메뉴 건너뛰기




Volumn 2002, Issue 2, 2002, Pages 94-105

Regulation of repair by the 26S proteasome

Author keywords

[No Author keywords available]

Indexed keywords

26S PROTEASOME; CHAPERONE; PROTEASOME; PROTEIN; PROTEIN RAD23; PROTEIN RAD4; UNCLASSIFIED DRUG; XERODERMA PIGMENTOSUM B PROTEIN;

EID: 0041496232     PISSN: 11107243     EISSN: 11107251     Source Type: Journal    
DOI: 10.1155/S1110724302205033     Document Type: Review
Times cited : (41)

References (76)
  • 1
    • 0029019788 scopus 로고
    • Reconstitution of yeast nucleotide excision repair with purified Rad proteins, replication protein A, and transcription factor TFIIH
    • Guzder SN, Habraken Y, Sung P, Prakash L, Prakash S. Reconstitution of yeast nucleotide excision repair with purified Rad proteins, replication protein A, and transcription factor TFIIH. J Biol Chem. 1995;270(22):12973-12976.
    • (1995) J Biol Chem , vol.270 , Issue.22 , pp. 12973-12976
    • Guzder, S.N.1    Habraken, Y.2    Sung, P.3    Prakash, L.4    Prakash, S.5
  • 2
    • 0026508487 scopus 로고
    • Human nucleotide excision nuclease removes thymine dimers from DNA by incising the 22nd phosphodiester bond 5′ and the 6th phosphodiester bond 3′ to the photodimer
    • Huang JC, Svoboda DL, Reardon JT, Sancar A. Human nucleotide excision nuclease removes thymine dimers from DNA by incising the 22nd phosphodiester bond 5′ and the 6th phosphodiester bond 3′ to the photodimer. Proc Natl Acad Sci USA. 1992;89(8):3664-3668.
    • (1992) Proc Natl Acad Sci USA , vol.89 , Issue.8 , pp. 3664-3668
    • Huang, J.C.1    Svoboda, D.L.2    Reardon, J.T.3    Sancar, A.4
  • 3
    • 0028948394 scopus 로고
    • Mammalian DNA nucleotide excision repair reconstituted with purified protein components
    • Aboussekhra A, Biggerstaff M, Shivji MK, et al. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell. 1995;80(6):859-868.
    • (1995) Cell , vol.80 , Issue.6 , pp. 859-868
    • Aboussekhra, A.1    Biggerstaff, M.2    Shivji, M.K.3
  • 4
    • 0028896837 scopus 로고
    • Reconstitution of human DNA repair excision nuclease in a highly defined system
    • Mu D, Park CH, Matsunaga T, Hsu DS, Reardon JT, Sancar A. Reconstitution of human DNA repair excision nuclease in a highly defined system. J Biol Chem. 1995;270(6):2415-2418.
    • (1995) J Biol Chem , vol.270 , Issue.6 , pp. 2415-2418
    • Mu, D.1    Park, C.H.2    Matsunaga, T.3    Hsu, D.S.4    Reardon, J.T.5    Sancar, A.6
  • 5
    • 0028916482 scopus 로고
    • Yeast DNA repair protein RAD23 promotes complex formation between transcription factor TFIIH and DNA damage recognition factor RAD14
    • Guzder SN, Bailly V, Sung P, Prakash L, Prakash S. Yeast DNA repair protein RAD23 promotes complex formation between transcription factor TFIIH and DNA damage recognition factor RAD14. J Biol Chem. 1995;270(15):8385-8388.
    • (1995) J Biol Chem , vol.270 , Issue.15 , pp. 8385-8388
    • Guzder, S.N.1    Bailly, V.2    Sung, P.3    Prakash, L.4    Prakash, S.5
  • 6
    • 0032513237 scopus 로고    scopus 로고
    • The DNA-dependent ATPase activity of yeast nucleotide excision repair factor 4 and its role in DNA damage recognition
    • Guzder SN, Sung P, Prakash L, Prakash S. The DNA-dependent ATPase activity of yeast nucleotide excision repair factor 4 and its role in DNA damage recognition. J Biol Chem. 1998;273(11):6292-6296.
