperoxidase-oxidase oxidation of hydrazines. Biochem Pharmacol 1994; 47: 1039-1046.
    • (1994) Biochem Pharmacol , vol.47 , pp. 1039-1046
    • Van Der Walt, B.J.1    Van Zyl, J.M.2    Kriegler, A.3
  • 128
    • 0031029267 scopus 로고    scopus 로고
    • Mechanism of inactivation of myeloperoxidase by 4-aminobenzoic hydrazide
    • Kettle AJ, Geyde CA, Winterbourn CC. Mechanism of inactivation of myeloperoxidase by 4-aminobenzoic hydrazide. Biochem J 1997; 321: 503-508.
    • (1997) Biochem J , vol.321 , pp. 503-508
    • Kettle, A.J.1    Geyde, C.A.2    Winterbourn, C.C.3
  • 129
    • 34547621062 scopus 로고    scopus 로고
    • Aminoglutethimide-induced protein free radical formation on myeloperoxidase: A potential mechanism of agranulocytosis
    • Siraki AG, Bonini MG, Jiang J, Ehrenshaft M, Mason RP. Aminoglutethimide-induced protein free radical formation on myeloperoxidase: a potential mechanism of agranulocytosis. Chem Res Toxicol 2007; 20: 1038-1045.
    • (2007) Chem Res Toxicol , vol.20 , pp. 1038-1045
    • Siraki, A.G.1    Bonini, M.G.2    Jiang, J.3    Ehrenshaft, M.4    Mason, R.P.5
  • 130
    • 0037898944 scopus 로고    scopus 로고
    • Autocatalytic radical reactions in physiological prosthetic heme modification
    • Colas C, Ortiz de Montellano PR. Autocatalytic radical reactions in physiological prosthetic heme modification. Chem Rev 2003; 103: 2305-2332.
    • (2003) Chem Rev , vol.103 , pp. 2305-2332
    • Colas, C.1    Ortiz De Montellano, P.R.2
  • 131
    • 2642575909 scopus 로고    scopus 로고
    • Horseradish peroxidase mutants that autocatalytically modify their prosthetic heme group: Insights into mammalian peroxidase heme-protein covalent bonds
    • Colas C, De Montellano PR. Horseradish peroxidase mutants that autocatalytically modify their prosthetic heme group: insights into mammalian peroxidase heme-protein covalent bonds. J Biol Chem 2004; 279: 24131-24140.
    • (2004) J Biol Chem , vol.279 , pp. 24131-24140
    • Colas, C.1    De Montellano, P.R.2
  • 132
    • 0028076845 scopus 로고
    • Tyrosyl radical generated by myeloperoxidase is a physiological catalyst for the initiation of lipid-peroxidation in low density lipoprotein
    • Savenkova ML, Mueller DM, Heinecke JW. Tyrosyl radical generated by myeloperoxidase is a physiological catalyst for the initiation of lipid-peroxidation in low density lipoprotein. J Biol Chem 1994; 269: 20394-20400.
    • (1994) J Biol Chem , vol.269 , pp. 20394-20400
    • Savenkova, M.L.1    Mueller, D.M.2    Heinecke, J.W.3
  • 134
    • 0027292790 scopus 로고
    • Tyrosyl radical generated by myeloperoxidase catalyzes the oxidative cross-linking of proteins
    • Heinecke JW, Li W, Francis GA, Goldstein JA. Tyrosyl radical generated by myeloperoxidase catalyzes the oxidative cross-linking of proteins. J Clin Invest 1993; 91: 2866-2872.
    • (1993) J Clin Invest , vol.91 , pp. 2866-2872
    • Heinecke, J.W.1    Li, W.2    Francis, G.A.3    Goldstein, J.A.4
  • 135
    • 0035132183 scopus 로고    scopus 로고
    • Paracetamol (acetaminophen)-induced toxicity: Molecular and biochemical mechanisms, analogues and protective approaches
    • Bessems JG, Vermeulen NP. Paracetamol (acetaminophen)-induced toxicity: Molecular and biochemical mechanisms, analogues and protective approaches. Crit Rev Toxicol 2001; 31: 55-138.
    • (2001) Crit Rev Toxicol , vol.31 , pp. 55-138
    • Bessems, J.G.1    Vermeulen, N.P.2
  • 136
  • 137
    • 18944406318 scopus 로고    scopus 로고
    • Peroxidases: A role in the metabolism and side effects of drugs
    • Tafazoli S, O'Brien PJ. Peroxidases: a role in the metabolism and side effects of drugs. Drug Discov Today 2005; 10: 617-625.
    • (2005) Drug Discov Today , vol.10 , pp. 617-625
    • Tafazoli, S.1    O'Brien, P.J.2
  • 138
    • 0021152612 scopus 로고
    • Role of monochloramine in the oxidation of erythrocyte hemoglobin by stimulated neutrophils
    • Grisham MB, Jefferson MM, Thomas EL. Role of monochloramine in the oxidation of erythrocyte hemoglobin by stimulated neutrophils. J Biol Chem 1984; 259: 6757-6765.
    • (1984) J Biol Chem , vol.259 , pp. 6757-6765
    • Grisham, M.B.1    Jefferson, M.M.2    Thomas, E.L.3
  • 139
    • 5344271785 scopus 로고    scopus 로고
    • Chlorine transfer between glycine, taurine and histamine: Reaction rates and impact on cellular reactivity
    • Peskin AV, Midwinter RG, Harwood DT, Winterbourn CC. Chlorine transfer between glycine, taurine and histamine: reaction rates and impact on cellular reactivity. Free Radic Biol Med 2004; 37: 1622-1630.
