-
1
-
-
0029019788
-
Reconstitution of yeast nucleotide excision repair with purified Rad proteins, replication protein A, and transcription factor TFIIH
-
Guzder SN, Habraken Y, Sung P, Prakash L, Prakash S. Reconstitution of yeast nucleotide excision repair with purified Rad proteins, replication protein A, and transcription factor TFIIH. J Biol Chem. 1995;270(22):12973-12976.
-
(1995)
J Biol Chem
, vol.270
, Issue.22
, pp. 12973-12976
-
-
Guzder, S.N.1
Habraken, Y.2
Sung, P.3
Prakash, L.4
Prakash, S.5
-
2
-
-
0026508487
-
Human nucleotide excision nuclease removes thymine dimers from DNA by incising the 22nd phosphodiester bond 5′ and the 6th phosphodiester bond 3′ to the photodimer
-
Huang JC, Svoboda DL, Reardon JT, Sancar A. Human nucleotide excision nuclease removes thymine dimers from DNA by incising the 22nd phosphodiester bond 5′ and the 6th phosphodiester bond 3′ to the photodimer. Proc Natl Acad Sci USA. 1992;89(8):3664-3668.
-
(1992)
Proc Natl Acad Sci USA
, vol.89
, Issue.8
, pp. 3664-3668
-
-
Huang, J.C.1
Svoboda, D.L.2
Reardon, J.T.3
Sancar, A.4
-
3
-
-
0028948394
-
Mammalian DNA nucleotide excision repair reconstituted with purified protein components
-
Aboussekhra A, Biggerstaff M, Shivji MK, et al. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell. 1995;80(6):859-868.
-
(1995)
Cell
, vol.80
, Issue.6
, pp. 859-868
-
-
Aboussekhra, A.1
Biggerstaff, M.2
Shivji, M.K.3
-
4
-
-
0028896837
-
Reconstitution of human DNA repair excision nuclease in a highly defined system
-
Mu D, Park CH, Matsunaga T, Hsu DS, Reardon JT, Sancar A. Reconstitution of human DNA repair excision nuclease in a highly defined system. J Biol Chem. 1995;270(6):2415-2418.
-
(1995)
J Biol Chem
, vol.270
, Issue.6
, pp. 2415-2418
-
-
Mu, D.1
Park, C.H.2
Matsunaga, T.3
Hsu, D.S.4
Reardon, J.T.5
Sancar, A.6
-
5
-
-
0028916482
-
Yeast DNA repair protein RAD23 promotes complex formation between transcription factor TFIIH and DNA damage recognition factor RAD14
-
Guzder SN, Bailly V, Sung P, Prakash L, Prakash S. Yeast DNA repair protein RAD23 promotes complex formation between transcription factor TFIIH and DNA damage recognition factor RAD14. J Biol Chem. 1995;270(15):8385-8388.
-
(1995)
J Biol Chem
, vol.270
, Issue.15
, pp. 8385-8388
-
-
Guzder, S.N.1
Bailly, V.2
Sung, P.3
Prakash, L.4
Prakash, S.5
-
6
-
-
0032513237
-
The DNA-dependent ATPase activity of yeast nucleotide excision repair factor 4 and its role in DNA damage recognition
-
Guzder SN, Sung P, Prakash L, Prakash S. The DNA-dependent ATPase activity of yeast nucleotide excision repair factor 4 and its role in DNA damage recognition. J Biol Chem. 1998;273(11):6292-6296.
-
(1998)
J Biol Chem
, vol.273
, Issue.11
, pp. 6292-6296
-
-
Guzder, S.N.1
Sung, P.2
Prakash, L.3
Prakash, S.4
-
7
-
-
0029157378
-
Evolution of the SNF2 family of proteins: Subfamilies with distinct sequences and functions
-
Eisen JA, Sweder KS, Hanawalt PC. Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res. 1995;23(14):2715-2723.
-
(1995)
Nucleic Acids Res
, vol.23
, Issue.14
, pp. 2715-2723
-
-
Eisen, J.A.1
Sweder, K.S.2
Hanawalt, P.C.3
-
8
-
-
0026440707
-
Strand-selective repair of DNA damage in the yeast GAL7 gene requires RNA polymerase II
-
Leadon SA, Lawrence DA. Strand-selective repair of DNA damage in the yeast GAL7 gene requires RNA polymerase II. J Biol Chem. 1992;267(32):23175- 23182.
-
(1992)
J Biol Chem
, vol.267
, Issue.32
, pp. 23175-23182
-
-
Leadon, S.A.1
Lawrence, D.A.2
-
9
-
-
0024426244
-
Induction of the Escherichia coli lactose operon selectively increases repair of its transcribed DNA strand
-
Mellon I, Hanawalt PC. Induction of the Escherichia coli lactose operon selectively increases repair of its transcribed DNA strand. Nature. 1989;342(6245):95-98.