    • (1998) J Biol Chem , vol.273 , Issue.11 , pp. 6292-6296
    • Guzder, S.N.1    Sung, P.2    Prakash, L.3    Prakash, S.4
  • 7
    • 0029157378 scopus 로고
    • Evolution of the SNF2 family of proteins: Subfamilies with distinct sequences and functions
    • Eisen JA, Sweder KS, Hanawalt PC. Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res. 1995;23(14):2715-2723.
    • (1995) Nucleic Acids Res , vol.23 , Issue.14 , pp. 2715-2723
    • Eisen, J.A.1    Sweder, K.S.2    Hanawalt, P.C.3
  • 8
    • 0026440707 scopus 로고
    • Strand-selective repair of DNA damage in the yeast GAL7 gene requires RNA polymerase II
    • Leadon SA, Lawrence DA. Strand-selective repair of DNA damage in the yeast GAL7 gene requires RNA polymerase II. J Biol Chem. 1992;267(32):23175- 23182.
    • (1992) J Biol Chem , vol.267 , Issue.32 , pp. 23175-23182
    • Leadon, S.A.1    Lawrence, D.A.2
  • 9
    • 0024426244 scopus 로고
    • Induction of the Escherichia coli lactose operon selectively increases repair of its transcribed DNA strand
    • Mellon I, Hanawalt PC. Induction of the Escherichia coli lactose operon selectively increases repair of its transcribed DNA strand. Nature. 1989;342(6245):95-98.
    • (1989) Nature , vol.342 , Issue.6245 , pp. 95-98
    • Mellon, I.1    Hanawalt, P.C.2
  • 10
    • 0026757373 scopus 로고
    • Transcription, nucleosome stability, and DNA repair in a yeast minichromosome
    • Bedoyan J, Gupta R, Thoma F, Smerdon MJ. Transcription, nucleosome stability, and DNA repair in a yeast minichromosome. J Biol Chem. 1992;267(9):5996-6005.
    • (1992) J Biol Chem , vol.267 , Issue.9 , pp. 5996-6005
    • Bedoyan, J.1    Gupta, R.2    Thoma, F.3    Smerdon, M.J.4
  • 11
    • 0026486603 scopus 로고
    • Preferential repair of cyclobutane pyrimidine dimers in the transcribed strand of a gene in yeast chromosomes and plasmids is dependent on transcription
    • Sweder KS, Hanawalt PC. Preferential repair of cyclobutane pyrimidine dimers in the transcribed strand of a gene in yeast chromosomes and plasmids is dependent on transcription. Proc Natl Acad Sci USA. 1992;89(22):10696-10700.
    • (1992) Proc Natl Acad Sci USA , vol.89 , Issue.22 , pp. 10696-10700
    • Sweder, K.S.1    Hanawalt, P.C.2
  • 12
    • 0031775217 scopus 로고    scopus 로고
    • Defective Kin28, a subunit of yeast TFIIH, impairs transcription-coupled but not global genome nucleotide excision repair
    • Tijsterman M, Tasseron-de Jong JG, Verhage RA, Brouwer J. Defective Kin28, a subunit of yeast TFIIH, impairs transcription-coupled but not global genome nucleotide excision repair. Mutat Res. 1998;409(3):181-188.
    • (1998) Mutat Res , vol.409 , Issue.3 , pp. 181-188
    • Tijsterman, M.1    Tasseron-De Jong, J.G.2    Verhage, R.A.3    Brouwer, J.4
  • 13
    • 0026566837 scopus 로고
    • Transcription-dependent and independent DNA excision repair pathways in human cells
    • Carreau M, Hunting D. Transcription-dependent and independent DNA excision repair pathways in human cells. Mutat Res. 1992;274(1):57-64.
    • (1992) Mutat Res , vol.274 , Issue.1 , pp. 57-64
    • Carreau, M.1    Hunting, D.2
  • 14
    • 0026647859 scopus 로고
    • Inhibition of transcription and strand-specific DNA repair by α-amanitin in Chinese hamster ovary cells
    • Christians FC, Hanawalt PC. Inhibition of transcription and strand-specific DNA repair by α-amanitin in Chinese hamster ovary cells. Mutat Res. 1992;274(2):93-101.
