메뉴 건너뛰기




Volumn 1204, Issue SUPPL.1, 2010, Pages 20-37

Impact of nuclear organization and dynamics on epigenetic regulation in the central nervous system: Implications for neurological disease states

Author keywords

Cohesinopathies; Epigenetic memory; Epigenetics; Genomic architecture; Laminopathies; Noncoding rnas; Nuclear ataxias; Nuclear organization; Posttranscriptional processing; RNA editing; RNA trafficking; Spinal muscular atrophy

Indexed keywords

ATM PROTEIN; CIS ACTING ELEMENT; COHESIN; COLONY STIMULATING FACTOR 1; DNA Z; LAMIN; LONG NON CODING RNA; MICRORNA; PIWI INTERACTING RNA; POLYCOMB GROUP PROTEIN; POLYCOMB REPRESSOR COMPLEX 2; PROMOTER ASSOCIATED SMALL RNA; PROTEIN SWI; REPRESSOR ELEMENT 1 SILENCING TRANSCRIPTION FACTOR; RIBONUCLEOPROTEIN; RIBOSOME DNA; RIBOSOME RNA; RNA BINDING PROTEIN; SMALL INTERFERING RNA; SMALL NUCLEOLAR RNA; SMALL UNTRANSLATED RNA; SPACER DNA; TATA BINDING PROTEIN RELATED FACTOR; TRANS ACTING FACTOR; TRANSCRIPTION FACTOR; TRANSCRIPTION FACTOR CTCF; TRANSCRIPTION FACTOR MASH1; TRANSCRIPTION FACTOR SNF; TRANSFER RNA; UNCLASSIFIED DRUG; UNTRANSLATED RNA;

EID: 77957606554     PISSN: 00778923     EISSN: 17496632     Source Type: Book Series    
DOI: 10.1111/j.1749-6632.2010.05718.x     Document Type: Article
Times cited : (18)

References (181)
  • 1
    • 57049151436 scopus 로고    scopus 로고
    • Epigenetic principles and mechanisms underlying nervous systemfunctions in health and disease
    • Mehler, M.F. 2008. Epigenetic principles and mechanisms underlying nervous systemfunctions in health and disease. Prog. Neurobiol. 86: 305-341.
    • (2008) Prog. Neurobiol. , vol.86 , pp. 305-341
    • Mehler, M.F.1
  • 2
    • 22844457491 scopus 로고    scopus 로고
    • DNA methylation and human disease
    • Robertson, K.D. 2005. DNA methylation and human disease. Nat. Rev. Genet. 6: 597-610.
    • (2005) Nat. Rev. Genet. , vol.6 , pp. 597-610
    • Robertson, K.D.1
  • 3
    • 0035839136 scopus 로고    scopus 로고
    • Translating the histone code
    • Jenuwein, T. & C.D. Allis. 2001. Translating the histone code. Science 293: 1074-1080.
    • (2001) Science , vol.293 , pp. 1074-1080
    • Jenuwein, T.1    Allis, C.D.2
  • 4
    • 33847076849 scopus 로고    scopus 로고
    • Chromatin modifications and their function
    • Kouzarides, T. 2007. Chromatin modifications and their function. Cell 128: 693-705.
    • (2007) Cell , vol.128 , pp. 693-705
    • Kouzarides, T.1
  • 5
    • 65249157050 scopus 로고    scopus 로고
    • Epigenetics, DNA methylation, and chromatin modifying drugs
    • Szyf, M. 2009. Epigenetics, DNA methylation, and chromatin modifying drugs. Annu. Rev. Pharmacol. Toxicol. 49: 243-263.
    • (2009) Annu. Rev. Pharmacol. Toxicol. , vol.49 , pp. 243-263
    • Szyf, M.1
  • 6
    • 70249121045 scopus 로고    scopus 로고
    • The logic of chromatin architecture and remodelling at promoters
    • Cairns, B.R. 2009. The logic of chromatin architecture and remodelling at promoters. Nature 461: 193-198.
    • (2009) Nature , vol.461 , pp. 193-198
    • Cairns, B.R.1
  • 7
    • 69249216410 scopus 로고    scopus 로고
    • A 'higher order' of telomere regulation: telomere heterochromatin and telomeric RNAs
    • Schoeftner, S. & M.A. Blasco. 2009. A 'higher order' of telomere regulation: telomere heterochromatin and telomeric RNAs. EMBO J. 28: 2323-2336.
    • (2009) EMBO J , vol.28 , pp. 2323-2336
    • Schoeftner, S.1    Blasco, M.A.2
  • 8
    • 44349186294 scopus 로고    scopus 로고
    • Epigenetic regulation of heterochromatic DNA stability
    • Peng, J.C. & G.H. Karpen. 2008. Epigenetic regulation of heterochromatic DNA stability. Curr. Opin. Genet. Dev. 18: 204-211.
    • (2008) Curr. Opin. Genet. Dev. , vol.18 , pp. 204-211
    • Peng, J.C.1    Karpen, G.H.2
  • 9
    • 58549109636 scopus 로고    scopus 로고
    • X chromosome dosage compensation: how mammals keep the balance
    • Payer, B. & J.T. Lee. 2008. X chromosome dosage compensation: how mammals keep the balance. Annu. Rev. Genet. 42: 733-772.
    • (2008) Annu. Rev. Genet. , vol.42 , pp. 733-772
    • Payer, B.1    Lee, J.T.2
  • 10
    • 59849088220 scopus 로고    scopus 로고
    • RNA regulation of epigenetic processes
    • Mattick, J.S. et al. 2009. RNA regulation of epigenetic processes. Bioessays 31: 51-59.
    • (2009) Bioessays , vol.31 , pp. 51-59
    • Mattick, J.S.1
  • 11
    • 70350126990 scopus 로고    scopus 로고
    • Regulation of noncoding RNA networks in the nervous system-what's the REST of the story?
    • Qureshi, I.A. & M.F. Mehler. 2009. Regulation of noncoding RNA networks in the nervous system-what's the REST of the story? Neurosci. Lett. 466: 73-80.
    • (2009) Neurosci. Lett. , vol.466 , pp. 73-80
    • Qureshi, I.A.1    Mehler, M.F.2
  • 12
    • 71849119231 scopus 로고    scopus 로고
    • Nuclear organization in the 3D space of the nucleus -cause or consequence?
    • Nunez, E., X.D. Fu & M.G. Rosenfeld. 2009. Nuclear organization in the 3D space of the nucleus - cause or consequence? Curr. Opin. Genet. Dev. 19: 424-436.
    • (2009) Curr. Opin. Genet. Dev. , vol.19 , pp. 424-436
    • Nunez, E.1    Fu, X.D.2    Rosenfeld, M.G.3
  • 14
    • 33846283384 scopus 로고    scopus 로고
    • Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions
    • Lanctot, C. et al. 2007. Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat. Rev. Genet. 8: 104-115.
    • (2007) Nat. Rev. Genet. , vol.8 , pp. 104-115
    • Lanctot, C.1
  • 15
    • 77956651480 scopus 로고    scopus 로고
    • Differentiation and large scale spatial organization of the genome
    • Jun 17. [Epub ahead of print]
    • Joffe, B., H. Leonhardt & I. Solovei. 2010. Differentiation and large scale spatial organization of the genome. Curr. Opin. Genet. Dev. Jun 17. [Epub ahead of print].
    • (2010) Curr. Opin. Genet. Dev
    • Joffe, B.1    Leonhardt, H.2    Solovei, I.3
  • 16
    • 24644519490 scopus 로고    scopus 로고
    • The transcriptional landscape of the mammalian genome
    • Carninci, P. et al. 2005. The transcriptional landscape of the mammalian genome. Science 309: 1559-1563.
    • (2005) Science , vol.309 , pp. 1559-1563
    • Carninci, P.1
  • 17
    • 24644472515 scopus 로고    scopus 로고
    • Antisense transcription in the mammalian transcriptome
    • Katayama, S. et al. 2005. Antisense transcription in the mammalian transcriptome. Science 309: 1564-1566.
    • (2005) Science , vol.309 , pp. 1564-1566
    • Katayama, S.1
  • 18
    • 34250305146 scopus 로고    scopus 로고
    • Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project
    • Birney, E. et al. 2007. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447: 799-816.
    • (2007) Nature , vol.447 , pp. 799-816
    • Birney, E.1
  • 19
    • 73949085491 scopus 로고    scopus 로고
    • Non-coding RNAs: regulators of disease
    • Taft, R.J. et al. 2010. Non-coding RNAs: regulators of disease. J. Pathol. 220: 126-139.
    • (2010) J. Pathol. , vol.220 , pp. 126-139
    • Taft, R.J.1
  • 21
    • 77951922861 scopus 로고    scopus 로고
    • Molecular diversity through RNA editing: a balancing act
    • Farajollahi, S.&S.Maas. 2010.Molecular diversity through RNA editing: a balancing act. Trends Genet. 26: 221-230.
