메뉴 건너뛰기




Volumn 20, Issue 3, 2010, Pages 344-359

Hidden Markov models combining local and global information for nonlinear and multimodal process monitoring

Author keywords

Bayesian inference; Hidden Markov models; Independent component analysis; Nonlinear and multimodal process monitoring; Principal component analysis

Indexed keywords

BAYESIAN INFERENCE; CONVENTIONAL APPROACH; DATA DISTRIBUTION; FAULT PATTERNS; GAUSSIAN COMPONENTS; GAUSSIAN DISTRIBUTED; GLOBAL INFORMATIONS; HIDDEN STATE; HUMAN INTERVENTION; IN-PROCESS; INDUSTRIAL PROCESSS; LOCAL INFORMATION; LOG LIKELIHOOD; MAHALANOBIS DISTANCES; MONITORING MODELS; MULTI-MODAL; MULTIVARIATE STATISTICAL PROCESS MONITORING; NONLINEAR AND MULTIMODAL PROCESS MONITORING; NORMAL OPERATIONS; ON-LINE PROCESS MONITORING; OPERATING DATA; POSTERIOR PROBABILITY; PROCESS FAILURE; PROCESS STATE; REAL-WORLD PROCESS; UNIMODAL;

EID: 75149115338     PISSN: 09591524     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jprocont.2009.12.002     Document Type: Article
Times cited : (86)

References (57)
  • 1
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: basics and beyond
    • Qin S.J. Statistical process monitoring: basics and beyond. J. Chemom. 17 (2003) 480-502
    • (2003) J. Chemom. , vol.17 , pp. 480-502
    • Qin, S.J.1
  • 2
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
    • Yu J., and Qin S.J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AICHE J. 54 7 (2008) 1811-1829
    • (2008) AICHE J. , vol.54 , Issue.7 , pp. 1811-1829
    • Yu, J.1    Qin, S.J.2
  • 3
    • 0037332708 scopus 로고    scopus 로고
    • A practical approach for large-scale controller performance assessment, diagnosis, and improvement
    • Paulonis M.A., and Cox J.W. A practical approach for large-scale controller performance assessment, diagnosis, and improvement. J. Process Control 13 (2003) 155-168
    • (2003) J. Process Control , vol.13 , pp. 155-168
    • Paulonis, M.A.1    Cox, J.W.2
  • 4
    • 33846781222 scopus 로고    scopus 로고
    • Recent developments in multivariable controller performance monitoring
    • Qin S.J., and Yu J. Recent developments in multivariable controller performance monitoring. J. Process Control 17 (2007) 221-227
    • (2007) J. Process Control , vol.17 , pp. 221-227
    • Qin, S.J.1    Yu, J.2
  • 7
    • 0029252734 scopus 로고
    • Multivariate SPC charts for monitoring batch processes
    • Nomikos P., and MacGregor J. Multivariate SPC charts for monitoring batch processes. Technometrics 37 1 (1995) 41-59
    • (1995) Technometrics , vol.37 , Issue.1 , pp. 41-59
    • Nomikos, P.1    MacGregor, J.2
  • 8
    • 33646731122 scopus 로고    scopus 로고
    • Multiblock principal component analysis based on a combined index for semiconductor fault detection and diagnosis
    • Cherry G.A., and Qin S.J. Multiblock principal component analysis based on a combined index for semiconductor fault detection and diagnosis. IEEE Trans. Semicond. Manuf. 19 2 (2006) 159-172
    • (2006) IEEE Trans. Semicond. Manuf. , vol.19 , Issue.2 , pp. 159-172
    • Cherry, G.A.1    Qin, S.J.2
  • 10
    • 0034301495 scopus 로고    scopus 로고
    • Recursive PCA for adaptive process monitoring
    • Li W., Yue H., Valle S., and Qin J. Recursive PCA for adaptive process monitoring. J. Process Control 10 (2000) 471-486
    • (2000) J. Process Control , vol.10 , pp. 471-486
    • Li, W.1    Yue, H.2    Valle, S.3    Qin, J.4
  • 11
    • 0032118892 scopus 로고    scopus 로고
    • Multiscale PCA with application to multivariate statistical process monitoring
    • Bakshi B.R. Multiscale PCA with application to multivariate statistical process monitoring. AIChE J. 44 (1998) 1596-1610
    • (1998) AIChE J. , vol.44 , pp. 1596-1610
    • Bakshi, B.R.1
  • 12