    • (2004) Free Radic Biol Med , vol.37 , pp. 1622-1630
    • Peskin, A.V.1    Midwinter, R.G.2    Harwood, D.T.3    Winterbourn, C.C.4
  • 140
    • 0242321028 scopus 로고    scopus 로고
    • Histamine chloramine reactivity with thiol compounds, ascorbate and methionine and with intracellular glutathione
    • Peskin AV, Winterbourn CC. Histamine chloramine reactivity with thiol compounds, ascorbate and methionine and with intracellular glutathione. Free Radic Biol Med 2003; 35: 1252-1260.
    • (2003) Free Radic Biol Med , vol.35 , pp. 1252-1260
    • Peskin, A.V.1    Winterbourn, C.C.2
  • 141
    • 28744458907 scopus 로고    scopus 로고
    • Taurine chloramine is more selective than hypochlorous acid at targeting critical cysteines and inactivating creatine kinase and glyceraldehyde-3- phosphate dehydrogenase
    • Peskin AV, Winterbourn CC. Taurine chloramine is more selective than hypochlorous acid at targeting critical cysteines and inactivating creatine kinase and glyceraldehyde-3-phosphate dehydrogenase. Free Radic Biol Med 2006; 40: 45-53.
    • (2006) Free Radic Biol Med , vol.40 , pp. 45-53
    • Peskin, A.V.1    Winterbourn, C.C.2
  • 143
    • 0028801505 scopus 로고
    • Oxidation of bromide by the human leukocyte enzymes myeloperoxidase and eosinophil peroxidase. Formation of bromamines
    • Thomas EL, Bozeman PM, Jefferson MM, King CC. Oxidation of bromide by the human leukocyte enzymes myeloperoxidase and eosinophil peroxidase. Formation of bromamines. J Biol Chem 1995; 270: 2906-2913.
    • (1995) J Biol Chem , vol.270 , pp. 2906-2913
    • Thomas, E.L.1    Bozeman, P.M.2    Jefferson, M.M.3    King, C.C.4
  • 144
    • 18544368511 scopus 로고    scopus 로고
    • Kinetic analysis of the role of histidine chloramines in hypochlorous acid mediated protein oxidation
    • Pattison DI, Davies MJ. Kinetic analysis of the role of histidine chloramines in hypochlorous acid mediated protein oxidation. Biochemistry 2005; 44: 7378-7387.
    • (2005) Biochemistry , vol.44 , pp. 7378-7387
    • Pattison, D.I.1    Davies, M.J.2
  • 145
    • 33745629631 scopus 로고    scopus 로고
    • Evidence for rapid inter- and intra-molecular chlorine transfer reactions of histamine and carnosine chloramines: Implications for the prevention of hypochlorous acid mediated damage
    • Pattison DI, Davies MJ. Evidence for rapid inter- and intra-molecular chlorine transfer reactions of histamine and carnosine chloramines: implications for the prevention of hypochlorous acid mediated damage. Biochemistry 2006; 45: 8152-8162.
    • (2006) Biochemistry , vol.45 , pp. 8152-8162
    • Pattison, D.I.1    Davies, M.J.2
  • 146
    • 0032525801 scopus 로고    scopus 로고
    • Hypochlorite-induced damage to proteins: Formation of nitrogen-centred radicals from lysine residues and their role in protein fragmentation
    • Hawkins CL, Davies MJ. Hypochlorite-induced damage to proteins: formation of nitrogen-centred radicals from lysine residues and their role in protein fragmentation. Biochem J 1998; 332: 617-625.
    • (1998) Biochem J , vol.332 , pp. 617-625
    • Hawkins, C.L.1    Davies, M.J.2
  • 147
    • 0033151902 scopus 로고    scopus 로고
    • Hypochlorite-induced oxidation of proteins in plasma: Formation of chloramines and nitrogen-centred radicals and their role in protein fragmentation
    • Hawkins CL, Davies MJ. Hypochlorite-induced oxidation of proteins in plasma: formation of chloramines and nitrogen-centred radicals and their role in protein fragmentation. Biochem J 1999; 340: 539-548.
    • (1999) Biochem J , vol.340 , pp. 539-548
    • Hawkins, C.L.1    Davies, M.J.2
  • 149
    • 0030872969 scopus 로고    scopus 로고
    • p-Hydroxyphenylacetaldehyde, the major product of L-tyrosine oxidation by the myeloperoxidase-H2O2-chloride system of phagocytes, covalently modifies epsilon-amino groups of protein lysine residues
    • Hazen SL, Gaut JP, Hsu FF, Crowley JR, d'Avignon A, Heinecke JW. p-Hydroxyphenylacetaldehyde, the major product of L-tyrosine oxidation by the myeloperoxidase-H2O2-chloride system of phagocytes, covalently modifies epsilon-amino groups of protein lysine residues. J Biol Chem 1997; 272: 16990-16998.
    • (1997) J Biol Chem , vol.272 , pp. 16990-16998
    • Hazen, S.L.1    Gaut, J.P.2    Hsu, F.F.3    Crowley, J.R.4    D'Avignon, A.5    Heinecke, J.W.6
  • 151
    • 32944455998 scopus 로고    scopus 로고
    • The role of aromatic amino acid oxidation, protein unfolding, and aggregation in the hypobromous acid-induced inactivation of trypsin inhibitor and lysozyme
    • Hawkins CL, Davies MJ. The role of aromatic amino acid oxidation, protein unfolding, and aggregation in the hypobromous acid-induced inactivation of trypsin inhibitor and lysozyme. Chem Res Toxicol 2005; 18: 1669-1677.