    • (1992) Mutat Res , vol.274 , Issue.2 , pp. 93-101
    • Christians, F.C.1    Hanawalt, P.C.2
  • 15
    • 0037154203 scopus 로고    scopus 로고
    • Transcription-coupled repair in RNA polymerase I-transcribed genes of yeast
    • Conconi A, Bespalov VA, Smerdon MJ. Transcription-coupled repair in RNA polymerase I-transcribed genes of yeast. Proc Natl Acad Sci USA. 2002;99(2):649-654.
    • (2002) Proc Natl Acad Sci USA , vol.99 , Issue.2 , pp. 649-654
    • Conconi, A.1    Bespalov, V.A.2    Smerdon, M.J.3
  • 16
    • 0025096056 scopus 로고
    • Molecular cloning of the human DNA excision repair gene ERCC-6
    • Troelstra C, Odijk H, de Wit J, et al. Molecular cloning of the human DNA excision repair gene ERCC-6. Mol Cell Biol. 1990;10(11):5806-5813.
    • (1990) Mol Cell Biol , vol.10 , Issue.11 , pp. 5806-5813
    • Troelstra, C.1    Odijk, H.2    De Wit, J.3
  • 17
    • 0026465665 scopus 로고
    • ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes
    • Troelstra C, van Gool A, de Wit J, Vermeulen W, Bootsma D, Hoeijmakers JH. ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes. Cell. 1992;71(6):939-953.
    • (1992) Cell , vol.71 , Issue.6 , pp. 939-953
    • Troelstra, C.1    Van Gool, A.2    De Wit, J.3    Vermeulen, W.4    Bootsma, D.5    Hoeijmakers, J.H.6
  • 18
    • 0028287878 scopus 로고
    • A possible yeast homolog of human active-gene-repairing helicase ERCC6+
    • Huang ME, Chuat JC, Galibert F. A possible yeast homolog of human active-gene-repairing helicase ERCC6+. Biochem Biophys Res Commun. 1994;201(1):310-317.
    • (1994) Biochem Biophys Res Commun , vol.201 , Issue.1 , pp. 310-317
    • Huang, M.E.1    Chuat, J.C.2    Galibert, F.3
  • 19
    • 0028109412 scopus 로고
    • RAD26, the functional S. cerevisiae homolog of the Cockayne syndrome B gene ERCC6
    • van Gool AJ, Verhage R, Swagemakers SM, et al. RAD26, the functional S. cerevisiae homolog of the Cockayne syndrome B gene ERCC6. EMBO J. 1994;13(22):5361-5369.
    • (1994) EMBO J , vol.13 , Issue.22 , pp. 5361-5369
    • Van Gool, A.J.1    Verhage, R.2    Swagemakers, S.M.3
  • 20
    • 0033806183 scopus 로고    scopus 로고
    • ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor
    • Citterio E, Van den Boom V, Schnitzler G, et al. ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor. Mol Cell Biol. 2000;20(20):7643-7653.
    • (2000) Mol Cell Biol , vol.20 , Issue.20 , pp. 7643-7653
    • Citterio, E.1    Van Den Boom, V.2    Schnitzler, G.3
  • 21
    • 0030822591 scopus 로고    scopus 로고
    • Cockayne syndrome group B protein enhances elongation by RNA polymerase II
    • Selby CP, Sancar A. Cockayne syndrome group B protein enhances elongation by RNA polymerase II. Proc Natl Acad Sci USA. 1997;94(21):11205-11209.
    • (1997) Proc Natl Acad Sci USA , vol.94 , Issue.21 , pp. 11205-11209
    • Selby, C.P.1    Sancar, A.2
  • 22
    • 0037039443 scopus 로고    scopus 로고
    • Translocation of Cockayne syndrome group a protein to the nuclear matrix: Possible relevance to transcription-coupled DNA repair
    • Kamiuchi S, Saijo M, Citterio E, de Jager M, Hoeijmakers JH, Tanaka K. Translocation of Cockayne syndrome group A protein to the nuclear matrix: possible relevance to transcription-coupled DNA repair. Proc Natl Acad Sci USA. 2002;99(1):201-206.