-
(1989)
Nature
, vol.342
, Issue.6245
, pp. 95-98
-
-
Mellon, I.1
Hanawalt, P.C.2
-
10
-
-
0026757373
-
Transcription, nucleosome stability, and DNA repair in a yeast minichromosome
-
Bedoyan J, Gupta R, Thoma F, Smerdon MJ. Transcription, nucleosome stability, and DNA repair in a yeast minichromosome. J Biol Chem. 1992;267(9):5996-6005.
-
(1992)
J Biol Chem
, vol.267
, Issue.9
, pp. 5996-6005
-
-
Bedoyan, J.1
Gupta, R.2
Thoma, F.3
Smerdon, M.J.4
-
11
-
-
0026486603
-
Preferential repair of cyclobutane pyrimidine dimers in the transcribed strand of a gene in yeast chromosomes and plasmids is dependent on transcription
-
Sweder KS, Hanawalt PC. Preferential repair of cyclobutane pyrimidine dimers in the transcribed strand of a gene in yeast chromosomes and plasmids is dependent on transcription. Proc Natl Acad Sci USA. 1992;89(22):10696-10700.
-
(1992)
Proc Natl Acad Sci USA
, vol.89
, Issue.22
, pp. 10696-10700
-
-
Sweder, K.S.1
Hanawalt, P.C.2
-
12
-
-
0031775217
-
Defective Kin28, a subunit of yeast TFIIH, impairs transcription-coupled but not global genome nucleotide excision repair
-
Tijsterman M, Tasseron-de Jong JG, Verhage RA, Brouwer J. Defective Kin28, a subunit of yeast TFIIH, impairs transcription-coupled but not global genome nucleotide excision repair. Mutat Res. 1998;409(3):181-188.
-
(1998)
Mutat Res
, vol.409
, Issue.3
, pp. 181-188
-
-
Tijsterman, M.1
Tasseron-De Jong, J.G.2
Verhage, R.A.3
Brouwer, J.4
-
13
-
-
0026566837
-
Transcription-dependent and independent DNA excision repair pathways in human cells
-
Carreau M, Hunting D. Transcription-dependent and independent DNA excision repair pathways in human cells. Mutat Res. 1992;274(1):57-64.
-
(1992)
Mutat Res
, vol.274
, Issue.1
, pp. 57-64
-
-
Carreau, M.1
Hunting, D.2
-
14
-
-
0026647859
-
Inhibition of transcription and strand-specific DNA repair by α-amanitin in Chinese hamster ovary cells
-
Christians FC, Hanawalt PC. Inhibition of transcription and strand-specific DNA repair by α-amanitin in Chinese hamster ovary cells. Mutat Res. 1992;274(2):93-101.
-
(1992)
Mutat Res
, vol.274
, Issue.2
, pp. 93-101
-
-
Christians, F.C.1
Hanawalt, P.C.2
-
15
-
-
0037154203
-
Transcription-coupled repair in RNA polymerase I-transcribed genes of yeast
-
Conconi A, Bespalov VA, Smerdon MJ. Transcription-coupled repair in RNA polymerase I-transcribed genes of yeast. Proc Natl Acad Sci USA. 2002;99(2):649-654.
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, Issue.2
, pp. 649-654
-
-
Conconi, A.1
Bespalov, V.A.2
Smerdon, M.J.3
-
16
-
-
0025096056
-
Molecular cloning of the human DNA excision repair gene ERCC-6
-
Troelstra C, Odijk H, de Wit J, et al. Molecular cloning of the human DNA excision repair gene ERCC-6. Mol Cell Biol. 1990;10(11):5806-5813.
-
(1990)
Mol Cell Biol
, vol.10
, Issue.11
, pp. 5806-5813
-
-
Troelstra, C.1
Odijk, H.2
De Wit, J.3
-
17
-
-
0026465665
-
ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes
-
Troelstra C, van Gool A, de Wit J, Vermeulen W, Bootsma D, Hoeijmakers JH. ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes. Cell. 1992;71(6):939-953.
-
(1992)
Cell
, vol.71
, Issue.6
, pp. 939-953
-
-
Troelstra, C.1
Van Gool, A.2
De Wit, J.3
Vermeulen, W.4
Bootsma, D.5
Hoeijmakers, J.H.6
-
18
-
-
0028287878
-
A possible yeast homolog of human active-gene-repairing helicase ERCC6+
-
Huang ME, Chuat JC, Galibert F. A possible yeast homolog of human active-gene-repairing helicase ERCC6+. Biochem Biophys Res Commun. 1994;201(1):310-317.
-
(1994)
Biochem Biophys Res Commun
, vol.201
, Issue.1
, pp. 310-317
-
-
Huang, M.E.1
Chuat, J.C.2
Galibert, F.3
-
19
-
-
0028109412
-
RAD26, the functional S. cerevisiae homolog of the Cockayne syndrome B gene ERCC6
-
van Gool AJ, Verhage R, Swagemakers SM, et al. RAD26, the functional S. cerevisiae homolog of the Cockayne syndrome B gene ERCC6. EMBO J. 1994;13(22):5361-5369.
