메뉴 건너뛰기




Volumn 13, Issue 9 B, 2009, Pages 3006-3018

The ubiquitin-proteasome system in cancer, a major player in DNA repair. Part 1: Post-translational regulation

Author keywords

Base excision repair; DNA repair; Double strand break repair; Fanconi anaemia pathway; MGMT; Mismatch repair; NEDD8; Nucleotide excision repair; Post replication repair; SUMO; Ubiquitin proteasome system

Indexed keywords

NUCLEOTIDE; PROTEASOME; TRANSCRIPTION FACTOR; UBIQUITIN;

EID: 74549153376     PISSN: 15821838     EISSN: None     Source Type: Journal    
DOI: 10.1111/j.1582-4934.2009.00824.x     Document Type: Review
Times cited : (27)

References (98)
  • 1
    • 0033815382 scopus 로고    scopus 로고
    • Review of mammalian DNA repair and translational implications
    • Hansen WK, Kelley MR. Review of mammalian DNA repair and translational implications. J Pharmacol Exp Ther. 2000, 295:1-9.
    • (2000) J Pharmacol Exp Ther. , vol.295 , pp. 1-9
    • Hansen, W.K.1    Kelley, M.R.2
  • 4
    • 33745453427 scopus 로고    scopus 로고
    • La réparation de l' ADN, cible potentielle d'un développement thérapeutique en cancérologie
    • hors série
    • Pourquier P. La réparation de l' ADN, cible potentielle d'un développement thérapeutique en cancérologie. Bull Cancer. 2006, 124-44. hors série
    • (2006) Bull Cancer. , pp. 124-144
    • Pourquier, P.1
  • 5
    • 33750630463 scopus 로고    scopus 로고
    • DNA inhibitors in cancer treatment
    • Sánchez-Pérez I. DNA inhibitors in cancer treatment. Clin Transl Oncol. 2006, 8:642-6.
    • (2006) Clin Transl Oncol. , vol.8 , pp. 642-646
    • Sánchez-Pérez, I.1
  • 6
    • 34547754492 scopus 로고    scopus 로고
    • Targetting DNA repair as a promising approach in cancer therapy
    • Damia G, D'Incalci M. Targetting DNA repair as a promising approach in cancer therapy. Eur J Cancer. 2007, 43:1791-801.
    • (2007) Eur J Cancer. , vol.43 , pp. 1791-1801
    • Damia, G.1    D'Incalci, M.2
  • 7
    • 0345276624 scopus 로고    scopus 로고
    • Regulation of alternative replication bypass pathways at stalled replication forks and its effects on genome stability: a yeast model
    • Barbour L, Xiao W. Regulation of alternative replication bypass pathways at stalled replication forks and its effects on genome stability: a yeast model. Mutat Res. 2003, 532:137-55.
    • (2003) Mutat Res. , vol.532 , pp. 137-155
    • Barbour, L.1    Xiao, W.2
  • 8
    • 29144506137 scopus 로고    scopus 로고
    • The Fanconi Anemia/BRCA pathway: new faces in the crowd
    • Kennedy RD, D' Andrea AD. The Fanconi Anemia/BRCA pathway: new faces in the crowd. Genes Dev. 2005, 19:2925-40.
    • (2005) Genes Dev. , vol.19 , pp. 2925-2940
    • Kennedy, R.D.1    D' Andrea, A.D.2
  • 9
    • 44349119351 scopus 로고    scopus 로고
    • Oncogene-induced replication stress preferentially targets common fragile sites in preneoplastic lesions. A genome-wide study
    • Tsantoulis PK, Kotsinas A, Sfikakis PP. Oncogene-induced replication stress preferentially targets common fragile sites in preneoplastic lesions. A genome-wide study. Oncogene. 2008, 27:3256-64.
    • (2008) Oncogene. , vol.27 , pp. 3256-3264
    • Tsantoulis, P.K.1    Kotsinas, A.2    Sfikakis, P.P.3    et al4
  • 10
    • 17244366865 scopus 로고    scopus 로고
    • Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions
    • Gorgoulis VG, Vassiliou LV, Karakaidos P. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature. 2005, 434:907-13.
    • (2005) Nature. , vol.434 , pp. 907-913
    • Gorgoulis, V.G.1    Vassiliou, L.V.2    Karakaidos, P.3    et al4
  • 11
    • 0032488846 scopus 로고    scopus 로고
    • The proteasome: paradigm of a self-compartmentalizing protease
    • Baumeister W, Walz J, Zuhl F. The proteasome: paradigm of a self-compartmentalizing protease. Cell. 1998, 92:367-80.
    • (1998) Cell. , vol.92 , pp. 367-380
    • Baumeister, W.1    Walz, J.2    Zuhl, F.3    et al4
  • 12
    • 0033643742 scopus 로고    scopus 로고
    • The ubiquitin-mediated proteolytic pathway: mode of action and clinical implications
    • Ciechanover A, Orian A, Schwartz AL. The ubiquitin-mediated proteolytic pathway: mode of action and clinical implications. J Cell Biochem Suppl. 2000, 34:40-51.
    • (2000) J Cell Biochem Suppl. , vol.34 , pp. 40-51
    • Ciechanover, A.1    Orian, A.2    Schwartz, A.L.3
  • 13
    • 0037852202 scopus 로고    scopus 로고
    • The proteasome: structure, function, and role in the cell
    • Adams J. The proteasome: structure, function, and role in the cell. Cancer Treat Rev. 2003, 29(Suppl 1):S3-9.
    • (2003) Cancer Treat Rev. , vol.29 , Issue.SUPPL. 1
    • Adams, J.1
  • 14
    • 27244447242 scopus 로고    scopus 로고
    • Ubiquitin - the kiss of death goes Nobel. Will you be quitting
    • Behuliak M, Celec P, Gardlik R. Ubiquitin - the kiss of death goes Nobel. Will you be quitting. Bratisl Lek Listy 2005, 106:93-100.