    • (2002) Proc Natl Acad Sci USA , vol.99 , Issue.1 , pp. 201-206
    • Kamiuchi, S.1    Saijo, M.2    Citterio, E.3    De Jager, M.4    Hoeijmakers, J.H.5    Tanaka, K.6
  • 23
    • 0025913944 scopus 로고
    • The N-end rule is mediated by the UBC2(RAD6) ubiquitin-conjugating enzyme
    • Dohmen RJ, Madura K, Bartel B, Varshavsky A. The N-end rule is mediated by the UBC2(RAD6) ubiquitin-conjugating enzyme. Proc Natl Acad Sci USA. 1991;88(16):7351-7355.
    • (1991) Proc Natl Acad Sci USA , vol.88 , Issue.16 , pp. 7351-7355
    • Dohmen, R.J.1    Madura, K.2    Bartel, B.3    Varshavsky, A.4
  • 24
    • 0033600798 scopus 로고    scopus 로고
    • Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23 mediates interaction with S5a subunit of 26S proteasome
    • Hiyama H, Yokoi M, Masutani C, et al. Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23 mediates interaction with S5a subunit of 26S proteasome. J Biol Chem. 1999;274(39):28019-28025.
    • (1999) J Biol Chem , vol.274 , Issue.39 , pp. 28019-28025
    • Hiyama, H.1    Yokoi, M.2    Masutani, C.3
  • 25
    • 0033525582 scopus 로고    scopus 로고
    • Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair
    • Hofmann RM, Pickart CM. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell. 1999;96(5):645-653.
    • (1999) Cell , vol.96 , Issue.5 , pp. 645-653
    • Hofmann, R.M.1    Pickart, C.M.2
  • 26
    • 0033603339 scopus 로고    scopus 로고
    • Identification of HHR23A as a substrate for E6-associated protein-mediated ubiquitination
    • Kumar S, Talis AL, Howley PM. Identification of HHR23A as a substrate for E6-associated protein-mediated ubiquitination. J Biol Chem. 1999;274(26):18785-18792.
    • (1999) J Biol Chem , vol.274 , Issue.26 , pp. 18785-18792
    • Kumar, S.1    Talis, A.L.2    Howley, P.M.3
  • 27
    • 0025343208 scopus 로고
    • Expression of the Saccharomyces cerevisiae DNA repair gene RAD6 that encodes a ubiquitin conjugating enzyme, increases in response to DNA damage and in meiosis but remains constant during the mitotic cell cycle
    • Madura K, Prakash S, Prakash L. Expression of the Saccharomyces cerevisiae DNA repair gene RAD6 that encodes a ubiquitin conjugating enzyme, increases in response to DNA damage and in meiosis but remains constant during the mitotic cell cycle. Nucleic Acids Res. 1990;18(4):771-778.
    • (1990) Nucleic Acids Res , vol.18 , Issue.4 , pp. 771-778
    • Madura, K.1    Prakash, S.2    Prakash, L.3
  • 28
    • 0010586475 scopus 로고    scopus 로고
    • The 19S regulatory complex of the proteasome functions independently of proteolysis in nucleotide excision repair
    • Russell SJ, Reed SH, Huang W, Friedberg EC, Johnston SA. The 19S regulatory complex of the proteasome functions independently of proteolysis in nucleotide excision repair. Mol Cell. 1999;3(6):687-695.
    • (1999) Mol Cell , vol.3 , Issue.6 , pp. 687-695
    • Russell, S.J.1    Reed, S.H.2    Huang, W.3    Friedberg, E.C.4    Johnston, S.A.5
  • 29
    • 0032510057 scopus 로고    scopus 로고
    • Rad23 links DNA repair to the ubiquitin/proteasome pathway
    • Schauber C, Chen L, Tongaonkar P, et al. Rad23 links DNA repair to the ubiquitin/proteasome pathway. Nature. 1998;391(6668):715-718.