    • 0030530039 scopus 로고    scopus 로고
    • The process chemometrics approach to process monitoring and fault detection
    • Wise B.M., and Gallagher N.B. The process chemometrics approach to process monitoring and fault detection. J. Process Control 6 6 (1996) 329-348
    • (1996) J. Process Control , vol.6 , Issue.6 , pp. 329-348
    • Wise, B.M.1    Gallagher, N.B.2
  • 13
    • 0028424619 scopus 로고
    • Process monitoring and diagnosis by multiblock PLS methods
    • MacGregor J.F., Jaeckle C., Kiparissides C., and Koutoudi M. Process monitoring and diagnosis by multiblock PLS methods. AIChE J. 40 (1994) 826-838
    • (1994) AIChE J. , vol.40 , pp. 826-838
    • MacGregor, J.F.1    Jaeckle, C.2    Kiparissides, C.3    Koutoudi, M.4
  • 14
    • 1342285571 scopus 로고    scopus 로고
    • Statistical process monitoring with independent component analysis
    • Lee J.M., Yoo C.K., and Lee I.B. Statistical process monitoring with independent component analysis. J. Process Control 14 (2004) 467-485
    • (2004) J. Process Control , vol.14 , pp. 467-485
    • Lee, J.M.1    Yoo, C.K.2    Lee, I.B.3
  • 15
    • 33749473097 scopus 로고    scopus 로고
    • Fault detection and diagnosis based on modified independent component analysis
    • Lee J.M., Qin S.J., and Lee I.B. Fault detection and diagnosis based on modified independent component analysis. AIChE J. 52 (2006) 3501-3514
    • (2006) AIChE J. , vol.52 , pp. 3501-3514
    • Lee, J.M.1    Qin, S.J.2    Lee, I.B.3
  • 16
    • 0037098685 scopus 로고    scopus 로고
    • Statistical performance monitoring of dynamic multivariate processes using state space modeling
    • Simoglou A., Martin E.B., and Morris A.J. Statistical performance monitoring of dynamic multivariate processes using state space modeling. Comput. Chem. Eng. 26 (2002) 909-920
    • (2002) Comput. Chem. Eng. , vol.26 , pp. 909-920
    • Simoglou, A.1    Martin, E.B.2    Morris, A.J.3
  • 17
    • 0036628052 scopus 로고    scopus 로고
    • Statistical process monitoring based on dissimilarity of process data
    • Kano M., Hasebe S., and Hashimoto I. Statistical process monitoring based on dissimilarity of process data. AICHE J. 48 6 (2002) 1231-1240
    • (2002) AICHE J. , vol.48 , Issue.6 , pp. 1231-1240
    • Kano, M.1    Hasebe, S.2    Hashimoto, I.3
  • 18
    • 44649092618 scopus 로고    scopus 로고
    • Multivariate statistical process control based on multiway locality preserving projections
    • Hu K., and Yuan J. Multivariate statistical process control based on multiway locality preserving projections. J. Process Control 18 (2008) 797-807
    • (2008) J. Process Control , vol.18 , pp. 797-807
    • Hu, K.1    Yuan, J.2
  • 19
    • 0026849990 scopus 로고
    • Autoassociative neural networks
    • Kramer M.A. Autoassociative neural networks. Comput. Chem. Eng. 16 (1992) 313-328
    • (1992) Comput. Chem. Eng. , vol.16 , pp. 313-328
    • Kramer, M.A.1
  • 20
    • 0034661162 scopus 로고    scopus 로고
    • A fast training neural network and its updation for incipient fault detection and diagnosis
    • Rengaswamy R., and Venkatasurbramanian V. A fast training neural network and its updation for incipient fault detection and diagnosis. Comput. Chem. Eng. 24 (2000) 431-437
    • (2000) Comput. Chem. Eng. , vol.24 , pp. 431-437
    • Rengaswamy, R.1    Venkatasurbramanian, V.2
  • 21
    • 3943101198 scopus 로고    scopus 로고
    • Clustering in wavelet domain: a multiresolution ART network for anomaly detection
    • Aradhye H.B., Bakshi B.R., Davis J.F., and Ahalt S.C. Clustering in wavelet domain: a multiresolution ART network for anomaly detection. AICHE J. 50 10 (2004) 2455-2466
    • (2004) AICHE J. , vol.50 , Issue.10 , pp. 2455-2466
    • Aradhye, H.B.1    Bakshi, B.R.2    Davis, J.F.3    Ahalt, S.C.4