    • (2005) Bratisl Lek Listy , vol.106 , pp. 93-100
    • Behuliak, M.1    Celec, P.2    Gardlik, R.3    et al4
  • 15
    • 34248379575 scopus 로고    scopus 로고
    • Ubiquitin and ubiquitin-like proteins in protein regulation
    • Hermann J, Lerman LO, Lerman A. Ubiquitin and ubiquitin-like proteins in protein regulation. Circ Res. 2007, 100:1276-91.
    • (2007) Circ Res. , vol.100 , pp. 1276-1291
    • Hermann, J.1    Lerman, L.O.2    Lerman, A.3
  • 16
    • 23944474593 scopus 로고    scopus 로고
    • Intracellular protein degradation: from a vague idea through the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting
    • Ciechanover A. Intracellular protein degradation: from a vague idea through the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Cell Death Differ. 2005, 12:1178-90.
    • (2005) Cell Death Differ. , vol.12 , pp. 1178-1190
    • Ciechanover, A.1
  • 17
    • 33750946999 scopus 로고    scopus 로고
    • Narrative review: protein degradation and human diseases: the ubiquitin connection
    • Reinstein E, Ciechanover A. Narrative review: protein degradation and human diseases: the ubiquitin connection. Ann Intern Med. 2006, 145:676-84.
    • (2006) Ann Intern Med. , vol.145 , pp. 676-684
    • Reinstein, E.1    Ciechanover, A.2
  • 18
    • 25644446864 scopus 로고    scopus 로고
    • Dieldrin induces ubiquitin-proteasome dysfunction in alpha-synuclein overexpressing dopaminergic neuronal cells and enhances susceptibility to apoptotic cell death
    • Sun F, Anantharam V, Latchoumycandane C. Dieldrin induces ubiquitin-proteasome dysfunction in alpha-synuclein overexpressing dopaminergic neuronal cells and enhances susceptibility to apoptotic cell death. J Pharmacol Exp Ther. 2005, 315:69-79.
    • (2005) J Pharmacol Exp Ther. , vol.315 , pp. 69-79
    • Sun, F.1    Anantharam, V.2    Latchoumycandane, C.3    et al4
  • 19
    • 34249681825 scopus 로고    scopus 로고
    • Environmental neurotoxic chemicals-induced ubiquitin proteasome system dysfunction in the pathogenesis and progression of Parkinson's disease
    • Sun F, Kanthasamy A, Anantharam V. Environmental neurotoxic chemicals-induced ubiquitin proteasome system dysfunction in the pathogenesis and progression of Parkinson's disease. Pharmacol Ther. 2007, 114:327-44.
    • (2007) Pharmacol Ther. , vol.114 , pp. 327-344
    • Sun, F.1    Kanthasamy, A.2    Anantharam, V.3    et al4
  • 20
    • 23044506681 scopus 로고    scopus 로고
    • The ubiquitin-proteasome pathway and its role in cancer
    • Mani A, Gelmann EP. The ubiquitin-proteasome pathway and its role in cancer. J Clin Oncol. 2005, 23:4776-89.
    • (2005) J Clin Oncol. , vol.23 , pp. 4776-4789
    • Mani, A.1    Gelmann, E.P.2
  • 21
    • 27144529182 scopus 로고    scopus 로고
    • Ubiquitylation and cell signalling
    • Haglund K, Dikic I. Ubiquitylation and cell signalling. EMBO J. 2005, 24:3353-9.
    • (2005) EMBO J. , vol.24 , pp. 3353-3359
    • Haglund, K.1    Dikic, I.2
  • 22
    • 0025923487 scopus 로고
    • Use of antibodies to human O6-alkylguanine-DNA alkyltransferase to study the content of this protein in cells treated with O6-benzylguanine or N-methyl-N'-nitro-N-nitrosoguanidine
    • Pegg AE, Wiest L, Mummert C. Use of antibodies to human O6-alkylguanine-DNA alkyltransferase to study the content of this protein in cells treated with O6-benzylguanine or N-methyl-N'-nitro-N-nitrosoguanidine. Carcinogenesis. 1991, 12:1679-83.
    • (1991) Carcinogenesis. , vol.12 , pp. 1679-1683
    • Pegg, A.E.1    Wiest, L.2    Mummert, C.3    et al4
  • 23
    • 0029670679 scopus 로고    scopus 로고
    • Ubiquitination-dependent proteolysis of O6-methylguanine-DNA methyltransferase in human and murine tumor cells following inactivation with O6-benzylguanine or 1,3-bis(2-chloroethyl)-1-nitrosourea
    • Srivenugopal KS, Yuan XH, Friedman HS. Ubiquitination-dependent proteolysis of O6-methylguanine-DNA methyltransferase in human and murine tumor cells following inactivation with O6-benzylguanine or 1,3-bis(2-chloroethyl)-1-nitrosourea. Biochemistry. 1996, 35:1328-34.
    • (1996) Biochemistry. , vol.35 , pp. 1328-1334
    • Srivenugopal, K.S.1    Yuan, X.H.2    Friedman, H.S.3    et al4
  • 24
    • 0036262190 scopus 로고    scopus 로고
    • Degradation of the alkylated form of the DNA repair protein, O6-alkylguanine-DNA alkyltransferase
    • Xu-Welliver M, Pegg AE. Degradation of the alkylated form of the DNA repair protein, O6-alkylguanine-DNA alkyltransferase. Carcinogenesis. 2002, 23:823-30.
    • (2002) Carcinogenesis. , vol.23 , pp. 823-830
    • Xu-Welliver, M.1    Pegg, A.E.2
  • 25
    • 1642374640 scopus 로고    scopus 로고
    • Degradation of mismatch repair hMutSα heterodimer by the ubiquitin-proteasome pathway
    • Hernandez-Pigeon H, Laurent G, Humbert O. Degradation of mismatch repair hMutSα heterodimer by the ubiquitin-proteasome pathway. FEBS Lett. 2004, 562:40-4.