    • (1998) Nature , vol.391 , Issue.6668 , pp. 715-718
    • Schauber, C.1    Chen, L.2    Tongaonkar, P.3
  • 30
    • 0028847989 scopus 로고
    • A ubiquitin mutant with specific defects in DNA repair and multiubiquitination
    • Spence J, Sadis S, Haas AL, Finley D. A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol Cell Biol. 1995;15(3):1265-1273.
    • (1995) Mol Cell Biol , vol.15 , Issue.3 , pp. 1265-1273
    • Spence, J.1    Sadis, S.2    Haas, A.L.3    Finley, D.4
  • 31
    • 0028053830 scopus 로고
    • Chromosomal localization of three repair genes: The xeroderma pigmentosum group C gene and two human homologs of yeast RAD23
    • van der Spek PJ, Smit EM, Beverloo HB, et al. Chromosomal localization of three repair genes: the xeroderma pigmentosum group C gene and two human homologs of yeast RAD23. Genomics. 1994;23(3):651-658.
    • (1994) Genomics , vol.23 , Issue.3 , pp. 651-658
    • Van Der Spek, P.J.1    Smit, E.M.2    Beverloo, H.B.3
  • 32
    • 0031039087 scopus 로고    scopus 로고
    • The RAD7, RAD16, and RAD23 genes of Saccharomyces cerevisiae: Requirement for transcription-independent nucleotide excision repair in vitro and interactions between the gene products
    • Wang Z, Wei S, Reed SH, et al. The RAD7, RAD16, and RAD23 genes of Saccharomyces cerevisiae: requirement for transcription-independent nucleotide excision repair in vitro and interactions between the gene products. Mol Cell Biol. 1997;17(2):635-643.
    • (1997) Mol Cell Biol , vol.17 , Issue.2 , pp. 635-643
    • Wang, Z.1    Wei, S.2    Reed, S.H.3
  • 33
    • 0032548998 scopus 로고    scopus 로고
    • Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly
    • Ramos PC, Hockendorff J, Johnson ES, Varshavsky A, Dohmen RJ. Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly. Cell. 1998;92(4):489-499.
    • (1998) Cell , vol.92 , Issue.4 , pp. 489-499
    • Ramos, P.C.1    Hockendorff, J.2    Johnson, E.S.3    Varshavsky, A.4    Dohmen, R.J.5
  • 34
    • 0033870314 scopus 로고    scopus 로고
    • Expression of UMP1 is inducible by DNA damage and required for resistance of S. cerevisiae cells to UV light
    • Mieczkowski P, Dajewski W, Podlaska A, Skoneczna A, Ciesla Z, Sledziewska-Gojska E. Expression of UMP1 is inducible by DNA damage and required for resistance of S. cerevisiae cells to UV light. Curr Genet. 2000;38(2):53-59.
    • (2000) Curr Genet , vol.38 , Issue.2 , pp. 53-59
    • Mieczkowski, P.1    Dajewski, W.2    Podlaska, A.3    Skoneczna, A.4    Ciesla, Z.5    Sledziewska-Gojska, E.6
  • 35
    • 0034600851 scopus 로고    scopus 로고
    • Two RING finger proteins mediate cooperation between ubiquitin- conjugating enzymes in DNA repair
    • Ulrich HD, Jentsch S. Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. EMBO J. 2000;19(13):3388-3397.
    • (2000) EMBO J , vol.19 , Issue.13 , pp. 3388-3397
    • Ulrich, H.D.1    Jentsch, S.2
  • 36
    • 0030853074 scopus 로고    scopus 로고
    • Expression of wild-type p53 is required for efficient global genomic nucleotide excision repair in UV-irradiated human fibroblasts
    • Ford JM, Hanawalt PC. Expression of wild-type p53 is required for efficient global genomic nucleotide excision repair in UV-irradiated human fibroblasts. J Biol Chem. 1997;272(44):28073-28080.
