메뉴 건너뛰기




Volumn 55, Issue 5, 2006, Pages 699-715

Probability density estimation via an infinite Gaussian mixture model: Application to statistical process monitoring

Author keywords

Dirichlet process mixtures; Infinite Gaussian mixture model; Markov chain Monte Carlo methods; Multivariate statistical process monitoring; Probability density estimation

Indexed keywords


EID: 33750172858     PISSN: 00359254     EISSN: 14679876     Source Type: Journal    
DOI: 10.1111/j.1467-9876.2006.00560.x     Document Type: Article
Times cited : (86)

References (30)
  • 1
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • (eds B. N. Petrov and F. Csáki). Budapest: Akadémiai Kiadó
    • Akaike, H. (1973) Information theory and an extension of the maximum likelihood principle. In Proc. 2nd Int. Symp. Information Theory (eds B. N. Petrov and F. Csáki), pp. 267-281. Budapest: Akadémiai Kiadó.
    • (1973) Proc. 2nd Int. Symp. Information Theory , pp. 267-281
    • Akaike, H.1
  • 3
    • 0002617436 scopus 로고
    • Ferguson distributions via pólya urn schemes
    • Blackwell, D. and MacQueen, J. B. (1973) Ferguson distributions via pólya urn schemes. Ann, Statist., 1, 353-355.
    • (1973) Ann, Statist. , vol.1 , pp. 353-355
    • Blackwell, D.1    MacQueen, J.B.2
  • 5
    • 2342521341 scopus 로고    scopus 로고
    • Process monitoring using a gaussian mixture model via principal component analysis and discriminant analysis
    • Choi, S. W., Park, J. H. and Lee, I.-B. (2004) Process monitoring using a gaussian mixture model via principal component analysis and discriminant analysis. Comput. Chem. Engng, 28, 1377-1387.
    • (2004) Comput. Chem. Engng , vol.28 , pp. 1377-1387
    • Choi, S.W.1    Park, J.H.2    Lee, I.-B.3
  • 6
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977) Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. R. Statist. Soc. B, 39, 1-38.
    • (1977) J. R. Statist. Soc. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 7
    • 0027561446 scopus 로고
    • A plant-wide industrial process control problem
    • Downs, J. J. and Vogel, E. F. (1993) A plant-wide industrial process control problem. Comput. Chem. Engng, 17, 245-255.
    • (1993) Comput. Chem. Engng , vol.17 , pp. 245-255
    • Downs, J.J.1    Vogel, E.F.2
  • 8
    • 0001077032 scopus 로고
    • Nonparametric estimates of standard error: The jackknife, the bootstrap and other methods
    • Efron, B. (1981) Nonparametric estimates of standard error: the jackknife, the bootstrap and other methods. Biometrika, 68, 589-599.
    • (1981) Biometrika , vol.68 , pp. 589-599
    • Efron, B.1
  • 9
    • 0001120413 scopus 로고
    • A Bayesian analysis of some nonparametric problems
    • Ferguson, T. S. (1973) A Bayesian analysis of some nonparametric problems. Ann. Statist., 1, 209-230.
    • (1973) Ann. Statist. , vol.1 , pp. 209-230
    • Ferguson, T.S.1
  • 10
    • 0000324169 scopus 로고
    • Adaptive rejection sampling for Gibbs sampling
    • Gilks, W. R. and Wild, P. (1992) Adaptive rejection sampling for Gibbs sampling. Appl. Statist., 41, 337-348.
    • (1992) Appl. Statist. , vol.41 , pp. 337-348
    • Gilks, W.R.1    Wild, P.2
  • 11
    • 0002199780 scopus 로고
    • Multivariate quality control
    • (eds C. Eisenhart, M. W. Hastay and W. A. Wallis). New York: McGraw-Hill
    • Hotelling, H. (1947) Multivariate quality control. In Techniques of Statistical Analysis (eds C. Eisenhart, M. W. Hastay and W. A. Wallis). New York: McGraw-Hill.
    • (1947) Techniques of Statistical Analysis
    • Hotelling, H.1
  • 12
    • 0018503842 scopus 로고
    • Control procedures for residuals associated with principal component analysis
    • Jackson, J. E. and Mudholkar, G. S. (1979) Control procedures for residuals associated with principal component analysis. Technometrics, 21, 341-349.
    • (1979) Technometrics , vol.21 , pp. 341-349
    • Jackson, J.E.1    Mudholkar, G.S.2
  • 13
    • 0032221058 scopus 로고    scopus 로고
    • Estimating mixture of Dirichlet process models
    • MacEachern, S. N. and Muller, P. (1998) Estimating mixture of Dirichlet process models. J. Computnl Graph. Statist., 7, 223-238.
    • (1998) J. Computnl Graph. Statist. , vol.7 , pp. 223-238
    • MacEachern, S.N.1    Muller, P.2
  • 14
    • 0030525683 scopus 로고    scopus 로고
    • Non-parametric confidence bounds for process performance monitoring charts
    • Martin, E. B. and Morris, A. J. (1996) Non-parametric confidence bounds for process performance monitoring charts. J. Process Contr., 6, 349-358.
    • (1996) J. Process Contr. , vol.6 , pp. 349-358
    • Martin, E.B.1    Morris, A.J.2
  • 15
    • 0032657437 scopus 로고    scopus 로고
    • Manufacturing performance enhancement through multivariate statistical process control
    • Martin, E. B., Morris, A. J. and Kiparrisides, C. (1999) Manufacturing performance enhancement through multivariate statistical process control. A. Rev. Contr., 23, 35-44.
    • (1999) A. Rev. Contr. , vol.23 , pp. 35-44
    • Martin, E.B.1    Morris, A.J.2    Kiparrisides, C.3
  • 16
    • 0007300808 scopus 로고    scopus 로고