    • (2005) Chem Res Toxicol , vol.18 , pp. 1669-1677
    • Hawkins, C.L.1    Davies, M.J.2
  • 152
    • 30544453005 scopus 로고    scopus 로고
    • Bromination and chlorination reactions of myeloperoxidase at physiological concentrations of bromide and chloride
    • DOI 10.1016/j.abb.2005.07.005, PII S0003986105002882
    • Senthilmohan R, Kettle AJ. Bromination and chlorination reactions of myeloperoxidase at physiological concentrations of bromide and chloride. Arch Biochem Biophys 2006; 445: 235-244. (Pubitemid 43082216)
    • (2006) Archives of Biochemistry and Biophysics , vol.445 , Issue.2 , pp. 235-244
    • Senthilmohan, R.1    Kettle, A.J.2
  • 153
    • 34250325126 scopus 로고    scopus 로고
    • Mechanisms for oxidative stress in diabetic cardiovascular disease
    • DOI 10.1089/ars.2007.1595
    • Pennathur S, Heinecke JW. Mechanisms for oxidative stress in diabetic cardiovascular disease. Antioxid Redox Signal 2007; 9: 955-969. (Pubitemid 46919596)
    • (2007) Antioxidants and Redox Signaling , vol.9 , Issue.7 , pp. 955-969
    • Pennathur, S.1    Heinecke, J.W.2
  • 154
    • 33644950892 scopus 로고    scopus 로고
    • Heparan sulfate degradation via reductive homolysis of its N-Chloro derivatives
    • Rees MD, Davies MJ. Heparan sulfate degradation via reductive homolysis of its N-Chloro derivatives. J Am Chem Soc 2006; 128: 3085-3097.
    • (2006) J Am Chem Soc , vol.128 , pp. 3085-3097
    • Rees, M.D.1    Davies, M.J.2
  • 155
    • 3142736372 scopus 로고    scopus 로고
    • Hypochlorite and superoxide radicals can act synergistically to induce fragmentation of hyaluronan and chondritin sulphates
    • Rees MD, Hawkins CL, Davies MJ. Hypochlorite and superoxide radicals can act synergistically to induce fragmentation of hyaluronan and chondritin sulphates. Biochem J 2004; 381: 175-184.
    • (2004) Biochem J , vol.381 , pp. 175-184
    • Rees, M.D.1    Hawkins, C.L.2    Davies, M.J.3
  • 156
    • 0035283131 scopus 로고    scopus 로고
    • Kinetics of the reactions of hypochlorous acid and amino acid chloramines with thiols, methionine, and ascorbate
    • Peskin AV, Winterbourn CC. Kinetics of the reactions of hypochlorous acid and amino acid chloramines with thiols, methionine, and ascorbate. Free Radic Biol Med 2001; 30: 572-579.
    • (2001) Free Radic Biol Med , vol.30 , pp. 572-579
    • Peskin, A.V.1    Winterbourn, C.C.2
  • 157
    • 0035861740 scopus 로고    scopus 로고
    • Regulation of apoptosis by vitamin C: Specific protection of the apoptotic machinery against exposure to chlorinated oxidants
    • DOI 10.1074/jbc.M107664200
    • Vissers MC, Lee WG, Hampton MB. Regulation of apoptosis by vitamin C. Specific protection of the apoptotic machinery against exposure to chlorinated oxidants. J Biol Chem 2001; 276: 46835-46840. (Pubitemid 37373051)
    • (2001) Journal of Biological Chemistry , vol.276 , Issue.50 , pp. 46835-46840
    • Vissers, M.C.M.1    Lee, W.-G.2    Hampton, M.B.3
  • 159
    • 0030967399 scopus 로고    scopus 로고
    • Myeloperoxidase-dependent generation of a tyrosine peroxide by neutrophils
    • DOI 10.1006/abbi.1996.9773
    • Winterbourn CC, Pichorner H, Kettle AJ. Myeloperoxidase-dependent generation of a tyrosine peroxide by neutrophils. Arch Biochem Biophys 1997; 338: 15-21. (Pubitemid 27200288)
    • (1997) Archives of Biochemistry and Biophysics , vol.338 , Issue.1 , pp. 15-21
    • Winterbourn, C.C.1    Pichorner, H.2    Kettle, A.J.3
  • 160
    • 3142724679 scopus 로고    scopus 로고
    • Requirements for superoxide-dependent tyrosine hydroperoxide formation in peptides
    • DOI 10.1042/BJ20040259
    • Winterbourn CC, Parsons-Mair HN, Gebicki S, Gebicki JM, Davies MJ. Requirements for superoxide-dependent tyrosine hydroperoxide formation in peptides. Biochem J 2004; 381: 241-248. (Pubitemid 38932230)
    • (2004) Biochemical Journal , vol.381 , Issue.1 , pp. 241-248
    • Winterbourn, C.C.1    Parsons-Mair, H.N.2    Gebicki, S.3    Gebicki, J.M.4    Davies, M.J.5
  • 162
    • 67649354633 scopus 로고    scopus 로고
    • Superoxide-mediated formation of tyrosine hydroperoxides and methionine sulfoxide in peptides through radical addition and intramolecular oxygen transfer
    • Nagy P, Kettle AJ, Winterbourn CC. Superoxide-mediated formation of tyrosine hydroperoxides and methionine sulfoxide in peptides through radical addition and intramolecular oxygen transfer. J Biol Chem 2009; 284: 14723-14733.
    • (2009) J Biol Chem , vol.284 , pp. 14723-14733
    • Nagy, P.1    Kettle, A.J.2    Winterbourn, C.C.3
  • 163
    • 77955174529 scopus 로고    scopus 로고
    • Neutrophil-mediated oxidation of enkephalins via myeloperoxidase- dependent addition of superoxide
    • Nagy P, Kettle AJ, Winterbourn CC. Neutrophil-mediated oxidation of enkephalins via myeloperoxidase-dependent addition of superoxide. Free Radic Biol Med 2010; 49: 792-799.