-
(1994)
EMBO J
, vol.13
, Issue.22
, pp. 5361-5369
-
-
Van Gool, A.J.1
Verhage, R.2
Swagemakers, S.M.3
-
20
-
-
0033806183
-
ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor
-
Citterio E, Van den Boom V, Schnitzler G, et al. ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor. Mol Cell Biol. 2000;20(20):7643-7653.
-
(2000)
Mol Cell Biol
, vol.20
, Issue.20
, pp. 7643-7653
-
-
Citterio, E.1
Van Den Boom, V.2
Schnitzler, G.3
-
21
-
-
0030822591
-
Cockayne syndrome group B protein enhances elongation by RNA polymerase II
-
Selby CP, Sancar A. Cockayne syndrome group B protein enhances elongation by RNA polymerase II. Proc Natl Acad Sci USA. 1997;94(21):11205-11209.
-
(1997)
Proc Natl Acad Sci USA
, vol.94
, Issue.21
, pp. 11205-11209
-
-
Selby, C.P.1
Sancar, A.2
-
22
-
-
0037039443
-
Translocation of Cockayne syndrome group a protein to the nuclear matrix: Possible relevance to transcription-coupled DNA repair
-
Kamiuchi S, Saijo M, Citterio E, de Jager M, Hoeijmakers JH, Tanaka K. Translocation of Cockayne syndrome group A protein to the nuclear matrix: possible relevance to transcription-coupled DNA repair. Proc Natl Acad Sci USA. 2002;99(1):201-206.
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, Issue.1
, pp. 201-206
-
-
Kamiuchi, S.1
Saijo, M.2
Citterio, E.3
De Jager, M.4
Hoeijmakers, J.H.5
Tanaka, K.6
-
23
-
-
0025913944
-
The N-end rule is mediated by the UBC2(RAD6) ubiquitin-conjugating enzyme
-
Dohmen RJ, Madura K, Bartel B, Varshavsky A. The N-end rule is mediated by the UBC2(RAD6) ubiquitin-conjugating enzyme. Proc Natl Acad Sci USA. 1991;88(16):7351-7355.
-
(1991)
Proc Natl Acad Sci USA
, vol.88
, Issue.16
, pp. 7351-7355
-
-
Dohmen, R.J.1
Madura, K.2
Bartel, B.3
Varshavsky, A.4
-
24
-
-
0033600798
-
Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23 mediates interaction with S5a subunit of 26S proteasome
-
Hiyama H, Yokoi M, Masutani C, et al. Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23 mediates interaction with S5a subunit of 26S proteasome. J Biol Chem. 1999;274(39):28019-28025.
-
(1999)
J Biol Chem
, vol.274
, Issue.39
, pp. 28019-28025
-
-
Hiyama, H.1
Yokoi, M.2
Masutani, C.3
-
25
-
-
0033525582
-
Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair
-
Hofmann RM, Pickart CM. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell. 1999;96(5):645-653.
-
(1999)
Cell
, vol.96
, Issue.5
, pp. 645-653
-
-
Hofmann, R.M.1
Pickart, C.M.2
-
26
-
-
0033603339
-
Identification of HHR23A as a substrate for E6-associated protein-mediated ubiquitination
-
Kumar S, Talis AL, Howley PM. Identification of HHR23A as a substrate for E6-associated protein-mediated ubiquitination. J Biol Chem. 1999;274(26):18785-18792.
-
(1999)
J Biol Chem
, vol.274
, Issue.26
, pp. 18785-18792
-
-
Kumar, S.1
Talis, A.L.2
Howley, P.M.3
-
27
-
-
0025343208
-
Expression of the Saccharomyces cerevisiae DNA repair gene RAD6 that encodes a ubiquitin conjugating enzyme, increases in response to DNA damage and in meiosis but remains constant during the mitotic cell cycle
-
Madura K, Prakash S, Prakash L. Expression of the Saccharomyces cerevisiae DNA repair gene RAD6 that encodes a ubiquitin conjugating enzyme, increases in response to DNA damage and in meiosis but remains constant during the mitotic cell cycle. Nucleic Acids Res. 1990;18(4):771-778.
-
(1990)
Nucleic Acids Res
, vol.18
, Issue.4
, pp. 771-778
-
-
Madura, K.1
Prakash, S.2
Prakash, L.3
-
28
-
-
0010586475
-
The 19S regulatory complex of the proteasome functions independently of proteolysis in nucleotide excision repair
-
Russell SJ, Reed SH, Huang W, Friedberg EC, Johnston SA. The 19S regulatory complex of the proteasome functions independently of proteolysis in nucleotide excision repair. Mol Cell. 1999;3(6):687-695.