    • (2004) FEBS Lett. , vol.562 , pp. 40-44
    • Hernandez-Pigeon, H.1    Laurent, G.2    Humbert, O.3    et al4
  • 26
    • 18144381942 scopus 로고    scopus 로고
    • Degradation of human exonuclease 1b upon DNA synthesis inhibition
    • El-Shemerly M, Janscak P, Hess D. Degradation of human exonuclease 1b upon DNA synthesis inhibition. Cancer Res. 2005, 65:3604-9.
    • (2005) Cancer Res. , vol.65 , pp. 3604-3609
    • El-Shemerly, M.1    Janscak, P.2    Hess, D.3    et al4
  • 27
    • 34547101263 scopus 로고    scopus 로고
    • Cell cycle regulation as a mechanism for functional separation of the apparently redundant uracil DNA glycosylases TDG and UNG2
    • Hardeland U, Kunz C, Focke F. Cell cycle regulation as a mechanism for functional separation of the apparently redundant uracil DNA glycosylases TDG and UNG2. Nucleic Acids Res. 2007, 35:3859-67.
    • (2007) Nucleic Acids Res. , vol.35 , pp. 3859-3867
    • Hardeland, U.1    Kunz, C.2    Focke, F.3    et al4
  • 28
    • 46449122616 scopus 로고    scopus 로고
    • Polyubiquitylation of PARP-1 through ubiquitin K48 is modulated by activated DNA, NAD+, and dipeptides
    • Wang T, Simbulan-Rosenthal CM, Smulson ME. Polyubiquitylation of PARP-1 through ubiquitin K48 is modulated by activated DNA, NAD+, and dipeptides. J Cell Biochem. 2008, 104:318-28.
    • (2008) J Cell Biochem. , vol.104 , pp. 318-328
    • Wang, T.1    Simbulan-Rosenthal, C.M.2    Smulson, M.E.3    et al4
  • 29
    • 0034671692 scopus 로고    scopus 로고
    • The 26S proteasome negatively regulates the level of overall genomic nucleotide excision repair
    • Lommel L, Chen L, Madura K. The 26S proteasome negatively regulates the level of overall genomic nucleotide excision repair. Nucleic Acids Res. 2000, 28:4839-45.
    • (2000) Nucleic Acids Res. , vol.28 , pp. 4839-4845
    • Lommel, L.1    Chen, L.2    Madura, K.3    et al4
  • 30
    • 12244309062 scopus 로고    scopus 로고
    • Proteolysis of a nucleotide excision repair protein by the 26S proteasome
    • Lommel L, Ortolan T, Chen L. Proteolysis of a nucleotide excision repair protein by the 26S proteasome. Curr Genet. 2002, 42:9-20.
    • (2002) Curr Genet. , vol.42 , pp. 9-20
    • Lommel, L.1    Ortolan, T.2    Chen, L.3    et al4
  • 31
    • 0041496232 scopus 로고    scopus 로고
    • Regulation of repair by the 26S proteasome
    • Sweder K, Madura K. Regulation of repair by the 26S proteasome. J Biomed Biotechnol. 2002, 2:94-105.
    • (2002) J Biomed Biotechnol. , vol.2 , pp. 94-105
    • Sweder, K.1    Madura, K.2
  • 32
    • 0038339144 scopus 로고    scopus 로고
    • A novel regulation mechanism of DNA repair by damage-induced and RAD23-dependent stabilization of xeroderma pigmentosum group C protein
    • Ng JM, Vermeulen W, van der Horst GT. A novel regulation mechanism of DNA repair by damage-induced and RAD23-dependent stabilization of xeroderma pigmentosum group C protein. Genes Dev. 2003, 17:1630-45.
    • (2003) Genes Dev. , vol.17 , pp. 1630-1645
    • Ng, J.M.1    Vermeulen, W.2    van der Horst, G.T.3    et al4
  • 33
    • 85078510999 scopus 로고    scopus 로고
    • The ubiquitin-associated (UBA) domain
    • Madura K. The ubiquitin-associated (UBA) domain. Cell Cycle. 2002, 1:235-44.
    • (2002) Cell Cycle. , vol.1 , pp. 235-244
    • Madura, K.1
  • 34
    • 40849113190 scopus 로고    scopus 로고
    • Components of the ubiquitin-proteasome pathway compete for surfaces on Rad23 family proteins
    • Goh AM, Walters KJ, Elsasser S. Components of the ubiquitin-proteasome pathway compete for surfaces on Rad23 family proteins. BMC Biochem. 2008, 9:4-13.
    • (2008) BMC Biochem. , vol.9 , pp. 4-13
    • Goh, A.M.1    Walters, K.J.2    Elsasser, S.3    et al4
  • 35
    • 4444371794 scopus 로고    scopus 로고
    • Relative levels of the two mammalian Rad23 homologs determine composition and stability of the xeroderma pigmentosum group C protein complex
    • Okuda Y, Nishi R, Ng JM. Relative levels of the two mammalian Rad23 homologs determine composition and stability of the xeroderma pigmentosum group C protein complex. DNA Repair. 2004, 3:1285-95.
    • (2004) DNA Repair. , vol.3 , pp. 1285-1295
    • Okuda, Y.1    Nishi, R.2    Ng, J.M.3    et al4
  • 36
    • 0033600798 scopus 로고    scopus 로고
    • Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23 mediates interaction with S5a subunit of 26S proteasome
    • Hiyama H, Yokoi M, Masutani C. Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23 mediates interaction with S5a subunit of 26S proteasome. J Biol Chem. 1999, 274:28019-25.
    • (1999) J Biol Chem. , vol.274 , pp. 28019-28025
    • Hiyama, H.1    Yokoi, M.2    Masutani, C.3    et al4
  • 37
    • 0034762028 scopus 로고    scopus 로고
    • Ubiquitin-associated (UBA) domains in Rad23 bind ubiquitin and promote inhibition if multi-ubiquitin chain assembly
    • Chen L, Shinde U, Ortolan TG. Ubiquitin-associated (UBA) domains in Rad23 bind ubiquitin and promote inhibition if multi-ubiquitin chain assembly. EMBO Rep. 2001, 2:933-8.