    • (2010) Free Radic Biol Med , vol.49 , pp. 792-799
    • Nagy, P.1    Kettle, A.J.2    Winterbourn, C.C.3
  • 164
    • 33644699369 scopus 로고    scopus 로고
    • Superoxide-dependent oxidation of melatonin by myeloperoxidase
    • Ximenes VF, Silva SO, Rodrigues MR, and et al. Superoxide-dependent oxidation of melatonin by myeloperoxidase. J Biol Chem 2005; 280: 38160-38169.
    • (2005) J Biol Chem , vol.280 , pp. 38160-38169
    • Ximenes, V.F.1    Silva, S.O.2    Rodrigues, M.R.3
  • 165
    • 72449125795 scopus 로고    scopus 로고
    • Serotonin as a physiological substrate for myeloperoxidase and its superoxide-dependent oxidation to cytotoxic tryptamine-4,5-dione
    • Ximenes VF, Maghzal GJ, Turner R, Kato Y, Winterbourn CC, Kettle AJ. Serotonin as a physiological substrate for myeloperoxidase and its superoxide-dependent oxidation to cytotoxic tryptamine-4,5-dione. Biochem J 2009; 425: 285-293.
    • (2009) Biochem J , vol.425 , pp. 285-293
    • Ximenes, V.F.1    Maghzal, G.J.2    Turner, R.3    Kato, Y.4    Winterbourn, C.C.5    Kettle, A.J.6
  • 166
    • 0028890715 scopus 로고
    • Protein hydroperoxides can give rise to reactive free radicals
    • Davies MJ, Fu S, Dean RT. Protein hydroperoxides can give rise to reactive free radicals. Biochem J 1995; 305: 643-649.
    • (1995) Biochem J , vol.305 , pp. 643-649
    • Davies, M.J.1    Fu, S.2    Dean, R.T.3
  • 167
    • 3042688696 scopus 로고    scopus 로고
    • Reactive species formed on proteins exposed to singlet oxygen
    • Davies MJ. Reactive species formed on proteins exposed to singlet oxygen. Photochem Photobiol Sci 2004; 3: 17-25.
    • (2004) Photochem Photobiol Sci , vol.3 , pp. 17-25
    • Davies, M.J.1
  • 168
    • 12844278044 scopus 로고    scopus 로고
    • The oxidative environment and protein damage
    • Davies MJ. The oxidative environment and protein damage. Biochim Biophys Acta 2005; 1703: 93-109.
    • (2005) Biochim Biophys Acta , vol.1703 , pp. 93-109
    • Davies, M.J.1
  • 171
    • 0032570808 scopus 로고    scopus 로고
    • Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to oxidise α-amino-acids to a family of reactive aldehydes
    • Hazen SL, d'Avignon A, Anderson MM, Hsu FF, Heinecke JW. Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to oxidise α-amino-acids to a family of reactive aldehydes. J Biol Chem 1998; 273: 4997-5005.
    • (1998) J Biol Chem , vol.273 , pp. 4997-5005
    • Hazen, S.L.1    D'Avignon, A.2    Anderson, M.M.3    Hsu, F.F.4    Heinecke, J.W.5
  • 172
    • 0034672422 scopus 로고    scopus 로고
    • Elevated levels of protein-bound p-hydroxyphenylacetaldehyde, an amino- Acid-derived aldehyde generated by myeloperoxidase, are present in human fatty streaks, intermediate lesions and advanced atherosclerotic lesions
    • Hazen SL, Gaut JP, Crowley JR, Hsu FF, Heinecke JW. Elevated levels of protein-bound p-hydroxyphenylacetaldehyde, an amino- acid-derived aldehyde generated by myeloperoxidase, are present in human fatty streaks, intermediate lesions and advanced atherosclerotic lesions. Biochem J 2000; 352: 693-699.
    • (2000) Biochem J , vol.352 , pp. 693-699
    • Hazen, S.L.1    Gaut, J.P.2    Crowley, J.R.3    Hsu, F.F.4    Heinecke, J.W.5
  • 173
    • 0036237275 scopus 로고    scopus 로고
    • The Maillard hypothesis on aging: Time to focus on DNA
    • Baynes JW. The Maillard hypothesis on aging: time to focus on DNA. Ann N Y Acad Sci 2002; 959: 360-367.
    • (2002) Ann N Y Acad Sci , vol.959 , pp. 360-367
    • Baynes, J.W.1
  • 174
    • 0002146023 scopus 로고
    • Physical Chemistry, Composition of Blood, Hematology, Somatometric Data
    • Basle: Ciba-Geigy Ltd
    • Lentner C, ed. Geigy Scientific Tables vol. 3: Physical Chemistry, Composition of Blood, Hematology, Somatometric Data. Basle: Ciba-Geigy Ltd, 1984.
    • (1984) Geigy Scientific Tables , vol.3
    • Lentner, C.1
  • 176
    • 0035964384 scopus 로고    scopus 로고
    • A kinetic analysis of the catalase activity of myeloperoxidase
    • Kettle AJ, Winterbourn CC. A kinetic analysis of the catalase activity of myeloperoxidase. Biochemistry 2001; 40: 10204-10212.
    • (2001) Biochemistry , vol.40 , pp. 10204-10212
    • Kettle, A.J.1    Winterbourn, C.C.2
  • 178
    • 33845997473 scopus 로고    scopus 로고
    • Modeling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome: Implications for microbial killing
    • Winterbourn CC, Hampton MB, Livesey JH, Kettle AJ. Modeling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome: implications for microbial killing. J Biol Chem 2006; 281: 39860-39869.
    • (2006) J Biol Chem , vol.281 , pp. 39860-39869
    • Winterbourn, C.C.1    Hampton, M.B.2    Livesey, J.H.3    Kettle, A.J.4
  • 179
  • 180
    • 0023951778 scopus 로고
    • Superoxide modulates the activity of myeloperoxidase and optimizes the production of hypochlorous acid
    • Kettle AJ, Winterbourn CC. Superoxide modulates the activity of myeloperoxidase and optimizes the production of hypochlorous acid. Biochem J 1988; 252: 529-536.