-
(1999)
Mol Cell
, vol.3
, Issue.6
, pp. 687-695
-
-
Russell, S.J.1
Reed, S.H.2
Huang, W.3
Friedberg, E.C.4
Johnston, S.A.5
-
29
-
-
0032510057
-
Rad23 links DNA repair to the ubiquitin/proteasome pathway
-
Schauber C, Chen L, Tongaonkar P, et al. Rad23 links DNA repair to the ubiquitin/proteasome pathway. Nature. 1998;391(6668):715-718.
-
(1998)
Nature
, vol.391
, Issue.6668
, pp. 715-718
-
-
Schauber, C.1
Chen, L.2
Tongaonkar, P.3
-
30
-
-
0028847989
-
A ubiquitin mutant with specific defects in DNA repair and multiubiquitination
-
Spence J, Sadis S, Haas AL, Finley D. A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol Cell Biol. 1995;15(3):1265-1273.
-
(1995)
Mol Cell Biol
, vol.15
, Issue.3
, pp. 1265-1273
-
-
Spence, J.1
Sadis, S.2
Haas, A.L.3
Finley, D.4
-
31
-
-
0028053830
-
Chromosomal localization of three repair genes: The xeroderma pigmentosum group C gene and two human homologs of yeast RAD23
-
van der Spek PJ, Smit EM, Beverloo HB, et al. Chromosomal localization of three repair genes: the xeroderma pigmentosum group C gene and two human homologs of yeast RAD23. Genomics. 1994;23(3):651-658.
-
(1994)
Genomics
, vol.23
, Issue.3
, pp. 651-658
-
-
Van Der Spek, P.J.1
Smit, E.M.2
Beverloo, H.B.3
-
32
-
-
0031039087
-
The RAD7, RAD16, and RAD23 genes of Saccharomyces cerevisiae: Requirement for transcription-independent nucleotide excision repair in vitro and interactions between the gene products
-
Wang Z, Wei S, Reed SH, et al. The RAD7, RAD16, and RAD23 genes of Saccharomyces cerevisiae: requirement for transcription-independent nucleotide excision repair in vitro and interactions between the gene products. Mol Cell Biol. 1997;17(2):635-643.
-
(1997)
Mol Cell Biol
, vol.17
, Issue.2
, pp. 635-643
-
-
Wang, Z.1
Wei, S.2
Reed, S.H.3
-
33
-
-
0032548998
-
Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly
-
Ramos PC, Hockendorff J, Johnson ES, Varshavsky A, Dohmen RJ. Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly. Cell. 1998;92(4):489-499.
-
(1998)
Cell
, vol.92
, Issue.4
, pp. 489-499
-
-
Ramos, P.C.1
Hockendorff, J.2
Johnson, E.S.3
Varshavsky, A.4
Dohmen, R.J.5
-
34
-
-
0033870314
-
Expression of UMP1 is inducible by DNA damage and required for resistance of S. cerevisiae cells to UV light
-
Mieczkowski P, Dajewski W, Podlaska A, Skoneczna A, Ciesla Z, Sledziewska-Gojska E. Expression of UMP1 is inducible by DNA damage and required for resistance of S. cerevisiae cells to UV light. Curr Genet. 2000;38(2):53-59.
-
(2000)
Curr Genet
, vol.38
, Issue.2
, pp. 53-59
-
-
Mieczkowski, P.1
Dajewski, W.2
Podlaska, A.3
Skoneczna, A.4
Ciesla, Z.5
Sledziewska-Gojska, E.6
-
35
-
-
0034600851
-
Two RING finger proteins mediate cooperation between ubiquitin- conjugating enzymes in DNA repair
-
Ulrich HD, Jentsch S. Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. EMBO J. 2000;19(13):3388-3397.
-
(2000)
EMBO J
, vol.19
, Issue.13
, pp. 3388-3397
-
-
Ulrich, H.D.1
Jentsch, S.2
-
36
-
-
0030853074
-
Expression of wild-type p53 is required for efficient global genomic nucleotide excision repair in UV-irradiated human fibroblasts
-
Ford JM, Hanawalt PC. Expression of wild-type p53 is required for efficient global genomic nucleotide excision repair in UV-irradiated human fibroblasts. J Biol Chem. 1997;272(44):28073-28080.
-
(1997)
J Biol Chem
, vol.272
, Issue.44
, pp. 28073-28080
-
-
Ford, J.M.1
Hanawalt, P.C.2
-
37
-
-
0032520060
-
Human fibroblasts expressing the human papillomavirus E6 gene are deficient in global genomic nucleotide excision repair and sensitive to ultraviolet irradiation
-
Ford JM, Baron EL, Hanawalt PC. Human fibroblasts expressing the human papillomavirus E6 gene are deficient in global genomic nucleotide excision repair and sensitive to ultraviolet irradiation. Cancer Res. 1998;58(4):599-603.
-
(1998)
Cancer Res
, vol.58
, Issue.4
, pp. 599-603
-
-
Ford, J.M.1
Baron, E.L.2
Hanawalt, P.C.3
-
38
-
-
0032841656
-
Proteasome inhibitors induce p53/p21-independent apoptosis in human glioma cells
-
Wagenknecht B, Hermisson M, Eitel K, Weller M. Proteasome inhibitors induce p53/p21-independent apoptosis in human glioma cells. Cell Physiol Biochem. 1999;9(3):117-125.