    • (1997) J Biol Chem , vol.272 , Issue.44 , pp. 28073-28080
    • Ford, J.M.1    Hanawalt, P.C.2
  • 37
    • 0032520060 scopus 로고    scopus 로고
    • Human fibroblasts expressing the human papillomavirus E6 gene are deficient in global genomic nucleotide excision repair and sensitive to ultraviolet irradiation
    • Ford JM, Baron EL, Hanawalt PC. Human fibroblasts expressing the human papillomavirus E6 gene are deficient in global genomic nucleotide excision repair and sensitive to ultraviolet irradiation. Cancer Res. 1998;58(4):599-603.
    • (1998) Cancer Res , vol.58 , Issue.4 , pp. 599-603
    • Ford, J.M.1    Baron, E.L.2    Hanawalt, P.C.3
  • 38
    • 0032841656 scopus 로고    scopus 로고
    • Proteasome inhibitors induce p53/p21-independent apoptosis in human glioma cells
    • Wagenknecht B, Hermisson M, Eitel K, Weller M. Proteasome inhibitors induce p53/p21-independent apoptosis in human glioma cells. Cell Physiol Biochem. 1999;9(3):117-125.
    • (1999) Cell Physiol Biochem , vol.9 , Issue.3 , pp. 117-125
    • Wagenknecht, B.1    Hermisson, M.2    Eitel, K.3    Weller, M.4
  • 40
    • 0032570562 scopus 로고    scopus 로고
    • Ultraviolet radiation-induced ubiquitination and proteasomal degradation of the large subunit of RNA polymerase II. Implications for transcription- coupled DNA repair
    • Ratner JN, Balasubramanian B, Corden J, Warren SL, Bregman DB. Ultraviolet radiation-induced ubiquitination and proteasomal degradation of the large subunit of RNA polymerase II. Implications for transcription-coupled DNA repair. J Biol Chem. 1998;273(9):5184-5189.
    • (1998) J Biol Chem , vol.273 , Issue.9 , pp. 5184-5189
    • Ratner, J.N.1    Balasubramanian, B.2    Corden, J.3    Warren, S.L.4    Bregman, D.B.5
  • 41
    • 0037007036 scopus 로고    scopus 로고
    • Transcription-coupled and DNA damage-dependent ubiquitination of RNA polymerase II in vitro
    • Lee KB, Wang D, Lippard SJ, Sharp PA. Transcription-coupled and DNA damage-dependent ubiquitination of RNA polymerase II in vitro. Proc Natl Acad Sci USA. 2002;99(7):4239-4244.
    • (2002) Proc Natl Acad Sci USA , vol.99 , Issue.7 , pp. 4239-4244
    • Lee, K.B.1    Wang, D.2    Lippard, S.J.3    Sharp, P.A.4
  • 42
    • 0030888109 scopus 로고    scopus 로고
    • The large subunit of RNA polymerase II is a substrate of the Rsp5 ubiquitin-protein ligase
    • Huibregtse JM, Yang JC, Beaudenon SL. The large subunit of RNA polymerase II is a substrate of the Rsp5 ubiquitin-protein ligase. Proc Natl Acad Sci USA. 1997;94(8):3656-3661.
    • (1997) Proc Natl Acad Sci USA , vol.94 , Issue.8 , pp. 3656-3661
    • Huibregtse, J.M.1    Yang, J.C.2    Beaudenon, S.L.3
  • 43
    • 0032827035 scopus 로고    scopus 로고
    • Rsp5 ubiquitin-protein ligase mediates DNA damage-induced degradation of the large subunit of RNA polymerase II in Saccharomyces cerevisiae
    • Beaudenon SL, Huacani MR, Wang G, McDonnell DP, Huibregtse JM. Rsp5 ubiquitin-protein ligase mediates DNA damage-induced degradation of the large subunit of RNA polymerase II in Saccharomyces cerevisiae. Mol Cell Biol. 1999;19(10):6972-6979.
