메뉴 건너뛰기




Volumn 28, Issue 8, 2004, Pages 1377-1387

Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis

Author keywords

ARL; Discriminant analysis; Expectation maximization algorithm; Gaussian mixture model; Overall T2; Principal component analysis

Indexed keywords

COMPUTER SIMULATION; DATA REDUCTION; MATHEMATICAL MODELS; MIXTURES; PRINCIPAL COMPONENT ANALYSIS; PROCESS CONTROL;

EID: 2342521341     PISSN: 00981354     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compchemeng.2003.09.031     Document Type: Article
Times cited : (224)

References (29)
  • 2
    • 0036466502 scopus 로고    scopus 로고
    • Dynamic process fault monitoring based on neural network and PCA
    • Chen J., Liao C.-M. Dynamic process fault monitoring based on neural network and PCA. Journal of Process Control. 12:2002;277-289
    • (2002) Journal of Process Control , vol.12 , pp. 277-289
    • Chen, J.1    Liao, C.-M.2
  • 3
    • 0032898793 scopus 로고    scopus 로고
    • Mixture principal component analysis models for process monitoring
    • Chen J., Liu J. Mixture principal component analysis models for process monitoring. Industrial Engineering and Chemistry Research. 38:1999;1478-1488
    • (1999) Industrial Engineering and Chemistry Research , vol.38 , pp. 1478-1488
    • Chen, J.1    Liu, J.2
  • 4
    • 0034643075 scopus 로고    scopus 로고
    • Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis
    • Chiang L.H., Russell E.L., Braatz R.D. Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis. Chemometrics and Intelligent Laboratory Systems. 50:2000;243-252
    • (2000) Chemometrics and Intelligent Laboratory Systems , vol.50 , pp. 243-252
    • Chiang, L.H.1    Russell, E.L.2    Braatz, R.D.3
  • 6
    • 0043015539 scopus 로고    scopus 로고
    • Non-linear principal component analysis - Based on principal curves and neural networks
    • Dong D., McAvoy T.J. Non-linear principal component analysis - Based on principal curves and neural networks. Computers and Chemical Engineering. 20:1996;65-78
    • (1996) Computers and Chemical Engineering , vol.20 , pp. 65-78
    • Dong, D.1    McAvoy, T.J.2
  • 8
    • 0032049479 scopus 로고    scopus 로고
    • Joint diagnosis of process and sensor faults using principal component analysis
    • Dunia R., Qin S.J. Joint diagnosis of process and sensor faults using principal component analysis. Control Engineering Practice. 6:1998;457-469
    • (1998) Control Engineering Practice , vol.6 , pp. 457-469
    • Dunia, R.1    Qin, S.J.2
  • 9
    • 11144325691 scopus 로고
    • Partial least-squares regression: A tutorial
    • Geladi P., Kowalski B.R. Partial least-squares regression: A tutorial. Analytica Chimica Acta. 185:1986;1-17
    • (1986) Analytica Chimica Acta , vol.185 , pp. 1-17
    • Geladi, P.1    Kowalski, B.R.2
  • 12
    • 0000588327 scopus 로고    scopus 로고
    • Non-linear principal component analysis for process fault detection
    • Jia F., Martin E.B., Morris A.J. Non-linear principal component analysis for process fault detection. Computers and Chemical Engineering. 22:1998;S851-S854
    • (1998) Computers and Chemical Engineering , vol.22 , pp. 851-S854
    • Jia, F.1    Martin, E.B.2    Morris, A.J.3
  • 17
    • 0000672424 scopus 로고
    • Fast learning in networks of locally tuned processing units
    • Moody T.J., Darken C.J. Fast learning in networks of locally tuned processing units. Neural Computing. 1:1989;281-294
    • (1989) Neural Computing , vol.1 , pp. 281-294
    • Moody, T.J.1    Darken, C.J.2
  • 18
    • 0022266934 scopus 로고
    • An optimal orthonormal system for discriminant analysis