    • (1988) Biochem J , vol.252 , pp. 529-536
    • Kettle, A.J.1    Winterbourn, C.C.2
  • 181
    • 0027336842 scopus 로고
    • Superoxide is an antagonist of antiinflammatory drugs that inhibit hypochlorous acid production by myeloperoxidase
    • Kettle AJ, Gedye CA, Winterbourn CC. Superoxide is an antagonist of antiinflammatory drugs that inhibit hypochlorous acid production by myeloperoxidase. Biochem Pharmacol 1993; 45: 2003-2010.
    • (1993) Biochem Pharmacol , vol.45 , pp. 2003-2010
    • Kettle, A.J.1    Gedye, C.A.2    Winterbourn, C.C.3
  • 182
    • 0026346039 scopus 로고
    • Hydroxylation of phenol to hydroquinone catalyzed by a human myeloperoxidase-superoxide complex: Possible implications in benzene-induced myelotoxicity
    • Subrahmanyam VV, Kolachana P, Smith MT. Hydroxylation of phenol to hydroquinone catalyzed by a human myeloperoxidase-superoxide complex: possible implications in benzene-induced myelotoxicity. Free Radic Res Commun 1991; 15: 285-296.
    • (1991) Free Radic Res Commun , vol.15 , pp. 285-296
    • Subrahmanyam, V.V.1    Kolachana, P.2    Smith, M.T.3
  • 183
    • 0028240904 scopus 로고
    • Superoxide-dependent hydroxylation by myeloperoxidase
    • Kettle AJ, Winterbourn CC. Superoxide-dependent hydroxylation by myeloperoxidase. J Biol Chem 1994; 269: 17146-17151.
    • (1994) J Biol Chem , vol.269 , pp. 17146-17151
    • Kettle, A.J.1    Winterbourn, C.C.2
  • 184
    • 0034534961 scopus 로고    scopus 로고
    • Nitric oxide is a physiological substrate for mammalian peroxidases
    • DOI 10.1074/jbc.275.48.37524
    • Abu-Soud HM, Hazen SL. Nitric oxide is a physiological substrate for mammalian peroxidases. J Biol Chem 2000; 275: 37524-37532. (Pubitemid 32004861)
    • (2000) Journal of Biological Chemistry , vol.275 , Issue.48 , pp. 37524-37532
    • Abu-Soud, H.M.1    Hazen, S.L.2
  • 185
    • 12544257904 scopus 로고    scopus 로고
    • Myeloperoxidase potentiates nitric oxide-mediated nitrosation
    • Lakshmi VM, Nauseef WM, Zenser TV. Myeloperoxidase potentiates nitric oxide-mediated nitrosation. J Biol Chem 2005; 280: 1746-1753.
    • (2005) J Biol Chem , vol.280 , pp. 1746-1753
    • Lakshmi, V.M.1    Nauseef, W.M.2    Zenser, T.V.3
  • 186
    • 0034102068 scopus 로고    scopus 로고
    • Nitric oxide modulates the catalytic activity of myeloperoxidase
    • DOI 10.1074/jbc.275.8.5425
    • Abu-Soud HM, Hazen SL. Nitric oxide modulates the catalytic activity of myeloperoxidase. J Biol Chem 2000; 275: 5425-5430. (Pubitemid 30115174)
    • (2000) Journal of Biological Chemistry , vol.275 , Issue.8 , pp. 5425-5430
    • Abu-Soud, H.M.1    Hazen, S.L.2
  • 187
    • 31544475400 scopus 로고    scopus 로고
    • Myeloperoxidase metabolizes thiocyanate in a reaction driven by nitric oxide
    • DOI 10.1021/bi051438k
    • Galijasevic S, Saed GM, Hazen SL, Abu-Soud HM. Myeloperoxidase metabolizes thiocyanate in a reaction driven by nitric oxide. Biochemistry 2006; 45: 1255-1262. (Pubitemid 43167192)
    • (2006) Biochemistry , vol.45 , Issue.4 , pp. 1255-1262
    • Galijasevic, S.1    Saed, G.M.2    Hazen, S.L.3    Abu-Soud, H.M.4
  • 188
    • 33846217423 scopus 로고    scopus 로고
    • The potential role of nitric oxide in substrate switching in eosinophil peroxidase
    • DOI 10.1021/bi061177u
    • Galijasevic S, Proteasa G, Abdulhamid I, Abu-Soud HM. The potential role of nitric oxide in substrate switching in eosinophil peroxidase. Biochemistry 2007; 46: 406-415. (Pubitemid 46105433)
    • (2007) Biochemistry , vol.46 , Issue.2 , pp. 406-415
    • Galijasevic, S.1    Proteasa, G.2    Abdulhamid, I.3    Abu-Soud, H.M.4
  • 189
    • 0037189377 scopus 로고    scopus 로고
    • Myeloperoxidase, a leukocyte-derived vascular NO oxidase
    • Eiserich JP, Baldus S, Brennan ML, and et al. Myeloperoxidase, a leukocyte-derived vascular NO oxidase. Science 2002; 296: 2391-2394.