    • (2010) Trends Genet , vol.26 , pp. 221-230
    • Farajollahi, S.1    Maas, S.2
  • 22
    • 0035146907 scopus 로고    scopus 로고
    • Transcriptional repression, apoptosis, human disease and the functional evolution of the nuclear lamina
    • Cohen, M. et al. 2001. Transcriptional repression, apoptosis, human disease and the functional evolution of the nuclear lamina. Trends Biochem. Sci. 26: 41-47.
    • (2001) Trends Biochem. Sci. , vol.26 , pp. 41-47
    • Cohen, M.1
  • 23
    • 0036178210 scopus 로고    scopus 로고
    • Homozygous defects in LMNA, encoding lamin A/C nuclear-envelope proteins, cause autosomal recessive axonal neuropathy in human (Charcot-Marie-Tooth disorder type 2) and mouse
    • De Sandre-Giovannoli, A. et al. 2002. Homozygous defects in LMNA, encoding lamin A/C nuclear-envelope proteins, cause autosomal recessive axonal neuropathy in human (Charcot-Marie-Tooth disorder type 2) and mouse. Am. J. Hum. Genet. 70: 726-736.
    • (2002) Am. J. Hum. Genet. , vol.70 , pp. 726-736
    • De Sandre-Giovannoli, A.1
  • 24
    • 28744442194 scopus 로고    scopus 로고
    • Induction of inclusion formation and disruption of lamin A/C structure by premutation CGG-repeat RNA in human cultured neural cells
    • Arocena, D.G. et al. 2005. Induction of inclusion formation and disruption of lamin A/C structure by premutation CGG-repeat RNA in human cultured neural cells. Hum. Mol. Genet. 14: 3661-3671.
    • (2005) Hum. Mol. Genet. , vol.14 , pp. 3661-3671
    • Arocena, D.G.1
  • 25
    • 33749045115 scopus 로고    scopus 로고
    • Lamin B1 duplications cause autosomal dominant leukodystrophy
    • Padiath, Q.S. et al. 2006. Lamin B1 duplications cause autosomal dominant leukodystrophy. Nat. Genet. 38: 1114-1123.
    • (2006) Nat. Genet. , vol.38 , pp. 1114-1123
    • Padiath, Q.S.1
  • 26
    • 33644916708 scopus 로고    scopus 로고
    • Nuclear pore complex proteins in Alzheimer disease
    • Sheffield, L.G. et al. 2006.Nuclear pore complex proteins in Alzheimer disease. J. Neuropathol. Exp. Neurol. 65: 45-54.
    • (2006) J. Neuropathol. Exp. Neurol. , vol.65 , pp. 45-54
    • Sheffield, L.G.1
  • 27
    • 33745016642 scopus 로고    scopus 로고
    • Mutant nuclear laminAleads to progressive alterations of epigenetic control in premature aging
    • Shumaker, D.K. et al. 2006.Mutant nuclear laminAleads to progressive alterations of epigenetic control in premature aging. Proc. Natl. Acad. Sci. USA 103: 8703-8708.
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 8703-8708
    • Shumaker, D.K.1
  • 28
    • 33750619522 scopus 로고    scopus 로고
    • Pre-neurodegeneration of mitral cells in the pcd mutant mouse is associated with DNA damage, transcriptional repression, and reorganization of nuclear speckles and Cajal bodies
    • Valero, J. et al. 2006. Pre-neurodegeneration of mitral cells in the pcd mutant mouse is associated with DNA damage, transcriptional repression, and reorganization of nuclear speckles and Cajal bodies. Mol. Cell Neurosci. 33: 283-295.
    • (2006) Mol. Cell Neurosci. , vol.33 , pp. 283-295
    • Valero, J.1
  • 30
    • 45549092483 scopus 로고    scopus 로고
    • Role of DNA dynamics in Alzheimer's disease
    • Vasudevaraju, P. et al. 2008. Role of DNA dynamics in Alzheimer's disease. Brain Res. Rev. 58: 136-148.
    • (2008) Brain Res. Rev , vol.58 , pp. 136-148
    • Vasudevaraju, P.1
  • 31
    • 53249095885 scopus 로고    scopus 로고
    • Nuclear bodies in neurodegenerative disease
    • Woulfe, J. 2008. Nuclear bodies in neurodegenerative disease. Biochim. Biophys. Acta. 1783: 2195-2206.
    • (2008) Biochim. Biophys. Acta. , vol.1783 , pp. 2195-2206
    • Woulfe, J.1
  • 32
    • 77951196062 scopus 로고    scopus 로고
    • Cohesinopathies, gene expression, andchromatin organization
    • Bose, T. & J.L. Gerton. 2010. Cohesinopathies, gene expression, andchromatin organization. J. Cell Biol. 189: 201-210.
    • (2010) J. Cell Biol. , vol.189 , pp. 201-210
    • Bose, T.1    Gerton, J.L.2
  • 33
    • 70449535896 scopus 로고    scopus 로고
    • Co-localization of the amyloid precursor protein and Notch intracellular domains in nuclear transcription factories
    • Konietzko, U. et al. 2010. Co-localization of the amyloid precursor protein and Notch intracellular domains in nuclear transcription factories. Neurobiol. Aging. 31: 58-73.
    • (2010) Neurobiol. Aging. , vol.31 , pp. 58-73
    • Konietzko, U.1
  • 36
    • 34548432104 scopus 로고    scopus 로고
    • Raising the estimate of functional human sequences
    • Pheasant, M. & J.S. Mattick. 2007. Raising the estimate of functional human sequences. Genome. Res. 17: 1245-1253.
    • (2007) Genome. Res. , vol.17 , pp. 1245-1253
    • Pheasant, M.1    Mattick, J.S.2
  • 37
    • 70249129382 scopus 로고    scopus 로고
    • Implications of chimaeric non-colinear transcripts
    • Gingeras, T.R. 2009. Implications of chimaeric non-colinear transcripts. Nature 461: 206-211.
    • (2009) Nature , vol.461 , pp. 206-211
    • Gingeras, T.R.1
  • 38
    • 70349306246 scopus 로고    scopus 로고
    • Asystems biology approach to understanding cis-regulatory module function
    • Jeziorska, D.M., K.W. Jordan&K.W.Vance. 2009.Asystems biology approach to understanding cis-regulatory module function. Semin. Cell Dev. Biol. 20: 856-862.
    • (2009) Semin. Cell Dev. Biol. , vol.20 , pp. 856-862
    • Jeziorska, D.M.1    Jordan, K.W.2    Vance, K.W.3
  • 39
    • 34250369629 scopus 로고    scopus 로고
    • Prominent use of distal 5' transcription start sites and discovery of a large number of additional exons in ENCODE regions
    • Denoeud, F. et al. 2007. Prominent use of distal 5' transcription start sites and discovery of a large number of additional exons in ENCODE regions. Genome. Res. 17: 746-759.
    • (2007) Genome. Res. , vol.17 , pp. 746-759
    • Denoeud, F.1
  • 40
    • 77149139820 scopus 로고    scopus 로고
    • Enhancers: the abundance and function of regulatory sequences beyond promoters
    • Bulger, M.&M.Groudine. 2010. Enhancers: the abundance and function of regulatory sequences beyond promoters. Dev. Biol. 339: 250-257.
    • (2010) Dev. Biol. , vol.339 , pp. 250-257
    • Bulger, M.1    Groudine, M.2
  • 41
    • 70349542588 scopus 로고    scopus 로고
    • Close encounters of the 3C kind: long-range chromatin interactions and transcriptional regulation
    • Theo Sijtse Palstra, R.J. 2009. Close encounters of the 3C kind: long-range chromatin interactions and transcriptional regulation. Brief Funct. Genomic. Proteomic. 8: 297-309.
    • (2009) Brief Funct. Genomic. Proteomic. , vol.8 , pp. 297-309
    • Theo Sijtse Palstra, R.J.1
  • 42
    • 35548990188 scopus 로고    scopus 로고
    • We gather together: insulators and genome organization
    • Wallace, J.A. & G. Felsenfeld. 2007. We gather together: insulators and genome organization. Curr. Opin. Genet. Dev. 17: 400-407.
    • (2007) Curr. Opin. Genet. Dev. , vol.17 , pp. 400-407
    • Wallace, J.A.1    Felsenfeld, G.2
  • 43
    • 74949102277 scopus 로고    scopus 로고
    • DoesCTCF mediate between nuclear organization and gene expression?
    • Ohlsson, R., V. Lobanenkov&E.Klenova. 2010. DoesCTCF mediate between nuclear organization and gene expression? Bioessays 32: 37-50.