  • 22
    • 2342505830 scopus 로고    scopus 로고
    • Fault diagnosis based on Fisher discriminant analysis and support vector machines
    • Chiang L., Kotanchek M., and Kordon A. Fault diagnosis based on Fisher discriminant analysis and support vector machines. Comput. Chem. Eng. 28 (2004) 1389-1401
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 1389-1401
    • Chiang, L.1    Kotanchek, M.2    Kordon, A.3
  • 23
    • 0038148305 scopus 로고    scopus 로고
    • Probabilistic model for sensor fault detection and identification
    • Mehranbod N., Soroush M., Piovoso M., and Ogunnaike B.A. Probabilistic model for sensor fault detection and identification. AIChE J. 49 (2003) 1787-1802
    • (2003) AIChE J. , vol.49 , pp. 1787-1802
    • Mehranbod, N.1    Soroush, M.2    Piovoso, M.3    Ogunnaike, B.A.4
  • 24
    • 0043015539 scopus 로고    scopus 로고
    • Nonlinear principal component analysis based on principal curves and neural networks
    • Dong D., and McAvoy T.J. Nonlinear principal component analysis based on principal curves and neural networks. Comput. Chem. Eng. 20 1 (1996) 65-78
    • (1996) Comput. Chem. Eng. , vol.20 , Issue.1 , pp. 65-78
    • Dong, D.1    McAvoy, T.J.2
  • 25
    • 0032686509 scopus 로고    scopus 로고
    • Real-time monitoring for a process with multiple operating modes
    • Hwang D.H., and Han C. Real-time monitoring for a process with multiple operating modes. Control Eng. Pract. 7 (1999) 891-902
    • (1999) Control Eng. Pract. , vol.7 , pp. 891-902
    • Hwang, D.H.1    Han, C.2
  • 26
    • 52449116108 scopus 로고    scopus 로고
    • Fault detection using the k-nearest neighbor rule for semiconductor manufacturing processes
    • He Q.P., and Wang J. Fault detection using the k-nearest neighbor rule for semiconductor manufacturing processes. IEEE Trans. Semicond. Manuf. 20 4 (2007) 345-354
    • (2007) IEEE Trans. Semicond. Manuf. , vol.20 , Issue.4 , pp. 345-354
    • He, Q.P.1    Wang, J.2
  • 27
    • 0026113980 scopus 로고
    • Nonlinear principal component analysis using autoassociative neural networks
    • Krammer M.A. Nonlinear principal component analysis using autoassociative neural networks. AICHE J. 37 2 (1991) 233-243
    • (1991) AICHE J. , vol.37 , Issue.2 , pp. 233-243
    • Krammer, M.A.1
  • 28
    • 0346911568 scopus 로고    scopus 로고
    • Nonlinear process monitoring using kernel principal component analysis
    • Lee J.M., Yoo C.K., Choi S.W., Vanrolleghem P.A., and Lee I.B. Nonlinear process monitoring using kernel principal component analysis. Chem. Eng. Sci. 59 (2004) 223-234
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 223-234
    • Lee, J.M.1    Yoo, C.K.2    Choi, S.W.3    Vanrolleghem, P.A.4    Lee, I.B.5
  • 29
    • 10044259622 scopus 로고    scopus 로고
    • Nonlinear dynamic process monitoring based on dynamic kernel PCA
    • Choi S.W., and Lee I.B. Nonlinear dynamic process monitoring based on dynamic kernel PCA. Chem. Eng. Sci. 59 (2004) 5897-5908
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 5897-5908
    • Choi, S.W.1    Lee, I.B.2
  • 30
    • 34548593553 scopus 로고    scopus 로고
    • Fault detection of nonlinear processes using kernel independent component analysis
    • Lee J.M., Qin S.J., and Lee I.B. Fault detection of nonlinear processes using kernel independent component analysis. Can. J. Chem. Eng. 85 (2007) 526-536
    • (2007) Can. J. Chem. Eng. , vol.85 , pp. 526-536
    • Lee, J.M.1    Qin, S.J.2    Lee, I.B.3
  • 31
    • 0030525683 scopus 로고    scopus 로고
    • Non-parametric confidence bounds for process performance monitoring charts
    • Martin E.B., and Morris A.J. Non-parametric confidence bounds for process performance monitoring charts. J. Process Control 6 (1996) 349-358