    • (1999) Mol Cell Biol , vol.19 , Issue.10 , pp. 6972-6979
    • Beaudenon, S.L.1    Huacani, M.R.2    Wang, G.3    McDonnell, D.P.4    Huibregtse, J.M.5
  • 44
    • 0034255502 scopus 로고    scopus 로고
    • Transcription-coupled repair in yeast is independent from ubiquitylation of RNA pol II: Implications for Cockayne's syndrome
    • Lommel L, Bucheli ME, Sweder KS. Transcription-coupled repair in yeast is independent from ubiquitylation of RNA pol II: implications for Cockayne's syndrome. Proc Natl Acad Sci USA. 2000;97(16):9088-9092.
    • (2000) Proc Natl Acad Sci USA , vol.97 , Issue.16 , pp. 9088-9092
    • Lommel, L.1    Bucheli, M.E.2    Sweder, K.S.3
  • 45
    • 0034671692 scopus 로고    scopus 로고
    • The 26S proteasome negatively regulates the level of overall genomic nucleotide excision repair
    • Lommel L, Chen L, Madura K, Sweder K. The 26S proteasome negatively regulates the level of overall genomic nucleotide excision repair. Nucleic Acids Res. 2000;28(24):4839-4845.
    • (2000) Nucleic Acids Res , vol.28 , Issue.24 , pp. 4839-4845
    • Lommel, L.1    Chen, L.2    Madura, K.3    Sweder, K.4
  • 46
    • 0037148786 scopus 로고    scopus 로고
    • A Rad26-Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage
    • Woudstra EC, Gilbert C, Fellows J, et al. A Rad26-Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage. Nature. 2002;415(6874):929-933.
    • (2002) Nature , vol.415 , Issue.6874 , pp. 929-933
    • Woudstra, E.C.1    Gilbert, C.2    Fellows, J.3
  • 47
    • 0033813625 scopus 로고    scopus 로고
    • Ubiquitin-mediated proteolysis and human disease
    • Vu PK, Sakamoto KM. Ubiquitin-mediated proteolysis and human disease. Mol Genet Metab. 2000;71(1-2):261-266.
    • (2000) Mol Genet Metab , vol.71 , Issue.1-2 , pp. 261-266
    • Vu, P.K.1    Sakamoto, K.M.2
  • 48
    • 0035823032 scopus 로고    scopus 로고
    • A new ticket for entry into budding vesicles-ubiquitin
    • Hicke L. A new ticket for entry into budding vesicles-ubiquitin. Cell. 2001;106(5):527-530.
    • (2001) Cell , vol.106 , Issue.5 , pp. 527-530
    • Hicke, L.1
  • 49
    • 0030867774 scopus 로고    scopus 로고
    • The ubiquitin system
    • Varshavsky A. The ubiquitin system. Trends Biochem Sci. 1997;22(10):383-387.
    • (1997) Trends Biochem Sci , vol.22 , Issue.10 , pp. 383-387
    • Varshavsky, A.1
  • 50
    • 0033766480 scopus 로고    scopus 로고
    • A gated channel into the proteasome core particle
    • Groll M, Bajorek M, Kohler A, et al. A gated channel into the proteasome core particle. Nat Struct Biol. 2000;7(11):1062-1067.
    • (2000) Nat Struct Biol , vol.7 , Issue.11 , pp. 1062-1067
    • Groll, M.1    Bajorek, M.2    Kohler, A.3
  • 51
    • 0036304476 scopus 로고    scopus 로고
    • 26S proteasomes function as stable entities
    • Hendil KB, Hartmann-Petersen R, Tanaka K. 26S proteasomes function as stable entities. J Mol Biol. 2002;315(4):627-636.
    • (2002) J Mol Biol , vol.315 , Issue.4 , pp. 627-636
    • Hendil, K.B.1    Hartmann-Petersen, R.2    Tanaka, K.3
  • 52
    • 0032476655 scopus 로고    scopus 로고
    • Subcellular distribution of proteasomes implicates a major location of protein degradation in the nuclear envelope-ER network in yeast
    • Enenkel C, Lehmann A, Kloetzel PM. Subcellular distribution of proteasomes implicates a major location of protein degradation in the nuclear envelope-ER network in yeast. EMBO J. 1998;17(21):6144-6154.