-
(1999)
Cell Physiol Biochem
, vol.9
, Issue.3
, pp. 117-125
-
-
Wagenknecht, B.1
Hermisson, M.2
Eitel, K.3
Weller, M.4
-
39
-
-
0029859295
-
UV-induced ubiquitination of RNA polymerase II: A novel modification deficient in Cockayne syndrome cells
-
Bregman DB, Halaban R, van Cool AJ, Henning KA, Friedberg EC, Warren SL. UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells. Proc Natl Acad Sci USA. 1996;93(21):11586-11590.
-
(1996)
Proc Natl Acad Sci USA
, vol.93
, Issue.21
, pp. 11586-11590
-
-
Bregman, D.B.1
Halaban, R.2
Van Cool, A.J.3
Henning, K.A.4
Friedberg, E.C.5
Warren, S.L.6
-
40
-
-
0032570562
-
Ultraviolet radiation-induced ubiquitination and proteasomal degradation of the large subunit of RNA polymerase II. Implications for transcription- coupled DNA repair
-
Ratner JN, Balasubramanian B, Corden J, Warren SL, Bregman DB. Ultraviolet radiation-induced ubiquitination and proteasomal degradation of the large subunit of RNA polymerase II. Implications for transcription-coupled DNA repair. J Biol Chem. 1998;273(9):5184-5189.
-
(1998)
J Biol Chem
, vol.273
, Issue.9
, pp. 5184-5189
-
-
Ratner, J.N.1
Balasubramanian, B.2
Corden, J.3
Warren, S.L.4
Bregman, D.B.5
-
41
-
-
0037007036
-
Transcription-coupled and DNA damage-dependent ubiquitination of RNA polymerase II in vitro
-
Lee KB, Wang D, Lippard SJ, Sharp PA. Transcription-coupled and DNA damage-dependent ubiquitination of RNA polymerase II in vitro. Proc Natl Acad Sci USA. 2002;99(7):4239-4244.
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, Issue.7
, pp. 4239-4244
-
-
Lee, K.B.1
Wang, D.2
Lippard, S.J.3
Sharp, P.A.4
-
42
-
-
0030888109
-
The large subunit of RNA polymerase II is a substrate of the Rsp5 ubiquitin-protein ligase
-
Huibregtse JM, Yang JC, Beaudenon SL. The large subunit of RNA polymerase II is a substrate of the Rsp5 ubiquitin-protein ligase. Proc Natl Acad Sci USA. 1997;94(8):3656-3661.
-
(1997)
Proc Natl Acad Sci USA
, vol.94
, Issue.8
, pp. 3656-3661
-
-
Huibregtse, J.M.1
Yang, J.C.2
Beaudenon, S.L.3
-
43
-
-
0032827035
-
Rsp5 ubiquitin-protein ligase mediates DNA damage-induced degradation of the large subunit of RNA polymerase II in Saccharomyces cerevisiae
-
Beaudenon SL, Huacani MR, Wang G, McDonnell DP, Huibregtse JM. Rsp5 ubiquitin-protein ligase mediates DNA damage-induced degradation of the large subunit of RNA polymerase II in Saccharomyces cerevisiae. Mol Cell Biol. 1999;19(10):6972-6979.
-
(1999)
Mol Cell Biol
, vol.19
, Issue.10
, pp. 6972-6979
-
-
Beaudenon, S.L.1
Huacani, M.R.2
Wang, G.3
McDonnell, D.P.4
Huibregtse, J.M.5
-
44
-
-
0034255502
-
Transcription-coupled repair in yeast is independent from ubiquitylation of RNA pol II: Implications for Cockayne's syndrome
-
Lommel L, Bucheli ME, Sweder KS. Transcription-coupled repair in yeast is independent from ubiquitylation of RNA pol II: implications for Cockayne's syndrome. Proc Natl Acad Sci USA. 2000;97(16):9088-9092.
-
(2000)
Proc Natl Acad Sci USA
, vol.97
, Issue.16
, pp. 9088-9092
-
-
Lommel, L.1
Bucheli, M.E.2
Sweder, K.S.3
-
45
-
-
0034671692
-
The 26S proteasome negatively regulates the level of overall genomic nucleotide excision repair
-
Lommel L, Chen L, Madura K, Sweder K. The 26S proteasome negatively regulates the level of overall genomic nucleotide excision repair. Nucleic Acids Res. 2000;28(24):4839-4845.
-
(2000)
Nucleic Acids Res
, vol.28
, Issue.24
, pp. 4839-4845
-
-
Lommel, L.1
Chen, L.2
Madura, K.3
Sweder, K.4
-
46
-
-
0037148786
-
A Rad26-Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage
-
Woudstra EC, Gilbert C, Fellows J, et al. A Rad26-Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage. Nature. 2002;415(6874):929-933.