    • (2010) Bioessays , vol.32 , pp. 37-50
    • Ohlsson, R.1    Lobanenkov, V.2    Klenova, E.3
  • 44
    • 77952563619 scopus 로고    scopus 로고
    • Insulators and promoters: closer than we think
    • Raab, J.R. & R.T. Kamakaka. 2010. Insulators and promoters: closer than we think. Nat. Rev. Genet. 11: 439-446.
    • (2010) Nat. Rev. Genet. , vol.11 , pp. 439-446
    • Raab, J.R.1    Kamakaka, R.T.2
  • 45
    • 34247341747 scopus 로고    scopus 로고
    • H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state
    • Brickner, D.G. et al. 2007. H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol. 5: e81.
    • (2007) PLoS Biol , vol.5
    • Brickner, D.G.1
  • 46
    • 17644369665 scopus 로고    scopus 로고
    • Variant histone H3.3 marks promoters of transcriptionally active genes during mammalian cell division
    • Chow, C.M. et al. 2005. Variant histone H3.3 marks promoters of transcriptionally active genes during mammalian cell division. EMBO Rep. 6: 354-360.
    • (2005) EMBO Rep , vol.6 , pp. 354-360
    • Chow, C.M.1
  • 47
    • 77649099092 scopus 로고    scopus 로고
    • Distinct factors control histone variant H3.3 localization at specific genomic regions
    • Goldberg, A.D. et al. 2010. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140: 678-691.
    • (2010) Cell , vol.140 , pp. 678-691
    • Goldberg, A.D.1
  • 48
    • 33749157645 scopus 로고    scopus 로고
    • Nuclear and chromatin reorganization in the MHC-Oct3/4 locus at developmental phases of embryonic stem cell differentiation
    • Aoto, T. et al. 2006. Nuclear and chromatin reorganization in the MHC-Oct3/4 locus at developmental phases of embryonic stem cell differentiation. Dev. Biol. 298: 354-367.
    • (2006) Dev. Biol. , vol.298 , pp. 354-367
    • Aoto, T.1
  • 49
    • 77954041258 scopus 로고    scopus 로고
    • REST andCoREST modulate neuronal subtype specification, maturation and maintenance
    • Abrajano, J.J. et al. 2009. REST andCoREST modulate neuronal subtype specification, maturation and maintenance. PLoS One. 4: e7936.
    • (2009) PLoS One , vol.4
    • Abrajano, J.J.1
  • 50
    • 70449578270 scopus 로고    scopus 로고
    • Differential deployment of REST and CoREST promotes glial subtype specification and oligodendrocyte lineage maturation
    • Abrajano, J.J. et al. 2009. Differential deployment of REST and CoREST promotes glial subtype specification and oligodendrocyte lineage maturation. PLoS One 4: e7665.
    • (2009) PLoS One , vol.4
    • Abrajano, J.J.1
  • 51
    • 70350460793 scopus 로고    scopus 로고
    • Deconstructing the dogma: a new view of the evolution and genetic programming of complex organisms
    • Mattick, J.S. 2009. Deconstructing the dogma: a new view of the evolution and genetic programming of complex organisms. Ann. N.Y. Acad. Sci. 1178: 29-46.
    • (2009) Ann. N.Y. Acad. Sci. , vol.1178 , pp. 29-46
    • Mattick, J.S.1
  • 52
    • 77952487819 scopus 로고    scopus 로고
    • Jumping genes and epigenetics: Towards new species
    • Rebollo, R. et al. 2010. Jumping genes and epigenetics: Towards new species. Gene 454: 1-7.
    • (2010) Gene , vol.454 , pp. 1-7
    • Rebollo, R.1
  • 53
    • 69349096044 scopus 로고    scopus 로고
    • L1 retrotransposition in human neural progenitor cells
    • Coufal, N.G. et al. 2009. L1 retrotransposition in human neural progenitor cells. Nature 460: 1127-1131.
    • (2009) Nature , vol.460 , pp. 1127-1131
    • Coufal, N.G.1
  • 54
    • 67349173665 scopus 로고    scopus 로고
    • The regulated retrotransposon transcriptome of mammalian cells
    • Faulkner, G.J. et al. 2009. The regulated retrotransposon transcriptome of mammalian cells. Nat. Genet. 41: 563-571.
    • (2009) Nat. Genet. , vol.41 , pp. 563-571
    • Faulkner, G.J.1
  • 55
    • 63149101534 scopus 로고    scopus 로고
    • Small regulatory RNAs in neurodevelopmental disorders
    • Chang, S. et al. 2009. Small regulatory RNAs in neurodevelopmental disorders. Hum. Mol. Genet. 18: R18-R26.
    • (2009) Hum. Mol. Genet. , vol.18
    • Chang, S.1
  • 56
    • 70350238350 scopus 로고    scopus 로고
    • The biogenesis and function of PIWI proteins and piRNAs: progress and prospect
    • Thomson, T.&H. Lin. 2009. The biogenesis and function of PIWI proteins and piRNAs: progress and prospect. Annu. Rev. Cell Dev. Biol. 25: 355-376.
    • (2009) Annu. Rev. Cell Dev. Biol. , vol.25 , pp. 355-376
    • Thomson, T.1    Lin, H.2
  • 57
    • 65549118489 scopus 로고    scopus 로고
    • Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies
    • Li, C. et al. 2009. Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies. Cell 137: 509-521.
    • (2009) Cell , vol.137 , pp. 509-521
    • Li, C.1
  • 58
    • 67651034231 scopus 로고    scopus 로고
    • Fine-tuning neural gene expression with microRNAs
    • Schratt, G. 2009. Fine-tuning neural gene expression with microRNAs. Curr. Opin. Neurobiol. 19: 213-219.
    • (2009) Curr. Opin. Neurobiol. , vol.19 , pp. 213-219
    • Schratt, G.1
  • 59
    • 77952581350 scopus 로고    scopus 로고
    • Long noncodingRNAs in nervous systemfunction and disease
    • Qureshi, I.A., J.S. Mattick & M.F.Mehler. 2010. Long noncodingRNAs in nervous systemfunction and disease. Brain Res. 1338: 20-35.
    • (2010) Brain Res , vol.1338 , pp. 20-35
    • Qureshi, I.A.1    Mattick, J.S.2    Mehler, M.F.3
  • 60
  • 61
    • 38649114329 scopus 로고    scopus 로고
    • Specific expression of long noncoding RNAs in themouse brain
    • Mercer, T.R. et al. 2008. Specific expression of long noncoding RNAs in themouse brain. Proc.Natl. Acad. Sci. USA 105: 716-721.
    • (2008) Proc.Natl. Acad. Sci. USA , vol.105 , pp. 716-721
    • Mercer, T.R.1
  • 62
    • 70149123708 scopus 로고    scopus 로고
    • Genomic and transcriptional colocalization of protein-coding and long non-coding RNA pairs in the developing brain
    • Ponjavic, J. et al. 2009. Genomic and transcriptional colocalization of protein-coding and long non-coding RNA pairs in the developing brain. PLoS Genet. 5: e1000617.
    • (2009) PLoS Genet , vol.5
    • Ponjavic, J.1
  • 63
    • 70350772348 scopus 로고    scopus 로고
    • MicroRNAs potentiate neural development
    • Fineberg, S.K., K.S. Kosik & B.L. Davidson. 2009. MicroRNAs potentiate neural development. Neuron 64: 303-309.
    • (2009) Neuron , vol.64 , pp. 303-309
    • Fineberg, S.K.1    Kosik, K.S.2    Davidson, B.L.3
  • 64
    • 40649106258 scopus 로고    scopus 로고
    • Non-coding RNAs in imprinted gene clusters
    • Royo, H. & J. Cavaille. 2008. Non-coding RNAs in imprinted gene clusters. Biol Cell 100: 149-166.
    • (2008) Biol Cell , vol.100 , pp. 149-166
    • Royo, H.1    Cavaille, J.2
  • 65
    • 34249724360 scopus 로고    scopus 로고
    • Noncoding RNAs and RNA editing in brain development, functional diversification, and neurological disease
    • Mehler, M.F. & J.S. Mattick. 2007. Noncoding RNAs and RNA editing in brain development, functional diversification, and neurological disease. Physiol. Rev. 87: 799-823.
    • (2007) Physiol. Rev , vol.87 , pp. 799-823
    • Mehler, M.F.1    Mattick, J.S.2
  • 66
    • 76649122999 scopus 로고    scopus 로고
    • Long noncodingRNAs in neuronalglial fate specification and oligodendrocyte lineage maturation
    • Mercer, T.R. et al. 2010. Long noncodingRNAs in neuronalglial fate specification and oligodendrocyte lineage maturation. BMC Neurosci. 11: 14.
    • (2010) BMC Neurosci , vol.11 , pp. 14
    • Mercer, T.R.1
  • 67
    • 50649118350 scopus 로고    scopus 로고
    • Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation
    • Dinger, M.E. et al. 2008. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res. 18: 1433-1445.