    • (2002) Science , vol.296 , pp. 2391-2394
    • Eiserich, J.P.1    Baldus, S.2    Brennan, M.L.3
  • 192
    • 0034697361 scopus 로고    scopus 로고
    • Nitrite as a substrate and inhibitor of myeloperoxidase. Implications for nitration and hypochlorous acid production at sites of inflammation
    • DOI 10.1074/jbc.275.16.11638
    • van Dalen CJ, Winterbourn CC, Senthilmohan R, Kettle AJ. Nitrite as a substrate and inhibitor of myeloperoxidase. Implications for nitration and hypochlorous acid production at sites of inflammation. J Biol Chem 2000; 275: 11638-11644. (Pubitemid 30237723)
    • (2000) Journal of Biological Chemistry , vol.275 , Issue.16 , pp. 11638-11644
    • Van Dalen, C.J.1    Winterbourn, C.C.2    Senthilmohan, R.3    Kettle, A.J.4
  • 193
    • 0037124020 scopus 로고    scopus 로고
    • A tale of two controversies: Defining both the role of peroxidases in nitrotyrosine formation in vivo using eosinophil peroxidase and myeloperoxidase-deficient mice, and the nature of peroxidase-generated reactive nitrogen species
    • Brennan ML, Wu W, Fu X, and et al. A tale of two controversies: defining both the role of peroxidases in nitrotyrosine formation in vivo using eosinophil peroxidase and myeloperoxidase-deficient mice, and the nature of peroxidase-generated reactive nitrogen species. J Biol Chem 2002; 277: 17415-17427.
    • (2002) J Biol Chem , vol.277 , pp. 17415-17427
    • Brennan, M.L.1    Wu, W.2    Fu, X.3
  • 194
    • 1542314758 scopus 로고    scopus 로고
    • Mechanistic insight into the peroxidase catalyzed nitration of tyrosine derivatives by nitrite and hydrogen peroxide
    • Monzani E, Roncone R, Galliano M, Koppenol WH, Casella L. Mechanistic insight into the peroxidase catalyzed nitration of tyrosine derivatives by nitrite and hydrogen peroxide. Eur J Biochem 2004; 271: 895-906.
    • (2004) Eur J Biochem , vol.271 , pp. 895-906
    • Monzani, E.1    Roncone, R.2    Galliano, M.3    Koppenol, W.H.4    Casella, L.5
  • 195
    • 0029846920 scopus 로고    scopus 로고
    • Peroxynitrite-dependent tyrosine nitration catalyzed by superoxide dismutase, myeloperoxidase, and horseradish peroxidase
    • Sampson JB, Rosen H, Beckman JS. Peroxynitrite-dependent tyrosine nitration catalyzed by superoxide dismutase, myeloperoxidase, and horseradish peroxidase. Methods Enzymol 1996; 269: 210-218. (Pubitemid 26295710)
    • (1996) Methods in Enzymology , vol.269 , pp. 210-218
    • Sampson, J.B.1    Rosen, H.2    Beckman, J.S.3
  • 196
    • 0027303364 scopus 로고
    • Interaction of myeloperoxidase with peroxynitrite. A comparison with lactoperoxidase, horseradish peroxidase and catalase
    • Floris R, Piersma SR, Yang G, Jones P, Wever R. Interaction of myeloperoxidase with peroxynitrite. A comparison with lactoperoxidase, horseradish peroxidase and catalase. Eur J Biochem 1993; 215: 767-775. (Pubitemid 23246850)
    • (1993) European Journal of Biochemistry , vol.215 , Issue.3 , pp. 767-775
    • Floris, R.1    Piersma, S.R.2    Yang, G.3    Jones, P.4    Wever, R.5
  • 198
    • 0344440801 scopus 로고    scopus 로고
    • Interaction of myeloperoxidase with vascular NAD(P)H oxidase-derived reactive oxygen species in vasculature: Implications for vascular diseases
    • Zhang C, Yang J, Jacobs JD, Jennings LK. Interaction of myeloperoxidase with vascular NAD(P)H oxidase-derived reactive oxygen species in vasculature: implications for vascular diseases. Am J Physiol Heart Circ Physiol 2003; 285: H2563-H2572. (Pubitemid 37443074)
    • (2003) American Journal of Physiology - Heart and Circulatory Physiology , vol.285 , Issue.6
    • Zhang, C.1    Yang, J.2    Jacobs, J.D.3    Jennings, L.K.4
  • 199
    • 7044286198 scopus 로고    scopus 로고
    • Leukocyte-derived myeloperoxidase amplifies high-glucose-induced endothelial dysfunction through interaction with high-glucose-stimulated, vascular non-leukocyte-derived reactive oxygen species
    • DOI 10.2337/diabetes.53.11.2950
    • Zhang C, Yang J, Jennings LK. Leukocyte-derived myeloperoxidase amplifies high-glucose-induced endothelial dysfunction through interaction with high-glucose-stimulated, vascular non-leukocyte-derived reactive oxygen species. Diabetes 2004; 53: 2950-2959. (Pubitemid 39425921)
    • (2004) Diabetes , vol.53 , Issue.11 , pp. 2950-2959
    • Zhang, C.1    Yang, J.2    Jennings, L.K.3
  • 200
    • 43049169929 scopus 로고    scopus 로고
    • Potent inhibitors of vascular oxidative stress: Specific block of Nox4-type NADPH oxidase for cardiovascular and neurological disease
    • Dusting GJ, Tan CSW, Jiang F, and et al. Potent inhibitors of vascular oxidative stress: Specific block of Nox4-type NADPH oxidase for cardiovascular and neurological disease. Acta Pharmacol Sin 2006; 27: 3.
    • (2006) Acta Pharmacol Sin , vol.27 , pp. 3
    • Dusting, G.J.1    Tan, C.S.W.2    Jiang, F.3
  • 201
    • 18844375574 scopus 로고    scopus 로고
    • Mechanisms for suppressing NADPH oxidase in the vascular wall
    • Dusting GJ, Selemidis S, Jiang F. Mechanisms for suppressing NADPH oxidase in the vascular wall. Mem Inst Oswaldo Cruz 2005; 100: 97-103. (Pubitemid 40685446)
    • (2005) Memorias Do Instituto Oswaldo Cruz , vol.100 , Issue.SUPPL. 1 , pp. 97-103
    • Dusting, G.J.1    Selemidis, S.2    Jiang, F.3
  • 202
    • 0028945358 scopus 로고
    • Modification of neutrophil oxidant production with diphenyleneiodonium and its effect on bacterial killing
    • Hampton MB, Winterbourn CC. Modification of neutrophil oxidant production with diphenyleneiodonium and its effect on bacterial killing. Free Radic Biol Med 1995; 18: 633-639.