-
(2002)
Nature
, vol.415
, Issue.6874
, pp. 929-933
-
-
Woudstra, E.C.1
Gilbert, C.2
Fellows, J.3
-
47
-
-
0033813625
-
Ubiquitin-mediated proteolysis and human disease
-
Vu PK, Sakamoto KM. Ubiquitin-mediated proteolysis and human disease. Mol Genet Metab. 2000;71(1-2):261-266.
-
(2000)
Mol Genet Metab
, vol.71
, Issue.1-2
, pp. 261-266
-
-
Vu, P.K.1
Sakamoto, K.M.2
-
48
-
-
0035823032
-
A new ticket for entry into budding vesicles-ubiquitin
-
Hicke L. A new ticket for entry into budding vesicles-ubiquitin. Cell. 2001;106(5):527-530.
-
(2001)
Cell
, vol.106
, Issue.5
, pp. 527-530
-
-
Hicke, L.1
-
49
-
-
0030867774
-
The ubiquitin system
-
Varshavsky A. The ubiquitin system. Trends Biochem Sci. 1997;22(10):383-387.
-
(1997)
Trends Biochem Sci
, vol.22
, Issue.10
, pp. 383-387
-
-
Varshavsky, A.1
-
50
-
-
0033766480
-
A gated channel into the proteasome core particle
-
Groll M, Bajorek M, Kohler A, et al. A gated channel into the proteasome core particle. Nat Struct Biol. 2000;7(11):1062-1067.
-
(2000)
Nat Struct Biol
, vol.7
, Issue.11
, pp. 1062-1067
-
-
Groll, M.1
Bajorek, M.2
Kohler, A.3
-
52
-
-
0032476655
-
Subcellular distribution of proteasomes implicates a major location of protein degradation in the nuclear envelope-ER network in yeast
-
Enenkel C, Lehmann A, Kloetzel PM. Subcellular distribution of proteasomes implicates a major location of protein degradation in the nuclear envelope-ER network in yeast. EMBO J. 1998;17(21):6144-6154.
-
(1998)
EMBO J
, vol.17
, Issue.21
, pp. 6144-6154
-
-
Enenkel, C.1
Lehmann, A.2
Kloetzel, P.M.3
-
53
-
-
0033118427
-
GFP-labelling of 26S proteasomes in living yeast: Insight into proteasomal functions at the nuclear envelope/rough ER
-
Enenkel C, Lehmann A, Kloetzel PM. GFP-labelling of 26S proteasomes in living yeast: insight into proteasomal functions at the nuclear envelope/rough ER. Mol Biol Rep. 1999;26(1-2):131-135.
-
(1999)
Mol Biol Rep
, vol.26
, Issue.1-2
, pp. 131-135
-
-
Enenkel, C.1
Lehmann, A.2
Kloetzel, P.M.3
-
54
-
-
0030739911
-
The XPB subunit of repair/transcription factor TFIIH directly interacts with SUG1, a subunit of the 26S proteasome and putative transcription factor
-
Weeda G, Rossignol M, Fraser RA, et al. The XPB subunit of repair/transcription factor TFIIH directly interacts with SUG1, a subunit of the 26S proteasome and putative transcription factor. Nucleic Acids Res. 1997;25(12):2274-2283.
-
(1997)
Nucleic Acids Res
, vol.25
, Issue.12
, pp. 2274-2283
-
-
Weeda, G.1
Rossignol, M.2
Fraser, R.A.3
-
55
-
-
0034694837
-
Tissue and cell distribution of a mammalian proteasomal ATPase, MSS1, and its complex formation with the basal transcription factors
-
Yanagi S, Shimbara N, Tamura T. Tissue and cell distribution of a mammalian proteasomal ATPase, MSS1, and its complex formation with the basal transcription factors. Biochem Biophys Res Commun. 2000;279(2):568-573.
-
(2000)
Biochem Biophys Res Commun
, vol.279
, Issue.2
, pp. 568-573
-
-
Yanagi, S.1
Shimbara, N.2
Tamura, T.3
-
56
-
-
0027367944
-
The Saccharomyces cerevisiae DNA repair gene RAD23 encodes a nuclear protein containing a ubiquitin-like domain required for biological function
-
Watkins JF, Sung P, Prakash L, Prakash S. The Saccharomyces cerevisiae DNA repair gene RAD23 encodes a nuclear protein containing a ubiquitin-like domain required for biological function. Mol Cell Biol. 1993;13(12):7757-7765.
-
(1993)
Mol Cell Biol
, vol.13
, Issue.12
, pp. 7757-7765
-
-
Watkins, J.F.1
Sung, P.2
Prakash, L.3
Prakash, S.4
-
57
-
-
0029864301
-
Rad23 is required for transcription-coupled repair and efficient overrall repair in Saccharomyces cerevisiae
-
Mueller JP, Smerdon MJ. Rad23 is required for transcription-coupled repair and efficient overrall repair in Saccharomyces cerevisiae. Mol Cell Biol. 1996;16(5):2361-2368.