    • (2008) Genome Res , vol.18 , pp. 1433-1445
    • Dinger, M.E.1
  • 68
    • 75149163987 scopus 로고    scopus 로고
    • Conserved long noncoding RNAs transcriptionally regulated byOct4 andNanogmodulate pluripotency in mouse embryonic stem cells
    • Sheik Mohamed, J. et al. 2010. Conserved long noncoding RNAs transcriptionally regulated byOct4 andNanogmodulate pluripotency in mouse embryonic stem cells. RNA 16: 324-337.
    • (2010) RNA , vol.16 , pp. 324-337
    • Sheik Mohamed, J.1
  • 69
    • 77952293063 scopus 로고    scopus 로고
    • Functions and Regulation ofRNAEditing by ADAR Deaminases
    • Nishikura, K. 2009. Functions and Regulation ofRNAEditing by ADAR Deaminases. Annu. Rev. Biochem. 79: 321-349.
    • (2009) Annu. Rev. Biochem. , vol.79 , pp. 321-349
    • Nishikura, K.1
  • 70
    • 77955455395 scopus 로고    scopus 로고
    • Adenosine-to-inosineRNAediting shapes transcriptome diversity in primates
    • Paz-Yaacov, N. et al. 2010.Adenosine-to-inosineRNAediting shapes transcriptome diversity in primates. Proc. Natl. Acad. Sci. USA 107: 12174-12179.
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 12174-12179
    • Paz-Yaacov, N.1
  • 71
    • 61349086000 scopus 로고    scopus 로고
    • Activation of toll-like receptor-3 induces interferon-lambda expression in human neuronal cells
    • Zhou, L. et al. 2009. Activation of toll-like receptor-3 induces interferon-lambda expression in human neuronal cells. Neuroscience 159: 629-637.
    • (2009) Neuroscience , vol.159 , pp. 629-637
    • Zhou, L.1
  • 72
    • 34250870205 scopus 로고    scopus 로고
    • APOBEC3 proteins: major players in intracellular defence against LINE-1-mediated retrotransposition
    • Schumann, G.G. 2007. APOBEC3 proteins: major players in intracellular defence against LINE-1-mediated retrotransposition. Biochem. Soc. Trans. 35: 637-642.
    • (2007) Biochem. Soc. Trans. , vol.35 , pp. 637-642
    • Schumann, G.G.1
  • 74
    • 76649143072 scopus 로고    scopus 로고
    • Assessment of the role of MAP kinase in mediating activity-dependent transcriptional activation of the immediate early gene Arc/Arg3.1 in the dentate gyrus in vivo
    • Chotiner, J.K. et al. 2010. Assessment of the role of MAP kinase in mediating activity-dependent transcriptional activation of the immediate early gene Arc/Arg3.1 in the dentate gyrus in vivo. Learn Mem. 17: 117-129.
    • (2010) Learn Mem , vol.17 , pp. 117-129
    • Chotiner, J.K.1
  • 75
    • 72149095755 scopus 로고    scopus 로고
    • Eukaryotic stress granules: the ins and outs of translation
    • Buchan, J.R. & R. Parker. 2009. Eukaryotic stress granules: the ins and outs of translation. Mol. Cell. 36: 932-941.
    • (2009) Mol. Cell. , vol.36 , pp. 932-941
    • Buchan, J.R.1    Parker, R.2
  • 76
    • 66249103703 scopus 로고    scopus 로고
    • RNA granules: posttranscriptional and epigenetic modulators of gene expression
    • Anderson, P. & N. Kedersha. 2009. RNA granules: posttranscriptional and epigenetic modulators of gene expression. Nat. Rev. Mol. Cell Biol. 10: 430-436.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 430-436
    • Anderson, P.1    Kedersha, N.2
  • 78
    • 60049097909 scopus 로고    scopus 로고
    • The ribonome: a dominant force in co-ordinating gene expression
    • Mansfield, K.D.&J.D. Keene. 2009. The ribonome: a dominant force in co-ordinating gene expression. Biol. Cell. 101: 169-181.
    • (2009) Biol. Cell. , vol.101 , pp. 169-181
    • Mansfield, K.D.1    Keene, J.D.2
  • 79
    • 33750681957 scopus 로고    scopus 로고
    • eIF4E is a central node of an RNA regulon that governs cellular proliferation
    • Culjkovic, B. et al. 2006. eIF4E is a central node of an RNA regulon that governs cellular proliferation. J. Cell Biol. 175: 415-426.
    • (2006) J. Cell Biol. , vol.175 , pp. 415-426
    • Culjkovic, B.1
  • 81
    • 0141483742 scopus 로고    scopus 로고
    • Transport of dsRNA into cells by the transmembrane protein SID-1
    • Feinberg, E.H. & C.P. Hunter. 2003. Transport of dsRNA into cells by the transmembrane protein SID-1. Science 301: 1545-1547.
    • (2003) Science , vol.301 , pp. 1545-1547
    • Feinberg, E.H.1    Hunter, C.P.2
  • 82
    • 69849086481 scopus 로고    scopus 로고
    • Exosome release by primary B cells
    • McLellan, A.D. 2009. Exosome release by primary B cells. Crit. Rev. Immunol. 29: 203-217.
    • (2009) Crit. Rev. Immunol. , vol.29 , pp. 203-217
    • McLellan, A.D.1
  • 83
    • 78149340134 scopus 로고    scopus 로고
    • DoNeural CellsCommunicatewith Endothelial Cells via Secretory Exosomes and Microvesicles?
    • Article ID 383086
    • Smalheiser, N.R. 2009. DoNeural CellsCommunicatewith Endothelial Cells via Secretory Exosomes and Microvesicles? Cardiovasc. Psychiatry Neurol. Article ID 383086.
    • (2009) Cardiovasc Psychiatry Neurol
    • Smalheiser, N.R.1
  • 84
    • 52449130135 scopus 로고    scopus 로고
    • Noncoding RNAs in long-term memory formation
    • Mercer, T.R. et al. 2008. Noncoding RNAs in long-term memory formation. Neuroscientist 14: 434-445.
    • (2008) Neuroscientist , vol.14 , pp. 434-445
    • Mercer, T.R.1
  • 85
    • 75749091133 scopus 로고    scopus 로고
    • Microfluidic isolation and transcriptome analysis of serum microvesicles
    • Chen, C. et al. 2010. Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip 10: 505-511.
    • (2010) Lab Chip , vol.10 , pp. 505-511
    • Chen, C.1
  • 86
    • 57049103401 scopus 로고    scopus 로고
    • Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers
    • Skog, J. et al. 2008. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. 10: 1470-1476.
    • (2008) Nat. Cell Biol. , vol.10 , pp. 1470-1476
    • Skog, J.1
  • 87
    • 48249125095 scopus 로고    scopus 로고
    • Structural principles from large RNAs
    • Holbrook, S.R. 2008. Structural principles from large RNAs. Annu. Rev. Biophys. 37: 445-464.
    • (2008) Annu. Rev. Biophys. , vol.37 , pp. 445-464
    • Holbrook, S.R.1
  • 88
    • 29444457713 scopus 로고    scopus 로고
    • Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function
    • Pang, K.C., M.C. Frith & J.S. Mattick. 2006. Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends Genet. 22: 1-5.
    • (2006) Trends Genet , vol.22 , pp. 1-5
    • Pang, K.C.1    Frith, M.C.2    Mattick, J.S.3
  • 89
    • 54549105804 scopus 로고    scopus 로고
    • S-box and T-box riboswitches and antisense RNA control a sulfur metabolic operon of Clostridium acetobutylicum
    • Andre, G. et al. 2008. S-box and T-box riboswitches and antisense RNA control a sulfur metabolic operon of Clostridium acetobutylicum. Nucleic Acids Res. 36: 5955-5969.
    • (2008) Nucleic Acids Res , vol.36 , pp. 5955-5969
    • Andre, G.1
  • 90
    • 42149091618 scopus 로고    scopus 로고
    • Riboswitches that sense S-adenosylmethionine and S-adenosylhomocysteine
    • Wang, J.X. & R.R. Breaker. 2008. Riboswitches that sense S-adenosylmethionine and S-adenosylhomocysteine. Biochem. Cell Biol. 86: 157-168.
    • (2008) Biochem. Cell Biol. , vol.86 , pp. 157-168
    • Wang, J.X.1    Breaker, R.R.2
  • 91
    • 84897585709 scopus 로고    scopus 로고
    • In-line probing analysis of riboswitches
    • Regulski, E.E.&R.R.Breaker. 2008. In-line probing analysis of riboswitches. Methods Mol. Biol. 419: 53-67.
    • (2008) Methods Mol. Biol. , vol.419 , pp. 53-67
    • Regulski, E.E.1    Breaker, R.R.2
  • 92
    • 46349083026 scopus 로고    scopus 로고
    • The distributions,mechanisms, and structures of metabolite-binding riboswitches
    • Barrick, J.E.&R.R. Breaker. 2007. The distributions,mechanisms, and structures of metabolite-binding riboswitches. Genome Biol. 8: R239.