    • (1996) J. Process Control , vol.6 , pp. 349-358
    • Martin, E.B.1    Morris, A.J.2
  • 32
    • 61749100891 scopus 로고    scopus 로고
    • Generalized orthogonal locality preserving projections for nonlinear fault detection and diagnosis
    • Hao J.D., Rong G., and Lee J.M. Generalized orthogonal locality preserving projections for nonlinear fault detection and diagnosis. Chem. Intell. Lab. Syst. 96 (2009) 75-83
    • (2009) Chem. Intell. Lab. Syst. , vol.96 , pp. 75-83
    • Hao, J.D.1    Rong, G.2    Lee, J.M.3
  • 34
    • 0001067412 scopus 로고    scopus 로고
    • A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process
    • Wise B.M., Gallagher N.B., Butler S.W., White Jr. D.D., and Barna G.G. A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process. J. Chemom. 13 3-4 (1999) 379-396
    • (1999) J. Chemom. , vol.13 , Issue.3-4 , pp. 379-396
    • Wise, B.M.1    Gallagher, N.B.2    Butler, S.W.3    White Jr., D.D.4    Barna, G.G.5
  • 35
    • 6344249065 scopus 로고    scopus 로고
    • Monitoring of processes with multiple operating modes through multiple principal component analysis models
    • Zhao S.J., Zhang J., and Xu Y.M. Monitoring of processes with multiple operating modes through multiple principal component analysis models. Ind. Eng. Chem. Res. 43 (2004) 7025-7035
    • (2004) Ind. Eng. Chem. Res. , vol.43 , pp. 7025-7035
    • Zhao, S.J.1    Zhang, J.2    Xu, Y.M.3
  • 36
    • 0032898793 scopus 로고    scopus 로고
    • Mixture principal component analysis models for process monitoring
    • Chen J., and Liu J. Mixture principal component analysis models for process monitoring. Ind. Eng. Chem. Res. 38 (1999) 1478-1488
    • (1999) Ind. Eng. Chem. Res. , vol.38 , pp. 1478-1488
    • Chen, J.1    Liu, J.2
  • 37
    • 2342521341 scopus 로고    scopus 로고
    • Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis
    • Choi S.W., Park J.H., and Lee I.B. Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis. Comput. Chem. Eng. 28 (2004) 1377-1387
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 1377-1387
    • Choi, S.W.1    Park, J.H.2    Lee, I.B.3
  • 38
    • 33750172858 scopus 로고    scopus 로고
    • Probability density estimation via an infinite Gaussian mixture model: application to statistical process monitoring
    • Chen T., Morris J., and Martin E.B. Probability density estimation via an infinite Gaussian mixture model: application to statistical process monitoring. Appl. Statist. 55 5 (2006) 699-715
    • (2006) Appl. Statist. , vol.55 , Issue.5 , pp. 699-715
    • Chen, T.1    Morris, J.2    Martin, E.B.3
  • 39
    • 0034661237 scopus 로고    scopus 로고
    • Detection and classification of abnormal process situation using multidimensional wavelet domain hidden Markov trees
    • Bakhtazad A., Palazoglu A., and Romagnoli J.A. Detection and classification of abnormal process situation using multidimensional wavelet domain hidden Markov trees. Comput. Chem. Eng. 24 (2000) 769-775
    • (2000) Comput. Chem. Eng. , vol.24 , pp. 769-775
    • Bakhtazad, A.1    Palazoglu, A.2    Romagnoli, J.A.3
  • 40
    • 0242417499 scopus 로고    scopus 로고
    • Detecting abnormal process trends by wavelet-domain hidden Markov models
    • Sum W., Palazoglu A., and Romagnoli J.A. Detecting abnormal process trends by wavelet-domain hidden Markov models. AICHE J. 49 1 (2003) 140-150
    • (2003) AICHE J. , vol.49 , Issue.1 , pp. 140-150
    • Sum, W.1    Palazoglu, A.2    Romagnoli, J.A.3
  • 41
    • 21344454882 scopus 로고    scopus 로고
    • Applying wavelet-based hidden Markov tree to enhancing performance of process monitoring
    • Chen J., and Chang W.J. Applying wavelet-based hidden Markov tree to enhancing performance of process monitoring. Chem. Eng. Sci. 60 (2005) 5129-5143