    • Okada T., Tomita S. An optimal orthonormal system for discriminant analysis. Pattern Recognition. 18:1985;139-144
    • (1985) Pattern Recognition , vol.18 , pp. 139-144
    • Okada, T.1    Tomita, S.2
  • 19
    • 0001212550 scopus 로고    scopus 로고
    • Detection and identification of faulty sensors in dynamic processes
    • Qin S.J., Li W. Detection and identification of faulty sensors in dynamic processes. AICHE Journal. 47:2001;1581-1593
    • (2001) AICHE Journal , vol.47 , pp. 1581-1593
    • Qin, S.J.1    Li, W.2
  • 20
    • 0031062026 scopus 로고    scopus 로고
    • Diagnosis of process disturbances by statistical distance and angle measures
    • Raich A., Çinar A. Diagnosis of process disturbances by statistical distance and angle measures. Computers and Chemical Engineering. 6:1997;661-673
    • (1997) Computers and Chemical Engineering , vol.6 , pp. 661-673
    • Raich, A.1    Çinar, A.2
  • 21
    • 0034661162 scopus 로고    scopus 로고
    • A fast training neural network and its updation for incipient fault detection and diagnosis
    • Rengaswamy R., Venkatasurbramanian V. A fast training neural network and its updation for incipient fault detection and diagnosis. Computers and Chemical Engineering. 24:2000;431-437
    • (2000) Computers and Chemical Engineering , vol.24 , pp. 431-437
    • Rengaswamy, R.1    Venkatasurbramanian, V.2
  • 22
    • 0037098685 scopus 로고    scopus 로고
    • Statistical performance monitoring of dynamic multivariate processes using state space modelling
    • Simoglou A., Martin E.B., Morris A.J. Statistical performance monitoring of dynamic multivariate processes using state space modelling. Computers and Chemical Engineering. 26:2002;909-920
    • (2002) Computers and Chemical Engineering , vol.26 , pp. 909-920
    • Simoglou, A.1    Martin, E.B.2    Morris, A.J.3
  • 23
    • 0029342346 scopus 로고
    • Detection of gross errors in data reconciliation by principal component analysis
    • Tong H., Crowe C.M. Detection of gross errors in data reconciliation by principal component analysis. AICHE Journal. 7:1995;1712-1722
    • (1995) AICHE Journal , vol.7 , pp. 1712-1722
    • Tong, H.1    Crowe, C.M.2
  • 26
    • 0002878789 scopus 로고
    • Recent advances in multivariate statistical process control: Improving robustness and sensitivity
    • Toulouse: Paul Sabatier University.
    • Wise, B. M., & Ricker, N. L. (1991). Recent advances in multivariate statistical process control: Improving robustness and sensitivity. In IFAC International Symposium, ADCHEM'91, Proceedings (pp. 125-130). Toulouse: Paul Sabatier University.
    • (1991) IFAC International Symposium, adchem'91, Proceedings , pp. 125-130
    • Wise, B.M.1    Ricker, N.L.2
  • 28
    • 0035427805 scopus 로고    scopus 로고
    • Fault diagnosis with multivariate statistical models. Part I. Using steady state fault signatures
    • Yoon S., MacGregor J.F. Fault diagnosis with multivariate statistical models. Part I. Using steady state fault signatures. Journal of Process Control. 11:2001;387-400
    • (2001) Journal of Process Control , vol.11 , pp. 387-400
    • Yoon, S.1    MacGregor, J.F.2
  • 29
    • 0035802262 scopus 로고    scopus 로고
    • Reconstruction-based fault identification using a combined index
    • Yue H.H., Qin S.J. Reconstruction-based fault identification using a combined index. Industrial Engineering and Chemistry Research. 40:2001;4403-4414
    • (2001) Industrial Engineering and Chemistry Research , vol.40 , pp. 4403-4414
    • Yue, H.H.1    Qin, S.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.