    • (2007) Genome Biol , vol.8
    • Barrick, J.E.1    Breaker, R.R.2
  • 93
    • 36549083651 scopus 로고    scopus 로고
    • RNA catalysis: ribozymes, ribosomes, and riboswitches
    • Strobel, S.A. & J.C. Cochrane. 2007. RNA catalysis: ribozymes, ribosomes, and riboswitches. Curr. Opin. Chem. Biol. 11: 636-643.
    • (2007) Curr. Opin. Chem. Biol. , vol.11 , pp. 636-643
    • Strobel, S.A.1    Cochrane, J.C.2
  • 95
    • 34250613153 scopus 로고    scopus 로고
    • Sensing metabolic signals with nascent RNA transcripts: the T box and S box riboswitches as paradigms
    • Henkin, T.M. & F.J. Grundy. 2006. Sensing metabolic signals with nascent RNA transcripts: the T box and S box riboswitches as paradigms. Cold Spring Harb. Symp. Quant Biol. 71: 231-237.
    • (2006) Cold Spring Harb. Symp. Quant Biol. , vol.71 , pp. 231-237
    • Henkin, T.M.1    Grundy, F.J.2
  • 96
    • 33746361251 scopus 로고    scopus 로고
    • The role of iron regulatory proteins in mammalian iron homeostasis and disease
    • Rouault, T.A. 2006. The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat. Chem. Biol. 2: 406-414.
    • (2006) Nat. Chem. Biol. , vol.2 , pp. 406-414
    • Rouault, T.A.1
  • 97
    • 59149101704 scopus 로고    scopus 로고
    • Iron and the translation of the amyloid precursor protein (APP) and ferritinmRNAs: riboregulation against neural oxidative damage in Alzheimer's disease
    • Rogers, J.T. et al. 2008. Iron and the translation of the amyloid precursor protein (APP) and ferritinmRNAs: riboregulation against neural oxidative damage in Alzheimer's disease. Biochem. Soc. Trans. 36: 1282-1287.
    • (2008) Biochem. Soc. Trans. , vol.36 , pp. 1282-1287
    • Rogers, J.T.1
  • 98
    • 34347205992 scopus 로고    scopus 로고
    • Z-DNA, an active element in the genome
    • Wang, G. & K.M. Vasquez. 2007. Z-DNA, an active element in the genome. Front Biosci. 12: 4424-4438.
    • (2007) Front Biosci , vol.12 , pp. 4424-4438
    • Wang, G.1    Vasquez, K.M.2
  • 99
    • 33645228949 scopus 로고    scopus 로고
    • Cooperative activity of BRG1 and ZDNA formation in chromatin remodeling
    • Liu, H. et al. 2006. Cooperative activity of BRG1 and ZDNA formation in chromatin remodeling. Mol. Cell Biol. 26: 2550-2559.
    • (2006) Mol. Cell Biol. , vol.26 , pp. 2550-2559
    • Liu, H.1
  • 100
    • 34047263964 scopus 로고    scopus 로고
    • A left-handed RNA double helix bound by the Z alpha domain of the RNA-editing enzyme ADAR1
    • Placido, D. et al. 2007. A left-handed RNA double helix bound by the Z alpha domain of the RNA-editing enzyme ADAR1. Structure 15: 395-404.
    • (2007) Structure , vol.15 , pp. 395-404
    • Placido, D.1
  • 102
    • 77953893804 scopus 로고    scopus 로고
    • The nuclear pore complex: bridging nuclear transport and gene regulation
    • Strambio-De-Castillia, C., M. Niepel & M.P. Rout. 2010. The nuclear pore complex: bridging nuclear transport and gene regulation. Nat. Rev. Mol. Cell Biol. 11: 490-501.
    • (2010) Nat. Rev. Mol. Cell Biol. , vol.11 , pp. 490-501
    • Strambio-De-Castillia, C.1    Niepel, M.2    Rout, M.P.3
  • 104
    • 0035316574 scopus 로고    scopus 로고
    • Chromosome territories, nuclear architecture and gene regulation in mammalian cells
    • Cremer, T. & C. Cremer. 2001. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2: 292-301.
    • (2001) Nat. Rev. Genet. , vol.2 , pp. 292-301
    • Cremer, T.1    Cremer, C.2
  • 105
    • 70349873824 scopus 로고    scopus 로고
    • Comprehensive mapping of long-range interactions reveals folding principles of the human genome
    • Lieberman-Aiden, E. et al. 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326: 289-293.
    • (2009) Science , vol.326 , pp. 289-293
    • Lieberman-Aiden, E.1
  • 106
    • 33748289518 scopus 로고    scopus 로고
    • Characterization of the Drosophila melanogaster genome at the nuclear lamina
    • Pickersgill, H. et al. 2006. Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat. Genet. 38: 1005-1014.
    • (2006) Nat. Genet. , vol.38 , pp. 1005-1014
    • Pickersgill, H.1
  • 107
    • 38349043904 scopus 로고    scopus 로고
    • A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence
    • Kumaran, R.I. & D.L. Spector. 2008. A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence. J. Cell Biol. 180: 51-65.
    • (2008) J. Cell Biol. , vol.180 , pp. 51-65
    • Kumaran, R.I.1    Spector, D.L.2
  • 108
    • 31644436473 scopus 로고    scopus 로고
    • Neural induction promotes large-scale chromatin reorganisation of the Mash1 locus
    • Williams, R.R. et al. 2006. Neural induction promotes large-scale chromatin reorganisation of the Mash1 locus. J. Cell Sci. 119: 132-140.
    • (2006) J. Cell Sci. , vol.119 , pp. 132-140
    • Williams, R.R.1
  • 109
    • 1842855742 scopus 로고    scopus 로고
    • Nuclear organization in differentiating oligodendrocytes
    • Nielsen, J.A., L.D. Hudson & R.C. Armstrong. 2002. Nuclear organization in differentiating oligodendrocytes. J. Cell Sci. 115: 4071-4079.
    • (2002) J. Cell Sci. , vol.115 , pp. 4071-4079
    • Nielsen, J.A.1    Hudson, L.D.2    Armstrong, R.C.3
  • 110
    • 10944261946 scopus 로고    scopus 로고
    • Nuclear repositioning marks the selective exclusion of lineage-inappropriate transcription factor loci during T helper cell differentiation
    • Hewitt, S.L. et al. 2004. Nuclear repositioning marks the selective exclusion of lineage-inappropriate transcription factor loci during T helper cell differentiation. Eur. J. Immunol. 34: 3604-3613.
    • (2004) Eur. J. Immunol. , vol.34 , pp. 3604-3613
    • Hewitt, S.L.1
  • 111
    • 34447627002 scopus 로고    scopus 로고
    • Regulation and epigenetic control of transcription at the nuclear periphery
    • Ahmed, S.&J.H. Brickner. 2007. Regulation and epigenetic control of transcription at the nuclear periphery. Trends Genet. 23: 396-402.
    • (2007) Trends Genet , vol.23 , pp. 396-402
    • Ahmed, S.1    Brickner, J.H.2
  • 112
    • 60749090162 scopus 로고    scopus 로고
    • Transcriptionalmemory at the nuclear periphery
    • Brickner, J.H. 2009. Transcriptionalmemory at the nuclear periphery. Curr. Opin. Cell Biol. 21: 127-133.
    • (2009) Curr. Opin. Cell Biol. , vol.21 , pp. 127-133
    • Brickner, J.H.1
  • 113
    • 34247279134 scopus 로고    scopus 로고
    • SWI/SNF is required for transcriptional memory at the yeast GAL gene cluster
    • Kundu, S., P.J. Horn & C.L. Peterson. 2007. SWI/SNF is required for transcriptional memory at the yeast GAL gene cluster. Genes Dev. 21: 997-1004.
    • (2007) Genes Dev , vol.21 , pp. 997-1004
    • Kundu, S.1    Horn, P.J.2    Peterson, C.L.3
  • 114
    • 72749098124 scopus 로고    scopus 로고
    • Gene loops function to maintain transcriptional memory through interaction with the nuclear pore complex
    • Tan-Wong, S.M., H.D.Wijayatilake&N.J. Proudfoot. 2009. Gene loops function to maintain transcriptional memory through interaction with the nuclear pore complex. Genes Dev. 23: 2610-2624.
    • (2009) Genes Dev , vol.23 , pp. 2610-2624
    • Tan-Wong, S.M.1    Wijayatilake, H.D.2    Proudfoot, N.J.3
  • 115
    • 72749122014 scopus 로고    scopus 로고
    • A physiological role for gene loops in yeast
    • Laine, J.P. et al. 2009. A physiological role for gene loops in yeast. Genes Dev. 23: 2604-2609.