-
(1996)
Mol Cell Biol
, vol.16
, Issue.5
, pp. 2361-2368
-
-
Mueller, J.P.1
Smerdon, M.J.2
-
58
-
-
0033772765
-
Regulatory networks revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells: Rpn4 links base excision repair with proteasomes
-
Jelinsky SA, Estep P, Church GM, Samson LD. Regulatory networks revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells: Rpn4 links base excision repair with proteasomes. Mol Cell Biol. 2000;20(21):8157- 8167.
-
(2000)
Mol Cell Biol
, vol.20
, Issue.21
, pp. 8157-8167
-
-
Jelinsky, S.A.1
Estep, P.2
Church, G.M.3
Samson, L.D.4
-
59
-
-
0033004441
-
Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast
-
Mannhaupt G, Schnall R, Karpov V, Vetter I, Feldmann H. Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast. FEBS Lett. 1999;450(1-2):27-34.
-
(1999)
FEBS Lett
, vol.450
, Issue.1-2
, pp. 27-34
-
-
Mannhaupt, G.1
Schnall, R.2
Karpov, V.3
Vetter, I.4
Feldmann, H.5
-
60
-
-
0026681291
-
Alterations in a yeast protein resembling HIV Tat-binding protein relieve requirement for an acidic activation domain in GAL4
-
Swaffield JC, Bromberg JF, Johnston SA. Alterations in a yeast protein resembling HIV Tat-binding protein relieve requirement for an acidic activation domain in GAL4. Nature. 1992;357(6380):698-700.
-
(1992)
Nature
, vol.357
, Issue.6380
, pp. 698-700
-
-
Swaffield, J.C.1
Bromberg, J.F.2
Johnston, S.A.3
-
61
-
-
0037134015
-
Recruitment of a 19S proteasome subcomplex to an activated promoter
-
Gonzalez F, Delahodde A, Kodadek T, Johnston SA. Recruitment of a 19S proteasome subcomplex to an activated promoter. Science. 2002;296(5567):548-550.
-
(2002)
Science
, vol.296
, Issue.5567
, pp. 548-550
-
-
Gonzalez, F.1
Delahodde, A.2
Kodadek, T.3
Johnston, S.A.4
-
62
-
-
12244309062
-
Protcolysis of a nucleotide excision repair protein by the 26S proteasome
-
Lommel L, Ortolan T, Chen L, Madura K, Sweder K. Protcolysis of a nucleotide excision repair protein by the 26S proteasome. Curr Genet. 2002;2002.
-
(2002)
Curr Genet
, pp. 2002
-
-
Lommel, L.1
Ortolan, T.2
Chen, L.3
Madura, K.4
Sweder, K.5
-
64
-
-
0000516293
-
Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair
-
Hwang BJ, Ford JM, Hanawalt PC, Chu G. Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair. Proc Natl Acad Sci USA. 1999;96(2):424-428.
-
(1999)
Proc Natl Acad Sci USA
, vol.96
, Issue.2
, pp. 424-428
-
-
Hwang, B.J.1
Ford, J.M.2
Hanawalt, P.C.3
Chu, G.4
-
65
-
-
0033544942
-
Cullin 4A associates with the UV-damaged DNA-binding protein DDB
-
Shiyanov P, Nag A, Raychaudhuri P. Cullin 4A associates with the UV-damaged DNA-binding protein DDB. J Biol Chern. 1999;274(50):35309-35312.
-
(1999)
J Biol Chern
, vol.274
, Issue.50
, pp. 35309-35312
-
-
Shiyanov, P.1
Nag, A.2
Raychaudhuri, P.3
-
66
-
-
0034813575
-
The xeroderma pigmentosum group e gene product DDB2 is a specific target of cullin 4A in mammalian cells
-
Nag A, Bondar T, Shiv S, Raychaudhuri P. The xeroderma pigmentosum group E gene product DDB2 is a specific target of cullin 4A in mammalian cells. Mol Cell Biol. 2001;21(20):6738-6747.
-
(2001)
Mol Cell Biol
, vol.21
, Issue.20
, pp. 6738-6747
-
-
Nag, A.1
Bondar, T.2
Shiv, S.3
Raychaudhuri, P.4
-
67
-
-
0035930582
-
UV-damaged DNA-binding proteins are targets of CUL-4A-mediated ubiquitination and degradation
-
Chen X, Zhang Y, Douglas L, Zhou P. UV-damaged DNA-binding proteins are targets of CUL-4A-mediated ubiquitination and degradation. J Biol Chem. 2001;276(51):48175-48182.
-
(2001)
J Biol Chem
, vol.276
, Issue.51
, pp. 48175-48182
-
-
Chen, X.1
Zhang, Y.2
Douglas, L.3
Zhou, P.4
-
68
-
-
0034282219
-
The DNA repair protein Rad23 is a negative regulator of multi-ubiquitin chain assembly
-
Ortolan TG, Tongaonkar P, Lambertson D, Chen L, Schauber C, Madura K. The DNA repair protein Rad23 is a negative regulator of multi-ubiquitin chain assembly. Nat Cell Biol. 2000;2(9):601-608.