    • (1995) Free Radic Biol Med , vol.18 , pp. 633-639
    • Hampton, M.B.1    Winterbourn, C.C.2
  • 203
    • 0023894234 scopus 로고
    • The effect of the NADPH oxidase inhibitor diphenyleneiodonium on aerobic and anaerobic microbicidal activities of human neutrophils
    • Ellis JA, Mayer SJ, Jones OT. The effect of the NADPH oxidase inhibitor diphenyleneiodonium on aerobic and anaerobic microbicidal activities of human neutrophils. Biochem J 1988; 251: 887-891.
    • (1988) Biochem J , vol.251 , pp. 887-891
    • Ellis, J.A.1    Mayer, S.J.2    Jones, O.T.3
  • 204
    • 0032545445 scopus 로고    scopus 로고
    • Diphenyleneiodonium, an NAD(P)H oxidase inhibitor, also potently inhibits mitochondrial reactive oxygen species production
    • DOI 10.1006/bbrc.1998.9729
    • Li Y, Trush MA. Diphenyleneiodonium, an NAD(P)H oxidase inhibitor, also potently inhibits mitochondrial reactive oxygen species production. Biochem Biophys Res Commun 1998; 253: 295-299. (Pubitemid 29026697)
    • (1998) Biochemical and Biophysical Research Communications , vol.253 , Issue.2 , pp. 295-299
    • Li, Y.1    Trush, M.A.2
  • 205
    • 34250727615 scopus 로고    scopus 로고
    • Nitric oxide suppresses NADPH oxidase-dependent superoxide production by S-nitrosylation in human endothelial cells
    • DOI 10.1016/j.cardiores.2007.03.030, PII S0008636307001873
    • Selemidis S, Dusting GJ, Peshavariya H, Kemp-Harper BK, Drummond GR. Nitric oxide suppresses NADPH oxidase-dependent superoxide production by S-nitrosylation in human endothelial cells. Cardiovasc Res 2007; 75: 349-358. (Pubitemid 46961925)
    • (2007) Cardiovascular Research , vol.75 , Issue.2 , pp. 349-358
    • Selemidis, S.1    Dusting, G.J.2    Peshavariya, H.3    Kemp-Harper, B.K.4    Drummond, G.R.5
  • 207
    • 0033824461 scopus 로고    scopus 로고
    • Antioxidant binding of caeruloplasmin to myeloperoxidase: Myeloperoxidase is inhibited, but oxidase, peroxidase and immunoreactive properties of caeruloplasmin remain intact
    • Park YS, Suzuki K, Mumby S, Taniguchi N, Gutteridge JMC. Antioxidant binding of caeruloplasmin to myeloperoxidase: myeloperoxidase is inhibited, but oxidase, peroxidase and immunoreactive properties of caeruloplasmin remain intact. Free Radic Res 2000; 33: 261-265.
    • (2000) Free Radic Res , vol.33 , pp. 261-265
    • Park, Y.S.1    Suzuki, K.2    Mumby, S.3    Taniguchi, N.4    Gutteridge, J.M.C.5
  • 208
    • 0032986966 scopus 로고    scopus 로고
    • The inhibition of myeloperoxidase by ceruloplasmin can be reversed by anti-myeloperoxidase antibodies
    • Griffin SV, Chapman PT, Lianos EA, Lockwood CM. The inhibition of myeloperoxidase by ceruloplasmin can be reversed by anti-myeloperoxidase antibodies. Kidney Int 1999; 55: 917-925.
    • (1999) Kidney Int , vol.55 , pp. 917-925
    • Griffin, S.V.1    Chapman, P.T.2    Lianos, E.A.3    Lockwood, C.M.4
  • 209
    • 77951022464 scopus 로고    scopus 로고
    • Identification and properties of complexes formed by myeloperoxidase with lipoproteins and ceruloplasmin
    • Sokolov AV, Ageeva KV, Cherkalina OS, and et al. Identification and properties of complexes formed by myeloperoxidase with lipoproteins and ceruloplasmin. Chem Phys Lipids 2010; 163: 347-355.
    • (2010) Chem Phys Lipids , vol.163 , pp. 347-355
    • Sokolov, A.V.1    Ageeva, K.V.2    Cherkalina, O.S.3
  • 210
    • 33646170866 scopus 로고    scopus 로고
    • Heparins increase endothelial nitric oxide bioavailability by liberating vessel-immobilized myeloperoxidase
    • Baldus S, Rudolph V, Roiss M, and et al. Heparins increase endothelial nitric oxide bioavailability by liberating vessel-immobilized myeloperoxidase. Circulation 2006; 113: 1871-1878.
    • (2006) Circulation , vol.113 , pp. 1871-1878
    • Baldus, S.1    Rudolph, V.2    Roiss, M.3
  • 211
    • 0026079216 scopus 로고
    • Mechanism of inhibition of myeloperoxidase by anti-inflammatory drugs
    • Kettle AJ, Winterbourn CC. Mechanism of inhibition of myeloperoxidase by anti-inflammatory drugs. Biochem Pharmacol 1991; 41: 1485-1492.
    • (1991) Biochem Pharmacol , vol.41 , pp. 1485-1492
    • Kettle, A.J.1    Winterbourn, C.C.2
  • 212
    • 0344211451 scopus 로고    scopus 로고
    • Inhibition of hypochlorous acid-induced oxidative reactions by nitrite: Is nitrite an antioxidant?