    • (2001) EMBO Rep. , vol.2 , pp. 933-938
    • Chen, L.1    Shinde, U.2    Ortolan, T.G.3    et al4
  • 38
    • 0037646406 scopus 로고    scopus 로고
    • Rad23-ubiquitin associated domains (UBA) inhibit 26S proteasome-catalysed proteolysis by sequestering lysine 48-linked polyubiquitin chains
    • Raasi S, Pickart CM. Rad23-ubiquitin associated domains (UBA) inhibit 26S proteasome-catalysed proteolysis by sequestering lysine 48-linked polyubiquitin chains. J Biol Chem. 2003, 278:8951-9.
    • (2003) J Biol Chem. , vol.278 , pp. 8951-8959
    • Raasi, S.1    Pickart, C.M.2
  • 39
    • 17044368771 scopus 로고    scopus 로고
    • The UBA2 domain functions as an intrinsic stabilization signal that protects Rad23 from proteasomal degradation
    • Heessen S, Masucci MG, Dantuma NP. The UBA2 domain functions as an intrinsic stabilization signal that protects Rad23 from proteasomal degradation. Mol Cell. 2005, 18:225-35.
    • (2005) Mol Cell. , vol.18 , pp. 225-235
    • Heessen, S.1    Masucci, M.G.2    Dantuma, N.P.3
  • 40
    • 0032879814 scopus 로고    scopus 로고
    • Pleiotropic defects caused by loss of the proteasome-interacting factors Rad23 and Rpn10 of Saccharomyces cerevisiae
    • Lambertson D, Chen L, Madura K. Pleiotropic defects caused by loss of the proteasome-interacting factors Rad23 and Rpn10 of Saccharomyces cerevisiae. Genetics. 1999, 153:69-79.
    • (1999) Genetics. , vol.153 , pp. 69-79
    • Lambertson, D.1    Chen, L.2    Madura, K.3
  • 41
    • 0036277299 scopus 로고    scopus 로고
    • Rad23 promotes the targeting of proteolytic substrates to the proteasome
    • Chen L, Madura K. Rad23 promotes the targeting of proteolytic substrates to the proteasome. Mol Cell Biol. 2002, 22:4902-13.
    • (2002) Mol Cell Biol. , vol.22 , pp. 4902-4913
    • Chen, L.1    Madura, K.2
  • 42
    • 33744958177 scopus 로고    scopus 로고
    • Cullin 4A-mediated proteolysis of DDB2 protein at DNA damage sites regulates in vivo lesion recognition by XPC
    • El-Mahdy LA, Zhu Q, Wang QE. Cullin 4A-mediated proteolysis of DDB2 protein at DNA damage sites regulates in vivo lesion recognition by XPC. J Biol Chem. 2006, 281:13404-11.
    • (2006) J Biol Chem. , vol.281 , pp. 13404-13411
    • El-Mahdy, L.A.1    Zhu, Q.2    Wang, Q.E.3    et al4
  • 44
    • 34547756924 scopus 로고    scopus 로고
    • Regulation of UV-induced DNA damage response by ubiquitylation
    • Bergink S, Jaspers NG, Vermeulen W. Regulation of UV-induced DNA damage response by ubiquitylation. DNA Repair. 2007, 6:1231-42.
    • (2007) DNA Repair. , vol.6 , pp. 1231-1242
    • Bergink, S.1    Jaspers, N.G.2    Vermeulen, W.3
  • 45
    • 0032499719 scopus 로고    scopus 로고
    • Assembly, subunit composition, and footprint of human DNA repair excision nuclease
    • Wakasugi M, Sancar A. Assembly, subunit composition, and footprint of human DNA repair excision nuclease. Proc Natl Acad Sci USA. 1998, 95:6669-74.
    • (1998) Proc Natl Acad Sci USA. , vol.95 , pp. 6669-6674
    • Wakasugi, M.1    Sancar, A.2
  • 46
    • 34548790663 scopus 로고    scopus 로고
    • Ubiquitylation-independent degradation of Xeroderma pigmentosum group C protein is required for efficient nucleotide excision repair
    • Wang QE, Praetorius-Ibba M, Zhu Q. Ubiquitylation-independent degradation of Xeroderma pigmentosum group C protein is required for efficient nucleotide excision repair. Nucleic Acids Res. 2007, 35:5338-50.
    • (2007) Nucleic Acids Res. , vol.35 , pp. 5338-5350
    • Wang, Q.E.1    Praetorius-Ibba, M.2    Zhu, Q.3    et al4
  • 47
    • 11144263684 scopus 로고    scopus 로고
    • Cellular ubiquitination and proteasomal functions positively modulate mammalian nucleotide excision repair
    • Wang QE, Wani MA, Chen J. Cellular ubiquitination and proteasomal functions positively modulate mammalian nucleotide excision repair. Mol Carcinog. 2005, 42:53-64.
    • (2005) Mol Carcinog. , vol.42 , pp. 53-64
    • Wang, Q.E.1    Wani, M.A.2    Chen, J.3    et al4
  • 48
    • 34547945474 scopus 로고    scopus 로고
    • Nucleotide excision repair eliminates unique DNA-protein cross-links from mammalian cells
    • Baker DJ, Wuenschell G, Xia L. Nucleotide excision repair eliminates unique DNA-protein cross-links from mammalian cells. J Biol Chem. 2007, 282:22592-604.
    • (2007) J Biol Chem. , vol.282 , pp. 22592-22604
    • Baker, D.J.1    Wuenschell, G.2    Xia, L.3    et al4
  • 49
    • 19944388882 scopus 로고    scopus 로고
    • Proteasome involvement in the repair of DNA double-strand breaks
    • Krogan NJ, Lam MH, Fillingham J. Proteasome involvement in the repair of DNA double-strand breaks. Mol Cell. 2004, 16:1027-34.
