메뉴 건너뛰기




Volumn 14, Issue 5, 2004, Pages 467-485

Statistical process monitoring with independent component analysis

Author keywords

Fault detection; Independent component analysis; Kernel density estimation; Process monitoring; Wastewater treatment process

Indexed keywords

COMPUTER SIMULATION; DATA REDUCTION; ESTIMATION; FEATURE EXTRACTION; INDEPENDENT COMPONENT ANALYSIS; MONITORING; PROCESS ENGINEERING; STATISTICAL METHODS; WASTEWATER TREATMENT;

EID: 1342285571     PISSN: 09591524     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jprocont.2003.09.004     Document Type: Article
Times cited : (743)

References (36)
  • 1
    • 0032187518 scopus 로고    scopus 로고
    • Blind signal separation: Statistical principles
    • Cardoso J.-F. Blind signal separation: statistical principles. Proc. IEEE. 86(10):1998;2009-2025.
    • (1998) Proc. IEEE , vol.86 , Issue.10 , pp. 2009-2025
    • Cardoso, J.-F.1
  • 2
    • 0028416938 scopus 로고
    • Independent component analysis, a new concept
    • Comon P. Independent component analysis, a new concept. Signal Process. 36:1994;287-314.
    • (1994) Signal Process. , vol.36 , pp. 287-314
    • Comon, P.1
  • 3
    • 0028483476 scopus 로고
    • Monitoring batch processes using multiway principal component analysis
    • Nomikos P., MacGregor J.F. Monitoring batch processes using multiway principal component analysis. AIChE J. 40(8):1994;1361-1375.
    • (1994) AIChE J. , vol.40 , Issue.8 , pp. 1361-1375
    • Nomikos, P.1    Macgregor, J.F.2
  • 4
    • 0028892168 scopus 로고
    • Disturbance detection and isolation by dynamic principal component analysis
    • Ku W., Storer R.H., Georgakis C. Disturbance detection and isolation by dynamic principal component analysis. Chemom. Intell. Lab. Syst. 30:1995;179-196.
    • (1995) Chemom. Intell. Lab. Syst. , vol.30 , pp. 179-196
    • Ku, W.1    Storer, R.H.2    Georgakis, C.3
  • 5
    • 0030530039 scopus 로고    scopus 로고
    • The process chemometrics approach to process monitoring and fault detection
    • Wise B.M., Gallagher N.B. The process chemometrics approach to process monitoring and fault detection. J. Process Control. 6(6):1996;329-348.
    • (1996) J. Process Control , vol.6 , Issue.6 , pp. 329-348
    • Wise, B.M.1    Gallagher, N.B.2
  • 6
    • 0043015539 scopus 로고    scopus 로고
    • Nonlinear principal component analysis-based on principal curves and neural networks
    • Dong D., McAvoy T.J. Nonlinear principal component analysis-based on principal curves and neural networks. Comp. Chem. Eng. 20(1):1996;65-78.
    • (1996) Comp. Chem. Eng. , vol.20 , Issue.1 , pp. 65-78
    • Dong, D.1    Mcavoy, T.J.2
  • 7
    • 0032118892 scopus 로고    scopus 로고
    • Multiscale PCA with application to multivariate statistical process monitoring
    • Bakshi B.R. Multiscale PCA with application to multivariate statistical process monitoring. AICHE J. 44(7):1998;1596-1610.
    • (1998) AICHE J. , vol.44 , Issue.7 , pp. 1596-1610
    • Bakshi, B.R.1
  • 8
    • 0031757693 scopus 로고    scopus 로고
    • Disturbance detection in wastewater treatment plants
    • Rosen C., Olsson G. Disturbance detection in wastewater treatment plants. Water Sci. Technol. 37(12):1998;197-205.
    • (1998) Water Sci. Technol. , vol.37 , Issue.12 , pp. 197-205
    • Rosen, C.1    Olsson, G.2
  • 10
  • 11
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: Algorithms and applications
    • Hyvärinen A., Oja E. Independent component analysis: algorithms and applications. Neural Networks. 13(4-5):2000;411-430.