    • (2009) Genes Dev , vol.23 , pp. 2604-2609
    • Laine, J.P.1
  • 116
    • 2142650203 scopus 로고    scopus 로고
    • Nuclear substructure and dynamics
    • Lamond, A.I. & J.E. Sleeman. 2003. Nuclear substructure and dynamics. Curr. Biol. 13: R825-828.
    • (2003) Curr. Biol. , vol.13
    • Lamond, A.I.1    Sleeman, J.E.2
  • 117
    • 34548210885 scopus 로고    scopus 로고
    • Myc dynamically and preferentially relocates to a transcription factory occupied by Igh
    • Osborne, C.S. et al. 2007. Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol. 5: e192.
    • (2007) PLoS Biol , vol.5
    • Osborne, C.S.1
  • 118
    • 73349090560 scopus 로고    scopus 로고
    • Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells
    • Schoenfelder, S. et al. 2010. Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat. Genet. 42: 53-61.
    • (2010) Nat. Genet. , vol.42 , pp. 53-61
    • Schoenfelder, S.1
  • 119
    • 67650541845 scopus 로고    scopus 로고
    • Chromosome conformation capture of all 13 genomic Loci in the transcriptional regulation of the multisubunit bigenomic cytochrome C oxidase in neurons
    • Dhar, S.S., S. Ongwijitwat&M.T.Wong-Riley. 2009. Chromosome conformation capture of all 13 genomic Loci in the transcriptional regulation of the multisubunit bigenomic cytochrome C oxidase in neurons. J. Biol. Chem. 284: 18644-18650.
    • (2009) J. Biol. Chem. , vol.284 , pp. 18644-18650
    • Dhar, S.S.1    Ongwijitwat, S.2    Wong-Riley, M.T.3
  • 120
    • 75749100247 scopus 로고    scopus 로고
    • Poised transcription factories prime silent uPA gene prior to activation
    • Ferrai, C. et al. 2010. Poised transcription factories prime silent uPA gene prior to activation. PLoS Biol. 8: e1000270.
    • (2010) PLoS Biol , vol.8
    • Ferrai, C.1
  • 121
    • 0033546210 scopus 로고    scopus 로고
    • The organization of replication and transcription
    • Cook, P.R. 1999. The organization of replication and transcription. Science 284: 1790-1795.
    • (1999) Science , vol.284 , pp. 1790-1795
    • Cook, P.R.1
  • 122
    • 14644433739 scopus 로고    scopus 로고
    • Dynamics and compartmentation of the nucleolar processing machinery
    • Louvet, E. et al. 2005. Dynamics and compartmentation of the nucleolar processing machinery. Exp. Cell Res. 304: 457-470.
    • (2005) Exp. Cell Res. , vol.304 , pp. 457-470
    • Louvet, E.1
  • 123
    • 18244366043 scopus 로고    scopus 로고
    • Dynamic sorting of nuclear components into distinct nucleolar caps during transcriptional inhibition
    • Shav-Tal, Y. et al. 2005. Dynamic sorting of nuclear components into distinct nucleolar caps during transcriptional inhibition. Mol. Biol. Cell. 16: 2395-2413.
    • (2005) Mol. Biol. Cell. , vol.16 , pp. 2395-2413
    • Shav-Tal, Y.1
  • 124
    • 55849109584 scopus 로고    scopus 로고
    • The epigenetics of rRNA genes: from molecular to chromosome biology
    • McStay, B. & I. Grummt. 2008. The epigenetics of rRNA genes: from molecular to chromosome biology. Annu. Rev. Cell Dev. Biol. 24: 131-157.
    • (2008) Annu. Rev. Cell Dev. Biol. , vol.24 , pp. 131-157
    • McStay, B.1    Grummt, I.2
  • 125
    • 33646147563 scopus 로고    scopus 로고
    • Intergenic transcripts regulate the epigenetic state of rRNA genes
    • Mayer, C. et al. 2006. Intergenic transcripts regulate the epigenetic state of rRNA genes. Mol. Cell. 22: 351-361.
    • (2006) Mol. Cell. , vol.22 , pp. 351-361
    • Mayer, C.1
  • 126
    • 34547212309 scopus 로고    scopus 로고
    • The MicroRNA miR-124 promotes neuronal differentiation by triggering brainspecific alternative pre-mRNA splicing
    • Makeyev, E.V. et al. 2007. The MicroRNA miR-124 promotes neuronal differentiation by triggering brainspecific alternative pre-mRNA splicing. Mol. Cell. 27: 435-448.
    • (2007) Mol. Cell , vol.27 , pp. 435-448
    • Makeyev, E.V.1
  • 127
    • 0035720318 scopus 로고    scopus 로고
    • Genome wide oscillations in expression. Wavelet analysis of time series data from yeast expression arrays uncovers the dynamic architecture of phenotype
    • Klevecz, R.R. & D.B. Murray. 2001. Genome wide oscillations in expression. Wavelet analysis of time series data from yeast expression arrays uncovers the dynamic architecture of phenotype. Mol. Biol. Rep. 28: 73-82.
    • (2001) Mol. Biol. Rep. , vol.28 , pp. 73-82
    • Klevecz, R.R.1    Murray, D.B.2
  • 129
    • 44349123569 scopus 로고    scopus 로고
    • siRNA and miRNA processing: new functions for Cajal bodies
    • Pontes, O. & C.S. Pikaard. 2008. siRNA and miRNA processing: new functions for Cajal bodies. Curr. Opin. Genet. Dev. 18: 197-203.
    • (2008) Curr. Opin. Genet. Dev. , vol.18 , pp. 197-203
    • Pontes, O.1    Pikaard, C.S.2
  • 130
    • 53249134730 scopus 로고    scopus 로고
    • Pondering the puzzle of PML (promyelocytic leukemia) nuclear bodies: can we fit the pieces together using anRNAregulon? Biochim
    • Borden, K.L. 2008. Pondering the puzzle of PML (promyelocytic leukemia) nuclear bodies: can we fit the pieces together using anRNAregulon? Biochim. Biophys. Acta. 1783: 2145-2154.
    • (2008) Biophys. Acta. , vol.1783 , pp. 2145-2154
    • Borden, K.L.1
  • 131
    • 1342291118 scopus 로고    scopus 로고
    • Loss of the tumor suppressor PML in human cancers of multiple histologic origins
    • Gurrieri, C. et al. 2004. Loss of the tumor suppressor PML in human cancers of multiple histologic origins. J. Natl. Cancer Inst. 96: 269-279.
    • (2004) J. Natl. Cancer Inst. , vol.96 , pp. 269-279
    • Gurrieri, C.1
  • 132
    • 77449089538 scopus 로고    scopus 로고
    • A manually curated network of the PML nuclear body interactome reveals an important role for PML-NBs in SUMOylation dynamics
    • Van Damme, E. et al. 2010. A manually curated network of the PML nuclear body interactome reveals an important role for PML-NBs in SUMOylation dynamics. Int. J. Biol. Sci. 6: 51-67.
    • (2010) Int. J. Biol. Sci. , vol.6 , pp. 51-67
    • Van Damme, E.1
  • 133
    • 0033199695 scopus 로고    scopus 로고
    • Telomerase-negative immortalized humancells contain a novel type of promyelocytic leukemia (PML) body
    • Yeager, T.R. et al. 1999. Telomerase-negative immortalized humancells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res. 59: 4175-4179.
    • (1999) Cancer Res , vol.59 , pp. 4175-4179
    • Yeager, T.R.1
  • 134
    • 33845871732 scopus 로고    scopus 로고
    • Functional interaction between PMLandSATB1regulates chromatin-loop architecture and transcription of theMHCclass I locus
    • Kumar, P.P. et al. 2007. Functional interaction between PMLandSATB1regulates chromatin-loop architecture and transcription of theMHCclass I locus. Nat. Cell Biol. 9: 45-56.
    • (2007) Nat. Cell Biol. , vol.9 , pp. 45-56
    • Kumar, P.P.1
  • 135
    • 77953955724 scopus 로고    scopus 로고
    • The death-associated protein DAXX is a novel histone chaperone involved in the replicationindependent deposition of H3.3
    • Drane, P. et al. 2010. The death-associated protein DAXX is a novel histone chaperone involved in the replicationindependent deposition of H3.3. Genes Dev. 24: 1253-1265.
    • (2010) Genes Dev , vol.24 , pp. 1253-1265
    • Drane, P.1
  • 136
    • 58849151893 scopus 로고    scopus 로고
    • The tumor suppressor Pml regulates cell fate in the developing neocortex
    • Regad, T. et al. 2009. The tumor suppressor Pml regulates cell fate in the developing neocortex. Nat. Neurosci. 12: 132-140.