    • (2004) Mol Cell. , vol.16 , pp. 1027-1034
    • Krogan, N.J.1    Lam, M.H.2    Fillingham, J.3    et al4
  • 50
    • 0037684805 scopus 로고    scopus 로고
    • The multiple nuclear functions of BRCA1: transcription, ubiquitination and DNA repair
    • Starita LM, Parvin JD. The multiple nuclear functions of BRCA1: transcription, ubiquitination and DNA repair. Curr Opin Cell Biol. 2003, 15:345-50.
    • (2003) Curr Opin Cell Biol. , vol.15 , pp. 345-350
    • Starita, L.M.1    Parvin, J.D.2
  • 51
    • 36749022182 scopus 로고    scopus 로고
    • The proteasome is involved in determining differential utilization of double-strand break repair pathways
    • Gudmundsdottir K, Lord CJ, Ashworth A. The proteasome is involved in determining differential utilization of double-strand break repair pathways. Oncogene. 2007, 26:7601-6.
    • (2007) Oncogene. , vol.26 , pp. 7601-7606
    • Gudmundsdottir, K.1    Lord, C.J.2    Ashworth, A.3
  • 52
    • 27944459176 scopus 로고    scopus 로고
    • Cellular localization of human Rad51C and regulation of ubiquitin-mediated proteolysis of Rad51
    • Bennett BT, Knight KL. Cellular localization of human Rad51C and regulation of ubiquitin-mediated proteolysis of Rad51. J Cell Biochem. 2005, 96:1095-109.
    • (2005) J Cell Biochem. , vol.96 , pp. 1095-1109
    • Bennett, B.T.1    Knight, K.L.2
  • 53
    • 34548807121 scopus 로고    scopus 로고
    • Inhibitors of the proteasome suppress homologous DNA recombination in mammalian cells
    • Murakawa Y, Sonoda E, Barber LJ. Inhibitors of the proteasome suppress homologous DNA recombination in mammalian cells. Cancer Res. 2007, 67:8536-43.
    • (2007) Cancer Res. , vol.67 , pp. 8536-8543
    • Murakawa, Y.1    Sonoda, E.2    Barber, L.J.3    et al4
  • 54
    • 34547628200 scopus 로고    scopus 로고
    • Proteasome function is required for DNA damage response and fanconi anemia pathway activation
    • Jacquemont C, Taniguchi T. Proteasome function is required for DNA damage response and fanconi anemia pathway activation. Cancer Res. 2007, 67:7395-405.
    • (2007) Cancer Res. , vol.67 , pp. 7395-7405
    • Jacquemont, C.1    Taniguchi, T.2
  • 55
    • 35848934107 scopus 로고    scopus 로고
    • Cell cycle- and proteasome-dependent formation of etoposide-induced replication protein A (RPA) or Mre11/Rad50/Nbs1 (MRN) complex repair foci
    • Robison JG, Dixon K, Bissler JJ. Cell cycle- and proteasome-dependent formation of etoposide-induced replication protein A (RPA) or Mre11/Rad50/Nbs1 (MRN) complex repair foci. Cell Cycle. 2007, 6:2399-407.
    • (2007) Cell Cycle. , vol.6 , pp. 2399-2407
    • Robison, J.G.1    Dixon, K.2    Bissler, J.J.3
  • 56
    • 29144533365 scopus 로고    scopus 로고
    • Involvement of the ubiquitin in decreasing Ku70 levels in response to drug-induced apoptosis
    • Gama V, Yoshida T, Gomez JA. Involvement of the ubiquitin in decreasing Ku70 levels in response to drug-induced apoptosis. Exp Cell Res. 2006, 312:488-99.
    • (2006) Exp Cell Res. , vol.312 , pp. 488-499
    • Gama, V.1    Yoshida, T.2    Gomez, J.A.3    et al4
  • 57
    • 49749093073 scopus 로고    scopus 로고
    • Ku80 removal from DNA through double strand break-induced ubiquitylation
    • Postow L, Ghenoiu C, Woo EM. Ku80 removal from DNA through double strand break-induced ubiquitylation. J Cell Biol. 2008, 182:467-79.
    • (2008) J Cell Biol. , vol.182 , pp. 467-479
    • Postow, L.1    Ghenoiu, C.2    Woo, E.M.3    et al4
  • 58
    • 0141677835 scopus 로고    scopus 로고
    • The link between 20S proteasome activity and post-replication DNA repair in Saccharomyces cerevisiae
    • Podlaska A, McIntyre J, Skoneczna A. The link between 20S proteasome activity and post-replication DNA repair in Saccharomyces cerevisiae. Mol Microbiol. 2003, 49:1321-32.
    • (2003) Mol Microbiol. , vol.49 , pp. 1321-1332
    • Podlaska, A.1    McIntyre, J.2    Skoneczna, A.3    et al4
  • 59
    • 30944459035 scopus 로고    scopus 로고
    • Analysis of the spontaneous mutator phenotype associated with 20S proteasome deficiency in S. cerevisiae
    • McIntyre J, Podlaska A, Sconeczna A. Analysis of the spontaneous mutator phenotype associated with 20S proteasome deficiency in S. cerevisiae. Mut Res. 2006, 593:153-63.
    • (2006) Mut Res. , vol.593 , pp. 153-163
    • McIntyre, J.1    Podlaska, A.2    Sconeczna, A.3    et al4
  • 60
    • 33846640580 scopus 로고    scopus 로고
    • Polymerase eta is a short-lived, proteasomally degraded protein that is temporarily stabilized following UV irradiation in Saccharomyces cerevisiae
    • Sconeczna A, McIntyre J, Sconeczny M. Polymerase eta is a short-lived, proteasomally degraded protein that is temporarily stabilized following UV irradiation in Saccharomyces cerevisiae. J Mol Biol. 2007, 366:1074-86.