    • (2000) Neural Networks , vol.13 , Issue.4-5 , pp. 411-430
    • Hyvärinen, A.1    Oja, E.2
  • 13
    • 0018503842 scopus 로고
    • Control procedures for residuals associated with principal component analysis
    • Jackson J.E., Mudholkar G.S. Control procedures for residuals associated with principal component analysis. Technometrics. 21:1979;341-349.
    • (1979) Technometrics , vol.21 , pp. 341-349
    • Jackson, J.E.1    Mudholkar, G.S.2
  • 14
    • 0031239460 scopus 로고    scopus 로고
    • Extraction of ocular artifacts from EEG using independent component analysis
    • Vigário R.N. Extraction of ocular artifacts from EEG using independent component analysis. Electroencephal. Clinical Neurophysiol. 103:1997;395-404.
    • (1997) Electroencephal. Clinical Neurophysiol. , vol.103 , pp. 395-404
    • Vigário, R.N.1
  • 16
    • 33845435132 scopus 로고    scopus 로고
    • New approximations of differential entropy for independent component analysis and projection pursuit
    • Hyvärinen A. New approximations of differential entropy for independent component analysis and projection pursuit. Adv. Neural Inform. Process. Syst. 10:1998;273-279.
    • (1998) Adv. Neural Inform. Process. Syst. , vol.10 , pp. 273-279
    • Hyvärinen, A.1
  • 17
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • Hyvärinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Networks. 10:1999;626-634.
    • (1999) IEEE Trans. Neural Networks , vol.10 , pp. 626-634
    • Hyvärinen, A.1
  • 18
    • 0000466122 scopus 로고    scopus 로고
    • Survey on independent component analysis
    • Hyvärinen A. Survey on independent component analysis. Neural Comput. Surveys. 2:1999;94-128.
    • (1999) Neural Comput. Surveys , vol.2 , pp. 94-128
    • Hyvärinen, A.1
  • 20
    • 0037086546 scopus 로고    scopus 로고
    • Dimension reduction of process dynamic trends using independent component analysis
    • Li R.F., Wang X.Z. Dimension reduction of process dynamic trends using independent component analysis. Comp. Chem. Eng. 26:2002;467-473.
    • (2002) Comp. Chem. Eng. , vol.26 , pp. 467-473
    • Li, R.F.1    Wang, X.Z.2
  • 21
    • 0033330927 scopus 로고    scopus 로고
    • An empirical method to select dominant independent components in ICA time series analysis
    • Cheung Y.M., Xu L. An empirical method to select dominant independent components in ICA time series analysis. Proc. Int. Joint Conf. Neural Networks. 1999;3883-3887.
    • (1999) Proc. Int. Joint Conf. Neural Networks , pp. 3883-3887
    • Cheung, Y.M.1    Xu, L.2
  • 22
    • 0031197006 scopus 로고    scopus 로고
    • A first application of independent component analysis to extracting structure from stock returns
    • Back A.D., Weigend A.S. A first application of independent component analysis to extracting structure from stock returns. Int. J. Neural Sys. 8(4):1997;473-484.
    • (1997) Int. J. Neural Sys. , vol.8 , Issue.4 , pp. 473-484
    • Back, A.D.1    Weigend, A.S.2
  • 23
    • 0027812550 scopus 로고
    • Blind beamforming for non-Gaussian signals
    • Cardoso J.-F., Soulomica A. Blind beamforming for non-Gaussian signals. IEEE Proc. F. 140(6):1993;362-370.
    • (1993) IEEE Proc. F , vol.140 , Issue.6 , pp. 362-370
    • Cardoso, J.-F.1    Soulomica, A.2
  • 24
    • 0035659878 scopus 로고    scopus 로고
    • Independent component ordering in ICA time series analysis
    • Cheung Y.M., Xu L. Independent component ordering in ICA time series analysis. Neurocomputing. 41:2001;145-152.
    • (2001) Neurocomputing , vol.41 , pp. 145-152
    • Cheung, Y.M.1    Xu, L.2
  • 25