    • (2005) Chem. Eng. Sci. , vol.60 , pp. 5129-5143
    • Chen, J.1    Chang, W.J.2
  • 42
    • 33644990573 scopus 로고    scopus 로고
    • On-line batch process monitoring using MHMT-based MPCA
    • Chen J., and Chen H.H. On-line batch process monitoring using MHMT-based MPCA. Chem. Eng. Sci. 61 (2006) 3223-3239
    • (2006) Chem. Eng. Sci. , vol.61 , pp. 3223-3239
    • Chen, J.1    Chen, H.H.2
  • 45
    • 0018503842 scopus 로고
    • Control procedures for residuals associated with principal component analysis
    • Jackson J.E., and Mudholkar G.S. Control procedures for residuals associated with principal component analysis. Technometrics 21 (1972) 341-349
    • (1972) Technometrics , vol.21 , pp. 341-349
    • Jackson, J.E.1    Mudholkar, G.S.2
  • 46
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Rabiner L.R. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77 2 (1989) 257-286
    • (1989) Proc. IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, L.R.1
  • 47
    • 0023834849 scopus 로고
    • Hidden Markov models: a guided tour
    • Poritz A.B. Hidden Markov models: a guided tour. ICASSP 1 (1988) 7-13
    • (1988) ICASSP , vol.1 , pp. 7-13
    • Poritz, A.B.1
  • 48
    • 84935113569 scopus 로고
    • Error bounds for convolutional codes and an asymptotically optimal decoding algorithm
    • Viterbi A.J. Error bounds for convolutional codes and an asymptotically optimal decoding algorithm. IEEE Trans. Informat. Theory 13 (1967) 260-269
    • (1967) IEEE Trans. Informat. Theory , vol.13 , pp. 260-269
    • Viterbi, A.J.1
  • 49
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Ann. Stat. 6 2 (1978) 461-464
    • (1978) Ann. Stat. , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 50
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19 6 (1974) 716-723
    • (1974) IEEE Trans. Autom. Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 51
    • 53349119024 scopus 로고    scopus 로고
    • Using an MQE chart based on a self-organizing map NN to monitor out-of-control signals in manufacturing processes
    • Yu J.B., and Xi L.F. Using an MQE chart based on a self-organizing map NN to monitor out-of-control signals in manufacturing processes. Int. J. Prod. Res. 46 21 (2008) 5907-5933
    • (2008) Int. J. Prod. Res. , vol.46 , Issue.21 , pp. 5907-5933
    • Yu, J.B.1    Xi, L.F.2
  • 52
    • 71849108091 scopus 로고    scopus 로고
    • Using minimum quantization error chart for the monitoring of process states in multivariate manufacturing processes
    • Yu J.B., and Wang S.J. Using minimum quantization error chart for the monitoring of process states in multivariate manufacturing processes. Comput. Ind. Eng. 57 4 (2009) 1300-1312
    • (2009) Comput. Ind. Eng. , vol.57 , Issue.4 , pp. 1300-1312
    • Yu, J.B.1    Wang, S.J.2
  • 54
    • 0027561446 scopus 로고
    • Plant-wide industrial process control problem
    • Down J.J., and Vogel E.F. Plant-wide industrial process control problem. Comput. Chem. Eng. 17 (1993) 245-255
    • (1993) Comput. Chem. Eng. , vol.17 , pp. 245-255
    • Down, J.J.1    Vogel, E.F.2
  • 56
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: algorithms and applications
    • Hyvarinen A., and Oja E. Independent component analysis: algorithms and applications. Neural Networks 13 4-5 (2000) 411-430
    • (2000) Neural Networks , vol.13 , Issue.4-5 , pp. 411-430
    • Hyvarinen, A.1    Oja, E.2
  • 57
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis: algorithms and applications
    • Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis: algorithms and applications. IEEE Trans. Neural Networks 10 (1999) 626-634
    • (1999) IEEE Trans. Neural Networks , vol.10 , pp. 626-634
    • Hyvarinen, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.