    • (2007) J Mol Biol. , vol.366 , pp. 1074-1086
    • Sconeczna, A.1    McIntyre, J.2    Sconeczny, M.3    et al4
  • 61
    • 12844278716 scopus 로고    scopus 로고
    • Differential regulation of Rad18 through Rad6-dependent mono- and poly-ubiquitination
    • Miyase S, Tateishi S, Watanabe K. Differential regulation of Rad18 through Rad6-dependent mono- and poly-ubiquitination. J Biol Chem. 2005, 280:515-24.
    • (2005) J Biol Chem. , vol.280 , pp. 515-524
    • Miyase, S.1    Tateishi, S.2    Watanabe, K.3    et al4
  • 62
    • 43649086471 scopus 로고    scopus 로고
    • Proteasome inhibitors remarkably prevent translesion replication in cancer cells but not normal cells
    • Takezawa J, Ishimi Y, Yamada K. Proteasome inhibitors remarkably prevent translesion replication in cancer cells but not normal cells. Cancer Sci. 2008, 99:863-71.
    • (2008) Cancer Sci. , vol.99 , pp. 863-871
    • Takezawa, J.1    Ishimi, Y.2    Yamada, K.3
  • 63
    • 34447558592 scopus 로고    scopus 로고
    • A novel DNA damage response: rapid degradation of the p12 subunit of DNA polymerase δ
    • Zhang S, Zhou Y, Trusa S. A novel DNA damage response: rapid degradation of the p12 subunit of DNA polymerase δ. J Biol Chem. 2007, 282:15330-40.
    • (2007) J Biol Chem. , vol.282 , pp. 15330-15340
    • Zhang, S.1    Zhou, Y.2    Trusa, S.3    et al4
  • 64
    • 0034659782 scopus 로고    scopus 로고
    • Posttranscriptional cell cycle-dependent regulation of human FANCC expression
    • Heinrich MC, Silvey KV, Stone S. Posttranscriptional cell cycle-dependent regulation of human FANCC expression. Blood. 2000, 95:3970-7.
    • (2000) Blood. , vol.95 , pp. 3970-3977
    • Heinrich, M.C.1    Silvey, K.V.2    Stone, S.3    et al4
  • 65
    • 13244291457 scopus 로고    scopus 로고
    • The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway
    • Nijman SM, Huang TT, Dirac AM. The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol Cell. 2005, 17:331-9.
    • (2005) Mol Cell. , vol.17 , pp. 331-339
    • Nijman, S.M.1    Huang, T.T.2    Dirac, A.M.3    et al4
  • 66
    • 34247110291 scopus 로고    scopus 로고
    • Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair
    • Smogorzewska A, Matsuoka S, Vinciguerra P. Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell. 2007, 129:289-301.
    • (2007) Cell. , vol.129 , pp. 289-301
    • Smogorzewska, A.1    Matsuoka, S.2    Vinciguerra, P.3    et al4
  • 67
    • 34247577746 scopus 로고    scopus 로고
    • The Fanconi family adds a fraternal twin
    • Grompe M, van de Vrugt H. The Fanconi family adds a fraternal twin. Dev Cell. 2007, 12:661-2.
    • (2007) Dev Cell. , vol.12 , pp. 661-662
    • Grompe, M.1    van de Vrugt, H.2
  • 68
    • 0037086643 scopus 로고    scopus 로고
    • Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover
    • Hardeland U, Steinacher R, Jiricny J. Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. EMBO J. 2002, 21:1456-64.
    • (2002) EMBO J. , vol.21 , pp. 1456-1464
    • Hardeland, U.1    Steinacher, R.2    Jiricny, J.3    et al4
  • 69
    • 33751259948 scopus 로고    scopus 로고
    • Role of SUMO/Ubc9 in DNA damage repair and tumorigenesis
    • Moschos SJ, Mo YY. Role of SUMO/Ubc9 in DNA damage repair and tumorigenesis. J Mol Hist. 2006, 37:309-19.
    • (2006) J Mol Hist. , vol.37 , pp. 309-319
    • Moschos, S.J.1    Mo, Y.Y.2
  • 70
    • 0030951297 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerase interacts with a novel human ubiquitin conjugating enzyme: hUbc9
    • Masson M, de Murcia JM, Matei MG. Poly(ADP-ribose) polymerase interacts with a novel human ubiquitin conjugating enzyme: hUbc9. Gene. 1997, 190:287-96.
    • (1997) Gene. , vol.190 , pp. 287-296
    • Masson, M.1    de Murcia, J.M.2    Matei, M.G.3    et al4
  • 71
    • 14244249406 scopus 로고    scopus 로고
    • Systematic identification and analysis of mammalian small ubiquitin-like modifier substrates
    • Gocke CB, Yu H, Kang J. Systematic identification and analysis of mammalian small ubiquitin-like modifier substrates. J Biol Chem. 2005, 280:5004-12.
    • (2005) J Biol Chem. , vol.280 , pp. 5004-5012
    • Gocke, C.B.1    Yu, H.2    Kang, J.3
  • 72
    • 8844243320 scopus 로고    scopus 로고
    • DSS1 is required for Rad51 focus formation and genomic stability in mammalian cells
    • Gudmundsdottir K, Lord CJ, Witt E. DSS1 is required for Rad51 focus formation and genomic stability in mammalian cells. EMBO Rep. 2004, 5:989-93.
    • (2004) EMBO Rep. , vol.5 , pp. 989-993
    • Gudmundsdottir, K.1    Lord, C.J.2    Witt, E.3    et al4
  • 73
    • 3042799223 scopus 로고    scopus 로고
    • Sem1p is a novel subunit of the 26S proteasome from Saccharomyces cerevisiae
    • Sone T, Saeki Y, Toh-e A. Sem1p is a novel subunit of the 26S proteasome from Saccharomyces cerevisiae. J Biol Chem. 2004, 279:28807-16.