    • Markov chain sampling methods for Dirichlet process mixture models
    • Department of Statistics, University of Toronto, Toronto
    • Neal, R. M. (1998) Markov chain sampling methods for Dirichlet process mixture models. Technical Report 9815. Department of Statistics, University of Toronto, Toronto.
    • (1998) Technical Report , vol.9815
    • Neal, R.M.1
  • 17
    • 0028483476 scopus 로고
    • Monitoring batch processes using multiway principal component analysis
    • Nomikos, P. and MacGregor, J. F. (1994) Monitoring batch processes using multiway principal component analysis. AIChE J., 40, 1361-1375.
    • (1994) AIChE J. , vol.40 , pp. 1361-1375
    • Nomikos, P.1    MacGregor, J.F.2
  • 18
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: Basics and beyond
    • Qin, S. J. (2003) Statistical process monitoring: basics and beyond. J. Chemometr., 17, 480-502.
    • (2003) J. Chemometr. , vol.17 , pp. 480-502
    • Qin, S.J.1
  • 19
    • 79955803023 scopus 로고    scopus 로고
    • The infinite Gaussian mixture model
    • (eds S. A. Solla, T. K. Leen and K.-R. Müller). Cambridge: MIT Press
    • Rasmussen, C. E. (2000) The infinite Gaussian mixture model. In Advances in Neural Information Processing Systems, vol. 12 (eds S. A. Solla, T. K. Leen and K.-R. Müller). Cambridge: MIT Press.
    • (2000) Advances in Neural Information Processing Systems , vol.12
    • Rasmussen, C.E.1
  • 20
    • 18244378520 scopus 로고    scopus 로고
    • On Bayesian analysis of mixtures with an unknown number of components
    • correction, 60 (1998), 661
    • Richardson, S. and Green, P. J. (1997) On Bayesian analysis of mixtures with an unknown number of components (with discussion). J. R. Statist. Soc. B, 59, 731-792;correction, 60 (1998), 661.
    • (1997) J. R. Statist. Soc. B , vol.59 , pp. 731-792
    • Richardson, S.1    Green, P.J.2
  • 21
    • 0030217795 scopus 로고    scopus 로고
    • Decentralized control of the Tennessee Eastman challenge process
    • Ricker, N. L. (1996) Decentralized control of the Tennessee Eastman challenge process. J. Process Contr., 6, 205-221.
    • (1996) J. Process Contr. , vol.6 , pp. 205-221
    • Ricker, N.L.1
  • 22
    • 0031145293 scopus 로고    scopus 로고
    • Wavelet-based density estimation and application to process monitoring
    • Safavi, A. A., Chen, J. and Romagnoli, J. A. (1997) Wavelet-based density estimation and application to process monitoring. AIChE J., 43, 1227-1241.
    • (1997) AIChE J. , vol.43 , pp. 1227-1241
    • Safavi, A.A.1    Chen, J.2    Romagnoli, J.A.3
  • 23
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978) Estimating the dimension of a model. Ann. Statist., 6, 461-464.
    • (1978) Ann. Statist. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 24
    • 0032853906 scopus 로고    scopus 로고
    • Wavelets and non-linear principal components analysis for process monitoring
    • Shao, R., Jia, F., Martin, E. B. and Morris, A. J. (1999) Wavelets and non-linear principal components analysis for process monitoring. Contr. Engng Pract., 7, 865-879.
    • (1999) Contr. Engng Pract. , vol.7 , pp. 865-879
    • Shao, R.1    Jia, F.2    Martin, E.B.3    Morris, A.J.4
  • 25
    • 0034374610 scopus 로고    scopus 로고
    • Bayesian analysis of mixture models with an unknown number of components - An alternative to reversible jump methods
    • Stephens, M. (2000) Bayesian analysis of mixture models with an unknown number of components - an alternative to reversible jump methods. Ann. Statist., 28, 40-74.
    • (2000) Ann. Statist. , vol.28 , pp. 40-74
    • Stephens, M.1
  • 26
    • 14344256958 scopus 로고    scopus 로고
    • Hierarchical Dirichlet processes
    • Department of Statistics, University of California at Berkeley, Berkeley
    • Teh, Y. W., Jordan, M. I., Beal, M. J. and Blei, D. M. (2004) Hierarchical Dirichlet processes. Technical Report 653. Department of Statistics, University of California at Berkeley, Berkeley.
    • (2004) Technical Report , vol.653
    • Teh, Y.W.1    Jordan, M.I.2    Beal, M.J.3    Blei, D.M.4
  • 28
    • 0002763716 scopus 로고    scopus 로고
    • Sampling methods for Bayesian nonparametric inference involving stochastic processes
    • (eds D. Dey, P. Muller and D. Sinha). New York: Springer
    • Walker, S. and Damien, P. (1998) Sampling methods for Bayesian nonparametric inference involving stochastic processes. In Practical Nonparametric and Semiparametric Bayesian Statistics (eds D. Dey, P. Muller and D. Sinha), pp. 243-254. New York: Springer.
    • (1998) Practical Nonparametric and Semiparametric Bayesian Statistics , pp. 243-254
    • Walker, S.1    Damien, P.2
  • 30
    • 0001067412 scopus 로고    scopus 로고
    • A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process
    • Wise, B. M., Gallagher, N. B., Butler, S. W., White, D. D. and Barna, G. G. (1999) A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process. J. Chemometr., 13, 379-396.
    • (1999) J. Chemometr. , vol.13 , pp. 379-396
    • Wise, B.M.1    Gallagher, N.B.2    Butler, S.W.3    White, D.D.4    Barna, G.G.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.