    • (2009) Nat. Neurosci. , vol.12 , pp. 132-140
    • Regad, T.1
  • 137
    • 44349166602 scopus 로고    scopus 로고
    • PML targeting eradicates quiescent leukaemia-initiating cells
    • Ito, K. et al. 2008. PML targeting eradicates quiescent leukaemia-initiating cells. Nature 453: 1072-1078.
    • (2008) Nature , vol.453 , pp. 1072-1078
    • Ito, K.1
  • 138
    • 69749099933 scopus 로고    scopus 로고
    • PML: a tumor suppressor that regulates cell fate in mammary gland
    • Li, W., T. Rich & C.J.Watson. 2009. PML: a tumor suppressor that regulates cell fate in mammary gland. Cell Cycle 8: 2711-2717.
    • (2009) Cell Cycle , vol.8 , pp. 2711-2717
    • Li, W.1    Rich, T.2    Watson, C.J.3
  • 139
    • 3342966899 scopus 로고    scopus 로고
    • Proteomic analysis of interchromatin granule clusters
    • Saitoh, N. et al. 2004. Proteomic analysis of interchromatin granule clusters. Mol. Biol. Cell. 15: 3876-3890.
    • (2004) Mol. Biol. Cell. , vol.15 , pp. 3876-3890
    • Saitoh, N.1
  • 140
    • 62149119245 scopus 로고    scopus 로고
    • Genome-wide analysis of histidine repeats reveals their role in the localization of human proteins to the nuclear speckles compartment
    • Salichs, E. et al. 2009. Genome-wide analysis of histidine repeats reveals their role in the localization of human proteins to the nuclear speckles compartment. PLoS Genet. 5: e1000397.
    • (2009) PLoS Genet , vol.5
    • Salichs, E.1
  • 141
    • 52249111620 scopus 로고    scopus 로고
    • Association between active genes occurs at nuclear speckles and is modulated by chromatin environment
    • Brown, J.M. et al. 2008. Association between active genes occurs at nuclear speckles and is modulated by chromatin environment. J. Cell Biol. 182: 1083-1097.
    • (2008) J. Cell Biol. , vol.182 , pp. 1083-1097
    • Brown, J.M.1
  • 142
    • 77953695113 scopus 로고    scopus 로고
    • NeuN/Fox-3 is an intrinsic component of the neuronal nuclear matrix
    • Dent, M.A. et al. 2010. NeuN/Fox-3 is an intrinsic component of the neuronal nuclear matrix. FEBS Lett. 584: 2767-2771.
    • (2010) FEBS Lett , vol.584 , pp. 2767-2771
    • Dent, M.A.1
  • 143
    • 61849113891 scopus 로고    scopus 로고
    • MENepsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles
    • Sunwoo, H. et al. 2009.MENepsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res. 19: 347-359.
    • (2009) Genome Res , vol.19 , pp. 347-359
    • Sunwoo, H.1
  • 144
    • 62549117314 scopus 로고    scopus 로고
    • An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles
    • Clemson, C.M. et al. 2009. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol. Cell. 33: 717-726.
    • (2009) Mol. Cell. , vol.33 , pp. 717-726
    • Clemson, C.M.1
  • 145
    • 69949132008 scopus 로고    scopus 로고
    • Paraspeckles: nuclear bodies built on long noncoding RNA
    • Bond, C.S. & A.H. Fox. 2009. Paraspeckles: nuclear bodies built on long noncoding RNA. J. Cell Biol. 186: 637-644.
    • (2009) J. Cell Biol. , vol.186 , pp. 637-644
    • Bond, C.S.1    Fox, A.H.2
  • 146
    • 62449319486 scopus 로고    scopus 로고
    • MENepsilon/beta noncoding RNAs are essential for structural integrity of nuclear paraspeckles
    • Sasaki, Y.T. et al. 2009. MENepsilon/beta noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proc. Natl. Acad. Sci. USA 106: 2525-2530.
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 2525-2530
    • Sasaki, Y.T.1
  • 147
    • 0035943347 scopus 로고    scopus 로고
    • The fate of dsRNA in the nucleus: a p54(nrb)-containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs
    • Zhang, Z. & G.G. Carmichael. 2001. The fate of dsRNA in the nucleus: a p54(nrb)-containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs. Cell 106: 465-475.
    • (2001) Cell , vol.106 , pp. 465-475
    • Zhang, Z.1    Carmichael, G.G.2
  • 148
    • 26844440157 scopus 로고    scopus 로고
    • Regulating gene expression through RNA nuclear retention
    • Prasanth, K.V. et al. 2005. Regulating gene expression through RNA nuclear retention. Cell 123: 249-263.
    • (2005) Cell , vol.123 , pp. 249-263
    • Prasanth, K.V.1
  • 149
    • 74549125753 scopus 로고    scopus 로고
    • An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data
    • Ramskold, D. et al. 2009. An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data. PLoS Comput. Biol. 5: e1000598.
    • (2009) PLoS Comput. Biol. , vol.5
    • Ramskold, D.1
  • 150
    • 68949212914 scopus 로고    scopus 로고
    • Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA
    • Chen, L.L. & G.G. Carmichael. 2009. Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Mol. Cell. 35: 467-478.
    • (2009) Mol. Cell. , vol.35 , pp. 467-478
    • Chen, L.L.1    Carmichael, G.G.2
  • 151
    • 51349086310 scopus 로고    scopus 로고
    • Paraspeckle protein p54nrb links Sox9-mediated transcription with RNA processing during chondrogenesis in mice
    • Hata, K. et al. 2008. Paraspeckle protein p54nrb links Sox9-mediated transcription with RNA processing during chondrogenesis in mice. J. Clin. Invest. 118: 3098-3108.
    • (2008) J. Clin. Invest. , vol.118 , pp. 3098-3108
    • Hata, K.1
  • 152
    • 18244365850 scopus 로고    scopus 로고
    • PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator
    • Brown, S.A. et al. 2005. PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator. Science 308: 693-696.
    • (2005) Science , vol.308 , pp. 693-696
    • Brown, S.A.1
  • 153
    • 34548291568 scopus 로고    scopus 로고
    • The mRNA-like noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons
    • Sone, M. et al. 2007. The mRNA-like noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons. J. Cell Sci. 120: 2498-2506.
    • (2007) J. Cell Sci. , vol.120 , pp. 2498-2506
    • Sone, M.1
  • 155
    • 33644871486 scopus 로고    scopus 로고
    • Dynamic nature of cleavage bodies and their spatial relationship to DDX1bodies, Cajal bodies, and gems
    • Li, L. et al. 2006. Dynamic nature of cleavage bodies and their spatial relationship to DDX1bodies, Cajal bodies, and gems. Mol. Biol. Cell. 17: 1126-1140.
    • (2006) Mol. Biol. Cell. , vol.17 , pp. 1126-1140
    • Li, L.1
  • 156
    • 1342332096 scopus 로고    scopus 로고
    • Polycomb CBX7 has a unifying role in cellular lifespan
    • Gil, J. et al. 2004. Polycomb CBX7 has a unifying role in cellular lifespan. Nat. Cell Biol. 6: 67-72.
    • (2004) Nat. Cell Biol , vol.6 , pp. 67-72
    • Gil, J.1
  • 157
    • 0034641739 scopus 로고    scopus 로고
    • Identification of a nuclear domain with deacetylase activity
    • Downes, M. et al. 2000. Identification of a nuclear domain with deacetylase activity. Proc. Natl. Acad. Sci. USA 97: 10330-10335.
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 10330-10335
    • Downes, M.1
  • 158
    • 0036678202 scopus 로고    scopus 로고
    • Clastosome: a subtype of nuclear body enriched in 19S and 20S proteasomes, ubiquitin, and protein substrates of proteasome
    • Lafarga, M. et al. 2002. Clastosome: a subtype of nuclear body enriched in 19S and 20S proteasomes, ubiquitin, and protein substrates of proteasome.Mol. Biol. Cell. 13: 2771-2782.
    • (2002) Mol. Biol. Cell. , vol.13 , pp. 2771-2782
    • Lafarga, M.1
  • 159
    • 53549091886 scopus 로고    scopus 로고
    • Arole for DEAD box 1 at DNA double-strand breaks
    • Li, L., E.A.Monckton&R.Godbout. 2008.Arole for DEAD box 1 at DNA double-strand breaks. Mol. Cell Biol. 28: 6413-6425.
    • (2008) Mol. Cell Biol. , vol.28 , pp. 6413-6425
    • Li, L.1    Monckton, E.A.2    Godbout, R.3
  • 160
    • 44849099042 scopus 로고    scopus 로고
    • FBXO25-associated nuclear domains: a novel subnuclear structure
    • Manfiolli, A.O. et al. 2008. FBXO25-associated nuclear domains: a novel subnuclear structure. Mol. Biol, Cell. 19: 1848-1861.