    • (2004) J Biol Chem. , vol.279 , pp. 28807-28816
    • Sone, T.1    Saeki, Y.2    Toh-e, A.3    et al4
  • 74
    • 42549169677 scopus 로고    scopus 로고
    • A yeast-based genetic screening to identify human proteins that increase homologous recombination
    • Collavoli A, Comelli A, Rainaldi G. A yeast-based genetic screening to identify human proteins that increase homologous recombination. FEMS Yeast Res. 2008, 8:351-61.
    • (2008) FEMS Yeast Res. , vol.8 , pp. 351-361
    • Collavoli, A.1    Comelli, A.2    Rainaldi, G.3    et al4
  • 75
    • 0029982968 scopus 로고    scopus 로고
    • Mammalian ubiquitin-conjugating enzyme Ubc9 interacts with Rad51 recombination protein and localizes in synaptonemal complexes
    • Kovalenko OV, Plug AW, Haaf T. Mammalian ubiquitin-conjugating enzyme Ubc9 interacts with Rad51 recombination protein and localizes in synaptonemal complexes. Proc Natl Acad Sci USA. 1996, 93:2958-63.
    • (1996) Proc Natl Acad Sci USA. , vol.93 , pp. 2958-2963
    • Kovalenko, O.V.1    Plug, A.W.2    Haaf, T.3    et al4
  • 76
    • 0030588127 scopus 로고    scopus 로고
    • Associations of UBE2I with RAD52, UBL1, p53, and RAD51 proteins in a yeast two-hybrid system
    • Shen Z, Pardington-Purtymun PE, Comeaux JC. Associations of UBE2I with RAD52, UBL1, p53, and RAD51 proteins in a yeast two-hybrid system. Genomics. 1996a, 37:183-6.
    • (1996) Genomics. , vol.37 , pp. 183-186
    • Shen, Z.1    Pardington-Purtymun, P.E.2    Comeaux, J.C.3    et al4
  • 77
    • 0030249870 scopus 로고    scopus 로고
    • UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins
    • Shen Z, Pardington-Purtymun PE, Comeaux JC. UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins. Genomics. 1996b, 36:271-9.
    • (1996) Genomics. , vol.36 , pp. 271-279
    • Shen, Z.1    Pardington-Purtymun, P.E.2    Comeaux, J.C.3    et al4
  • 78
    • 33750499289 scopus 로고    scopus 로고
    • Control of Rad52 recombination activity by double-strand break-induced SUMO modification
    • Sacher M, Pfander B, Hoege C. Control of Rad52 recombination activity by double-strand break-induced SUMO modification. Nat Cell Biol. 2006, 8:1284-90.
    • (2006) Nat Cell Biol. , vol.8 , pp. 1284-1290
    • Sacher, M.1    Pfander, B.2    Hoege, C.3    et al4
  • 79
    • 43849092514 scopus 로고    scopus 로고
    • Rad52 sumoylation and its involvement in the efficient induction of homologous recombination
    • Ohuchi T, Seki M, Branzei D. Rad52 sumoylation and its involvement in the efficient induction of homologous recombination. DNA Repair. 2008, 7:879-89.
    • (2008) DNA Repair. , vol.7 , pp. 879-889
    • Ohuchi, T.1    Seki, M.2    Branzei, D.3    et al4
  • 80
    • 30944443320 scopus 로고    scopus 로고
    • Monoubiquitination of the nonhomologous end joining protein XRCC4
    • Foster RE, Nnakwe C, Woo L. Monoubiquitination of the nonhomologous end joining protein XRCC4. Biochem Biophys Res Commun. 2006, 341:175-83.
    • (2006) Biochem Biophys Res Commun. , vol.341 , pp. 175-183
    • Foster, R.E.1    Nnakwe, C.2    Woo, L.3    et al4
  • 81
    • 33644540769 scopus 로고    scopus 로고
    • SUMO modification of human XRCC4 regulates its localization and function in DNA double-strand break repair
    • Yurchenko V, Xue Z, Sadofsky MJ. SUMO modification of human XRCC4 regulates its localization and function in DNA double-strand break repair. Mol Cell Biol. 2006, 26:1786-94.
    • (2006) Mol Cell Biol. , vol.26 , pp. 1786-1794
    • Yurchenko, V.1    Xue, Z.2    Sadofsky, M.J.3
  • 82
    • 53449085954 scopus 로고    scopus 로고
    • PCNA modifications for regulation of post-replication repair pathways
    • Lee KY, Myung K. PCNA modifications for regulation of post-replication repair pathways. Mol Cells. 2008, 26:5-11.
    • (2008) Mol Cells. , vol.26 , pp. 5-11
    • Lee, K.Y.1    Myung, K.2
  • 83
    • 33745581677 scopus 로고    scopus 로고
    • Controlling the subcellular localization of DNA polymerases ι and η via interactions with ubiquitin
    • Plosky BS, Vidal AE, Fernández de Henestrosa AR. Controlling the subcellular localization of DNA polymerases ι and η via interactions with ubiquitin. EMBO J. 2006, 25:2847-55.
    • (2006) EMBO J. , vol.25 , pp. 2847-2855
    • Plosky, B.S.1    Vidal, A.E.2    Fernández de Henestrosa, A.R.3    et al4
  • 84
    • 22244478319 scopus 로고    scopus 로고
    • DNA repair factor XPC is modified by SUMO-1 and ubiquitin following UV irradiation
    • Wang QE, Zhu Q, Wani G. DNA repair factor XPC is modified by SUMO-1 and ubiquitin following UV irradiation. Nucleic Acids Res. 2005, 33:4023-34.
    • (2005) Nucleic Acids Res. , vol.33 , pp. 4023-4034
    • Wang, Q.E.1    Zhu, Q.2    Wani, G.3    et al4
  • 85
    • 0010586475 scopus 로고    scopus 로고
    • The 19S regulatory complex of the proteasome functions independently of proteolysis in nucleotide excision repair
    • Russell SJ, Reed SH, Huang W. The 19S regulatory complex of the proteasome functions independently of proteolysis in nucleotide excision repair. Mol Cell. 1999, 3:687-95.