-
(2000)
Nat Cell Biol
, vol.2
, Issue.9
, pp. 601-608
-
-
Ortolan, T.G.1
Tongaonkar, P.2
Lambertson, D.3
Chen, L.4
Schauber, C.5
Madura, K.6
-
69
-
-
0035034417
-
UBA domains of DNA damage-inducible proteins interact with ubiquitin
-
Bertolaet BL, Clarke DJ, Wolff M, et al. UBA domains of DNA damage-inducible proteins interact with ubiquitin. Nat Struct Biol. 2001;8(5):417-422.
-
(2001)
Nat Struct Biol
, vol.8
, Issue.5
, pp. 417-422
-
-
Bertolaet, B.L.1
Clarke, D.J.2
Wolff, M.3
-
70
-
-
0034798985
-
Proteins containing the UBA domain are able to bind to multi-ubiquitin chains
-
Wilkinson CR, Seeger M, Hartmann-Petersen R, et al. Proteins containing the UBA domain are able to bind to multi-ubiquitin chains. Nat Cell Biol. 2001;3(10):939-943.
-
(2001)
Nat Cell Biol
, vol.3
, Issue.10
, pp. 939-943
-
-
Wilkinson, C.R.1
Seeger, M.2
Hartmann-Petersen, R.3
-
71
-
-
0035421637
-
Peptide-N-glycanases and DNA repair proteins, Xp-C/Rad4, are, respectively, active and inactivated enzymes sharing a common transglutaminase fold
-
Anantharaman V, Koonin EV, Aravind L. Peptide-N-glycanases and DNA repair proteins, Xp-C/Rad4, are, respectively, active and inactivated enzymes sharing a common transglutaminase fold. Hum Mol Genet. 2001;10(16):1627-1630.
-
(2001)
Hum Mol Genet
, vol.10
, Issue.16
, pp. 1627-1630
-
-
Anantharaman, V.1
Koonin, E.V.2
Aravind, L.3
-
72
-
-
0028607143
-
Regulated degradation of the transcription factor Gcn4,"
-
Kornitzer D, Raboy B, Kulka RG, Fink GR. Regulated degradation of the transcription factor Gcn4," EMBO J. 1994;13(24):6021-6030.
-
(1994)
EMBO J
, vol.13
, Issue.24
, pp. 6021-6030
-
-
Kornitzer, D.1
Raboy, B.2
Kulka, R.G.3
Fink, G.R.4
-
73
-
-
0034017609
-
Degradation of the transcription factor Gcn4 requires the kinase Pho85 and the SCF(CDC4) ubiquitin-ligase complex
-
Meimoun A, Holtzman T, Weissman Z, et al. Degradation of the transcription factor Gcn4 requires the kinase Pho85 and the SCF(CDC4) ubiquitin-ligase complex. Mol Biol Cell. 2000;11(3):915-927.
-
(2000)
Mol Biol Cell
, vol.11
, Issue.3
, pp. 915-927
-
-
Meimoun, A.1
Holtzman, T.2
Weissman, Z.3
-
74
-
-
0035907243
-
Gcn2 mediates Gcn4 activation in response to glucose stimulation or UV radiation not via GCN4 translation
-
Marbach I, Licht R, Frohnmeyer H, Engelberg D. Gcn2 mediates Gcn4 activation in response to glucose stimulation or UV radiation not via GCN4 translation. J Biol Chem. 2001;276(20):16944-16951.
-
(2001)
J Biol Chem
, vol.276
, Issue.20
, pp. 16944-16951
-
-
Marbach, I.1
Licht, R.2
Frohnmeyer, H.3
Engelberg, D.4
-
75
-
-
0035862974
-
The proteasome regulates the UV-induced activation of the AP-1-like transcription factor Gcn4
-
Stitzel ML, Durso R, Reese JC. The proteasome regulates the UV-induced activation of the AP-1-like transcription factor Gcn4. Genes Dev. 2001;15(2):128-133.
-
(2001)
Genes Dev
, vol.15
, Issue.2
, pp. 128-133
-
-
Stitzel, M.L.1
Durso, R.2
Reese, J.C.3
-
76
-
-
0034641753
-
UV-induced inhibition of transcription involves repression of transcription initiation and phosphorylation of RNA polymerase II
-
Rockx DA, Mason R, van Hoffen A, et al. UV-induced inhibition of transcription involves repression of transcription initiation and phosphorylation of RNA polymerase II. Proc Natl Acad Sci USA. 2000;97(19):10503-10508.
-
(2000)
Proc Natl Acad Sci USA
, vol.97
, Issue.19
, pp. 10503-10508
-
-
Rockx, D.A.1
Mason, R.2
Van Hoffen, A.3
|