    • Whiteman M, Rose P, Halliwell B. Inhibition of hypochlorous acid-induced oxidative reactions by nitrite: is nitrite an antioxidant? Biochem Biophys Res Commun 2003; 303: 1217-1224.
    • (2003) Biochem Biophys Res Commun , vol.303 , pp. 1217-1224
    • Whiteman, M.1    Rose, P.2    Halliwell, B.3
  • 216
    • 36248932605 scopus 로고    scopus 로고
    • Myricitrin as a substrate and inhibitor of myeloperoxidase: Implications for the pharmacological effects of flavonoids
    • DOI 10.1016/j.freeradbiomed.2007.09.017, PII S0891584907006521
    • Meotti FC, Senthilmohan R, Harwood DT, Missau FC, Pizzolatti MG, Kettle AJ. Myricitrin as a substrate and inhibitor of myeloperoxidase: implications for the pharmacological effects of flavonoids. Free Radic Biol Med 2008; 44: 109-120. (Pubitemid 350138636)
    • (2008) Free Radical Biology and Medicine , vol.44 , Issue.1 , pp. 109-120
    • Meotti, F.C.1    Senthilmohan, R.2    Harwood, D.T.3    Missau, F.C.4    Pizzolatti, M.G.5    Kettle, A.J.6
  • 217
    • 45549093293 scopus 로고    scopus 로고
    • Quercetin and its in vivo metabolites inhibit neutrophil-mediated low-density lipoprotein oxidation
    • Loke WM, Proudfoot JM, McKinley AJ, and et al. Quercetin and its in vivo metabolites inhibit neutrophil-mediated low-density lipoprotein oxidation. J Agric Food Chem 2008; 56: 3609-3615.
    • (2008) J Agric Food Chem , vol.56 , pp. 3609-3615
    • Loke, W.M.1    Proudfoot, J.M.2    McKinley, A.J.3
  • 218
    • 68149124472 scopus 로고    scopus 로고
    • Dietary phenolics: Chemistry, bioavailability and effects on health
    • Crozier A, Jaganath IB, Clifford MN. Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep 2009; 26: 1001-1043.
    • (2009) Nat Prod Rep , vol.26 , pp. 1001-1043
    • Crozier, A.1    Jaganath, I.B.2    Clifford, M.N.3
  • 219
    • 0033833128 scopus 로고    scopus 로고
    • Oxidation of tryptophan by redox intermediates of myeloperoxidase and inhibition of hypochlorous acid production
    • Kettle AJ, Candaeis LP. Oxidation of tryptophan by redox intermediates of myeloperoxidase and inhibition of hypochlorous acid production. Redox Rep 2000; 5: 179-184.
    • (2000) Redox Rep , vol.5 , pp. 179-184
    • Kettle, A.J.1    Candaeis, L.P.2
  • 220
    • 41149090064 scopus 로고    scopus 로고
    • Potential role of tryptophan and chloride in the inhibition of human myeloperoxidase
    • Galijasevic S, Abdulhamid I, Abu-Soud HM. Potential role of tryptophan and chloride in the inhibition of human myeloperoxidase. Free Radic Biol Med 2008; 44: 1570-1577.
    • (2008) Free Radic Biol Med , vol.44 , pp. 1570-1577
    • Galijasevic, S.1    Abdulhamid, I.2    Abu-Soud, H.M.3
  • 222
    • 69249244191 scopus 로고    scopus 로고
    • Analysis of the mechanism by which tryptophan analogs inhibit human myeloperoxidase
    • Sliskovic I, Abdulhamid I, Sharma M, Abu-Soud HM. Analysis of the mechanism by which tryptophan analogs inhibit human myeloperoxidase. Free Radic Biol Med 2009; 47: 1005-1013.
    • (2009) Free Radic Biol Med , vol.47 , pp. 1005-1013
    • Sliskovic, I.1    Abdulhamid, I.2    Sharma, M.3    Abu-Soud, H.M.4
  • 224
    • 0033515469 scopus 로고    scopus 로고
    • Transient and steady-state kinetics of the oxidation of substituted benzoic acid hydrazides by myeloperoxidase
    • Burner U, Obinger C, Paumann M, Furtmüler PG, Kettle AJ. Transient and steady-state kinetics of the oxidation of substituted benzoic acid hydrazides by myeloperoxidase. J Biol Chem 1999; 274: 9494-9502. (Pubitemid 129517923)
    • (1999) Journal of Biological Chemistry , vol.274 , Issue.14 , pp. 9494-9502
    • Burner, U.1    Obinger, C.2    Paumann, M.3    Furtmuller, P.G.4    Kettle, A.J.5
  • 226
    • 0031029267 scopus 로고    scopus 로고
    • Mechanism of inactivation of myeloperoxidase by 4-aminobenzoic acid hydrazide
    • Kettle AJ, Gedye CA, Winterbourn CC. Mechanism of inactivation of myeloperoxidase by 4-aminobenzoic acid hydrazide. Biochem J 1997; 321: 503-508.
    • (1997) Biochem J , vol.321 , pp. 503-508
    • Kettle, A.J.1    Gedye, C.A.2    Winterbourn, C.C.3
  • 227
    • 0024341760 scopus 로고
    • Isoniazid-mediated irreversible inhibition of the myeloperoxidase antimicrobial system of the human neutrophil and the effect of thyronines
    • van Zyl, Basson K, Uebel RA, van der Walt BJ. Isoniazid-mediated irreversible inhibition of the myeloperoxidase antimicrobial system of the human neutrophil and the effect of thyronines. Biochem Pharmacol 1989; 38: 2363-2373.
    • (1989) Biochem Pharmacol , vol.38 , pp. 2363-2373
    • Van Zyl Basson, K.1    Uebel, R.A.2    Van Der Walt, B.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.