    • 0037098685 scopus 로고    scopus 로고
    • Statistical performance monitoring of dynamic multivariate process using state space modeling
    • Simoglou A., Martin E.B., Morris A.J. Statistical performance monitoring of dynamic multivariate process using state space modeling. Comp. Chem. Eng. 26(6):2002;909-920.
    • (2002) Comp. Chem. Eng. , vol.26 , Issue.6 , pp. 909-920
    • Simoglou, A.1    Martin, E.B.2    Morris, A.J.3
  • 26
    • 0030525683 scopus 로고    scopus 로고
    • Non-parametric confidence bounds for process performance monitoring charts
    • Martin E.B., Morris A.J. Non-parametric confidence bounds for process performance monitoring charts. J. Process Control. 6(6):1996;349-358.
    • (1996) J. Process Control , vol.6 , Issue.6 , pp. 349-358
    • Martin, E.B.1    Morris, A.J.2
  • 27
    • 0034130478 scopus 로고    scopus 로고
    • The application of principal component analysis and kernel density estimation to enhance process monitoring
    • Chen Q., Wynne R.J., Goulding P., Sandoz D. The application of principal component analysis and kernel density estimation to enhance process monitoring. Control Eng. Pract. 8:2000;531-543.
    • (2000) Control Eng. Pract. , vol.8 , pp. 531-543
    • Chen, Q.1    Wynne, R.J.2    Goulding, P.3    Sandoz, D.4
  • 30
    • 0028424619 scopus 로고
    • Process monitoring and diagnosis by multiblock PLS methods
    • MacGregor J.F., Jaeckle C., Kiparissides C., Koutoudi M. Process monitoring and diagnosis by multiblock PLS methods. AIChE J. 40(5):1994;826-838.
    • (1994) AIChE J. , vol.40 , Issue.5 , pp. 826-838
    • Macgregor, J.F.1    Jaeckle, C.2    Kiparissides, C.3    Koutoudi, M.4
  • 32
    • 0034621628 scopus 로고    scopus 로고
    • Generalized contribution plots in multivariate statistical process monitoring
    • Westerhuis J.A., Gurden S.P., Smilde A.K. Generalized contribution plots in multivariate statistical process monitoring. Chemom. Intell. Lab. Syst. 51:2000;95-114.
    • (2000) Chemom. Intell. Lab. Syst. , vol.51 , pp. 95-114
    • Westerhuis, J.A.1    Gurden, S.P.2    Smilde, A.K.3
  • 33
    • 0032517772 scopus 로고    scopus 로고
    • Principal component analysis, contribution plots and feature weights in the monitoring of sequential process data from a paper machine's wet end
    • Teppola P., Mujunen S.-P., Minkkinen P., Puijola T., Pursiheimo P. Principal component analysis, contribution plots and feature weights in the monitoring of sequential process data from a paper machine's wet end. Chemom. Intell. Lab. Syst. 44:1998;307-317.
    • (1998) Chemom. Intell. Lab. Syst. , vol.44 , pp. 307-317
    • Teppola, P.1    Mujunen, S.-P.2    Minkkinen, P.3    Puijola, T.4    Pursiheimo, P.5
  • 35
    • 4243571768 scopus 로고    scopus 로고
    • Towards a benchmark for evaluating control strategies in wastewater treatment plants by simulation
    • Budapest
    • M.N. Pons, H. Spanjers, U. Jeppsson, Towards a benchmark for evaluating control strategies in wastewater treatment plants by simulation, Escape 9, Budapest, 1999.
    • (1999) Escape , vol.9
    • Pons, M.N.1    Spanjers, H.2    Jeppsson, U.3
  • 36
    • 0037151456 scopus 로고    scopus 로고
    • Dynamic monitoring method for multiscale fault detection and diagnosis in MSPC
    • Yoo C.K., Choi S.W., Lee I.-B. Dynamic monitoring method for multiscale fault detection and diagnosis in MSPC. Ind. Eng. Chem. Res. 41:2002;4303-4317.
    • (2002) Ind. Eng. Chem. Res. , vol.41 , pp. 4303-4317
    • Yoo, C.K.1    Choi, S.W.2    Lee, I.-B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.