    • (1999) Mol Cell. , vol.3 , pp. 687-695
    • Russell, S.J.1    Reed, S.H.2    Huang, W.3    et al4
  • 86
    • 0035876040 scopus 로고    scopus 로고
    • The 19S complex of the proteasome regulates nucleotide excision repair in yeast
    • Gillette TG, Huang W, Russell SJ. The 19S complex of the proteasome regulates nucleotide excision repair in yeast. Genes Dev. 2001, 15:1528-39.
    • (2001) Genes Dev. , vol.15 , pp. 1528-1539
    • Gillette, T.G.1    Huang, W.2    Russell, S.J.3    et al4
  • 87
    • 33846042439 scopus 로고    scopus 로고
    • Nucleotide excision repair and the ubiquitin proteasome pathway-Do all roads lead to Rome
    • Reed SH, Gillette TG. Nucleotide excision repair and the ubiquitin proteasome pathway-Do all roads lead to Rome. DNA Repair. 2007, 6:149-56.
    • (2007) DNA Repair. , vol.6 , pp. 149-156
    • Reed, S.H.1    Gillette, T.G.2
  • 88
    • 33745763117 scopus 로고    scopus 로고
    • Distinct functions of the ubiquitin-proteasome pathway influence nucleotide excision repair
    • Gillette TG, Yu S, Zhou Z. Distinct functions of the ubiquitin-proteasome pathway influence nucleotide excision repair. EMBO J. 2006, 25:2529-38.
    • (2006) EMBO J. , vol.25 , pp. 2529-2538
    • Gillette, T.G.1    Yu, S.2    Zhou, Z.3    et al4
  • 89
    • 33748294308 scopus 로고    scopus 로고
    • The p66 and p12 subunits of DNA polymerase delta are modified by ubiquitin and ubiquitin-like proteins
    • Liu G, Warbrick E. The p66 and p12 subunits of DNA polymerase delta are modified by ubiquitin and ubiquitin-like proteins. Biochem Biophys Res Commun. 2006, 349:360-6.
    • (2006) Biochem Biophys Res Commun. , vol.349 , pp. 360-366
    • Liu, G.1    Warbrick, E.2
  • 90
    • 44449129585 scopus 로고    scopus 로고
    • A targeted proteomic analysis of the ubiquitin-like modifier Nedd8 and associated proteins
    • Jones J, Wu K, Yang Y. A targeted proteomic analysis of the ubiquitin-like modifier Nedd8 and associated proteins. J Proteome Res. 2008, 7:1274-87.
    • (2008) J Proteome Res. , vol.7 , pp. 1274-1287
    • Jones, J.1    Wu, K.2    Yang, Y.3    et al4
  • 91
    • 33644701400 scopus 로고    scopus 로고
    • Analysis of Nedd8-associated polypeptides: a model for deciphering the pathway for ubiquitin-like modifications
    • Norman JA, Shiekhattar R. Analysis of Nedd8-associated polypeptides: a model for deciphering the pathway for ubiquitin-like modifications. Biochemistry. 2006, 45:3014-9.
    • (2006) Biochemistry. , vol.45 , pp. 3014-3019
    • Norman, J.A.1    Shiekhattar, R.2
  • 92
    • 0037329056 scopus 로고    scopus 로고
    • The p53-Mdm2 module and the ubiquitin system
    • Michael D, Oren M. The p53-Mdm2 module and the ubiquitin system. Semin Cancer Biol. 2003, 13:49-58.
    • (2003) Semin Cancer Biol. , vol.13 , pp. 49-58
    • Michael, D.1    Oren, M.2
  • 93
    • 13144294031 scopus 로고    scopus 로고
    • Dynamics in the p53-Mdm2 ubiquitination pathway
    • Brooks CL, Gu W. Dynamics in the p53-Mdm2 ubiquitination pathway. Cell Cycle. 2004, 3:895-9.
    • (2004) Cell Cycle. , vol.3 , pp. 895-899
    • Brooks, C.L.1    Gu, W.2
  • 94
    • 4344717012 scopus 로고    scopus 로고
    • BRCA2 is ubiquitinated in vivo and interacts with USP11, a deubiquitinating enzyme that exhibits prosurvival function in the cellular response to DNA damage
    • Schoenfeld AR, Apgar S, Dolios G. BRCA2 is ubiquitinated in vivo and interacts with USP11, a deubiquitinating enzyme that exhibits prosurvival function in the cellular response to DNA damage. Mol Cell Biol. 24:7444-55.
    • Mol Cell Biol. , vol.24 , pp. 7444-7455
    • Schoenfeld, A.R.1    Apgar, S.2    Dolios, G.3    et al4
  • 95
    • 0042379999 scopus 로고    scopus 로고
    • P53 and regulation of DNA damage recognition during nucleotide excision repair
    • Adimoolam S, Ford JM. p53 and regulation of DNA damage recognition during nucleotide excision repair. DNA Repair. 2003, 2:947-54.
    • (2003) DNA Repair. , vol.2 , pp. 947-954
    • Adimoolam, S.1    Ford, J.M.2
  • 97
    • 0344513855 scopus 로고    scopus 로고
    • BRCA1 and p53: compensatory roles in DNA repair
    • Hartman AR, Ford JM. BRCA1 and p53: compensatory roles in DNA repair. J Mol Med. 2003, 81:700-7.
    • (2003) J Mol Med. , vol.81 , pp. 700-707
    • Hartman, A.R.1    Ford, J.M.2
  • 98
    • 0034655991 scopus 로고    scopus 로고
    • BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures
    • Wang Y, Cortez D, Yazdi P. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev. 2000, 14:927-39.
    • (2000) Genes Dev. , vol.14 , pp. 927-939
    • Wang, Y.1    Cortez, D.2    Yazdi, P.3    et al4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.