    • (2008) Mol. Biol, Cell. , vol.19 , pp. 1848-1861
    • Manfiolli, A.O.1
  • 161
    • 33646745137 scopus 로고    scopus 로고
    • Lamin A-dependent nuclear defects in human aging
    • Scaffidi, P. & T. Misteli. 2006. Lamin A-dependent nuclear defects in human aging. Science 312: 1059-1063.
    • (2006) Science , vol.312 , pp. 1059-1063
    • Scaffidi, P.1    Misteli, T.2
  • 162
    • 0027985787 scopus 로고
    • Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy
    • Bione, S. et al. 1994. Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nat. Genet. 8: 323-327.
    • (1994) Nat. Genet. , vol.8 , pp. 323-327
    • Bione, S.1
  • 163
    • 33845891591 scopus 로고    scopus 로고
    • Mutations in SYNE1 lead to a newly discovered form of autosomal recessive cerebellar ataxia
    • Gros-Louis, F. et al. 2007. Mutations in SYNE1 lead to a newly discovered form of autosomal recessive cerebellar ataxia. Nat. Genet. 39: 80-85.
    • (2007) Nat. Genet. , vol.39 , pp. 80-85
    • Gros-Louis, F.1
  • 164
    • 16944366666 scopus 로고    scopus 로고
    • The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein
    • Ozelius, L.J. et al. 1997. The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat. Genet. 17: 40-48.
    • (1997) Nat. Genet. , vol.17 , pp. 40-48
    • Ozelius, L.J.1
  • 165
    • 43249124368 scopus 로고    scopus 로고
    • Expression of themyodystrophic R453W mutation of lamin A in C2C12 myoblasts causes promoter-specific and global epigenetic defects
    • Hakelien, A.M. et al. 2008. Expression of themyodystrophic R453W mutation of lamin A in C2C12 myoblasts causes promoter-specific and global epigenetic defects. Exp. Cell Res. 314: 1869-1880.
    • (2008) Exp. Cell Res. , vol.314 , pp. 1869-1880
    • Hakelien, A.M.1
  • 166
    • 2942586676 scopus 로고    scopus 로고
    • The inner nuclear membrane protein lamin B receptor forms distinctmicrodomains and links epigenetically marked chromatin to the nuclear envelope
    • Makatsori, D. et al. 2004. The inner nuclear membrane protein lamin B receptor forms distinctmicrodomains and links epigenetically marked chromatin to the nuclear envelope. J. Biol. Chem. 279: 25567-25573.
    • (2004) J. Biol. Chem. , vol.279 , pp. 25567-25573
    • Makatsori, D.1
  • 167
    • 0036938754 scopus 로고    scopus 로고
    • Neuropathological analysis of an adult case of the Cornelia de Lange syndrome
    • Vuilleumier, N. et al. 2002. Neuropathological analysis of an adult case of the Cornelia de Lange syndrome. Acta Neuropathol. 104: 327-332.
    • (2002) Acta Neuropathol , vol.104 , pp. 327-332
    • Vuilleumier, N.1
  • 168
    • 63049083915 scopus 로고    scopus 로고
    • How cohesin and CTCF cooperate in regulating gene expression
    • Wendt, K.S. & J.M. Peters. 2009. How cohesin and CTCF cooperate in regulating gene expression. Chromosome Res. 17: 201-214.
    • (2009) Chromosome Res , vol.17 , pp. 201-214
    • Wendt, K.S.1    Peters, J.M.2
  • 169
    • 76149096854 scopus 로고    scopus 로고
    • Cohesinopathy mutations disrupt the subnuclear organization of chromatin
    • Gard, S. et al. 2009. Cohesinopathy mutations disrupt the subnuclear organization of chromatin. J. Cell Biol. 187: 455-462.
    • (2009) J. Cell Biol. , vol.187 , pp. 455-462
    • Gard, S.1
  • 170
    • 0028797783 scopus 로고
    • Identification and characterization of a spinal muscular atrophy-determining gene
    • Lefebvre, S. et al. 1995. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80: 155-165.
    • (1995) Cell , vol.80 , pp. 155-165
    • Lefebvre, S.1
  • 171
    • 56249119910 scopus 로고    scopus 로고
    • Ribonucleoprotein complexes in neurologic diseases
    • Ule, J. 2008. Ribonucleoprotein complexes in neurologic diseases. Curr. Opin. Neurobiol. 18: 516-523.
    • (2008) Curr. Opin. Neurobiol. , vol.18 , pp. 516-523
    • Ule, J.1
  • 172
    • 70350635179 scopus 로고    scopus 로고
    • The SMNprotein is a key regulator of nuclear architecture in differentiating neuroblastoma cells
    • Clelland, A.K. et al. 2009. The SMNprotein is a key regulator of nuclear architecture in differentiating neuroblastoma cells. Traffic 10: 1585-1598.
    • (2009) Traffic , vol.10 , pp. 1585-1598
    • Clelland, A.K.1
  • 173
    • 38349053826 scopus 로고    scopus 로고
    • Dual localization of the RNA binding protein CUGBP-1 to stress granule and perinucleolar compartment
    • Fujimura, K., F. Kano&M.Murata. 2008. Dual localization of the RNA binding protein CUGBP-1 to stress granule and perinucleolar compartment. Exp. Cell Res. 314: 543-553.
    • (2008) Exp. Cell Res. , vol.314 , pp. 543-553
    • Fujimura, K.1    Kano, F.2    Murata, M.3
  • 174
    • 70449356630 scopus 로고    scopus 로고
    • CDKL5 influences RNA splicing activity by its association to the nuclear speckle molecular machinery
    • Ricciardi, S. et al. 2009. CDKL5 influences RNA splicing activity by its association to the nuclear speckle molecular machinery. Hum. Mol. Genet. 18: 4590-4602.
    • (2009) Hum. Mol. Genet. , vol.18 , pp. 4590-4602
    • Ricciardi, S.1
  • 175
    • 67650747230 scopus 로고    scopus 로고
    • TDP-43 localizes in mRNA transcription and processing sites in mammalian neurons
    • Casafont, I. et al. 2009. TDP-43 localizes in mRNA transcription and processing sites in mammalian neurons. J. Struct. Biol. 167: 235-241.
    • (2009) J. Struct. Biol. , vol.167 , pp. 235-241
    • Casafont, I.1
  • 176
    • 33746073030 scopus 로고    scopus 로고
    • PML nuclear bodies are highly organised DNA-protein structures with a function in heterochromatin remodelling at the G2 phase
    • Luciani, J.J. et al. 2006. PML nuclear bodies are highly organised DNA-protein structures with a function in heterochromatin remodelling at the G2 phase. J. Cell Sci. 119: 2518-2531.
    • (2006) J. Cell Sci. , vol.119 , pp. 2518-2531
    • Luciani, J.J.1
  • 177
    • 0029014180 scopus 로고
    • Expression analysis of the ataxin-1 protein in tissues from normal and spinocerebellar ataxia type 1 individuals
    • Servadio, A. et al. 1995. Expression analysis of the ataxin-1 protein in tissues from normal and spinocerebellar ataxia type 1 individuals. Nat. Genet. 10: 94-98.
    • (1995) Nat. Genet. , vol.10 , pp. 94-98
    • Servadio, A.1
  • 178
    • 0035076389 scopus 로고    scopus 로고
    • Different types of repeat expansion in the TATA-binding protein gene are associated with a new form of inherited ataxia
    • Zuhlke, C. et al. 2001. Different types of repeat expansion in the TATA-binding protein gene are associated with a new form of inherited ataxia. Eur. J. Hum. Genet. 9: 160-164.
    • (2001) Eur. J. Hum. Genet. , vol.9 , pp. 160-164
    • Zuhlke, C.1
  • 179
    • 0029057336 scopus 로고
    • A single ataxia telangiectasia gene with a product similar to PI-3 kinase
    • Savitsky, K. et al. 1995. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268: 1749-1753.
    • (1995) Science , vol.268 , pp. 1749-1753
    • Savitsky, K.1
  • 180
    • 18644386254 scopus 로고    scopus 로고
    • Mutation of TDP1, encoding a topoisomerase I-dependent DNA damage repair enzyme, in spinocerebellar ataxia with axonal neuropathy
    • Takashima, H. et al. 2002. Mutation of TDP1, encoding a topoisomerase I-dependent DNA damage repair enzyme, in spinocerebellar ataxia with axonal neuropathy. Nat. Genet. 32: 267-272.
    • (2002) Nat. Genet. , vol.32 , pp. 267-272
    • Takashima, H.1
  • 181
    • 0034785531 scopus 로고    scopus 로고
    • The gene mutated in ataxiaocular apraxia 1 encodes the new HIT/Zn-finger protein aprataxin
    • Moreira, M.C. et al. 2001. The gene mutated in ataxiaocular apraxia 1 encodes the new HIT/Zn-finger protein aprataxin. Nat. Genet. 29: 189-193.
    • (2001) Nat. Genet. , vol.29 , pp. 189-193
    • Moreira, M.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.