    • (1998) EMBO J , vol.17 , Issue.21 , pp. 6144-6154
    • Enenkel, C.1    Lehmann, A.2    Kloetzel, P.M.3
  • 53
    • 0033118427 scopus 로고    scopus 로고
    • GFP-labelling of 26S proteasomes in living yeast: Insight into proteasomal functions at the nuclear envelope/rough ER
    • Enenkel C, Lehmann A, Kloetzel PM. GFP-labelling of 26S proteasomes in living yeast: insight into proteasomal functions at the nuclear envelope/rough ER. Mol Biol Rep. 1999;26(1-2):131-135.
    • (1999) Mol Biol Rep , vol.26 , Issue.1-2 , pp. 131-135
    • Enenkel, C.1    Lehmann, A.2    Kloetzel, P.M.3
  • 54
    • 0030739911 scopus 로고    scopus 로고
    • The XPB subunit of repair/transcription factor TFIIH directly interacts with SUG1, a subunit of the 26S proteasome and putative transcription factor
    • Weeda G, Rossignol M, Fraser RA, et al. The XPB subunit of repair/transcription factor TFIIH directly interacts with SUG1, a subunit of the 26S proteasome and putative transcription factor. Nucleic Acids Res. 1997;25(12):2274-2283.
    • (1997) Nucleic Acids Res , vol.25 , Issue.12 , pp. 2274-2283
    • Weeda, G.1    Rossignol, M.2    Fraser, R.A.3
  • 55
    • 0034694837 scopus 로고    scopus 로고
    • Tissue and cell distribution of a mammalian proteasomal ATPase, MSS1, and its complex formation with the basal transcription factors
    • Yanagi S, Shimbara N, Tamura T. Tissue and cell distribution of a mammalian proteasomal ATPase, MSS1, and its complex formation with the basal transcription factors. Biochem Biophys Res Commun. 2000;279(2):568-573.
    • (2000) Biochem Biophys Res Commun , vol.279 , Issue.2 , pp. 568-573
    • Yanagi, S.1    Shimbara, N.2    Tamura, T.3
  • 56
    • 0027367944 scopus 로고
    • The Saccharomyces cerevisiae DNA repair gene RAD23 encodes a nuclear protein containing a ubiquitin-like domain required for biological function
    • Watkins JF, Sung P, Prakash L, Prakash S. The Saccharomyces cerevisiae DNA repair gene RAD23 encodes a nuclear protein containing a ubiquitin-like domain required for biological function. Mol Cell Biol. 1993;13(12):7757-7765.
    • (1993) Mol Cell Biol , vol.13 , Issue.12 , pp. 7757-7765
    • Watkins, J.F.1    Sung, P.2    Prakash, L.3    Prakash, S.4
  • 57
    • 0029864301 scopus 로고    scopus 로고
    • Rad23 is required for transcription-coupled repair and efficient overrall repair in Saccharomyces cerevisiae
    • Mueller JP, Smerdon MJ. Rad23 is required for transcription-coupled repair and efficient overrall repair in Saccharomyces cerevisiae. Mol Cell Biol. 1996;16(5):2361-2368.
    • (1996) Mol Cell Biol , vol.16 , Issue.5 , pp. 2361-2368
    • Mueller, J.P.1    Smerdon, M.J.2
  • 58
    • 0033772765 scopus 로고    scopus 로고
    • Regulatory networks revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells: Rpn4 links base excision repair with proteasomes
    • Jelinsky SA, Estep P, Church GM, Samson LD. Regulatory networks revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells: Rpn4 links base excision repair with proteasomes. Mol Cell Biol. 2000;20(21):8157- 8167.
    • (2000) Mol Cell Biol , vol.20 , Issue.21 , pp. 8157-8167
    • Jelinsky, S.A.1    Estep, P.2    Church, G.M.3    Samson, L.D.4
  • 59
    • 0033004441 scopus 로고    scopus 로고
    • Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast
    • Mannhaupt G, Schnall R, Karpov V, Vetter I, Feldmann H. Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast. FEBS Lett. 1999;450(1-2):27-34.
    • (1999) FEBS Lett , vol.450 , Issue.1-2 , pp. 27-34
    • Mannhaupt, G.1    Schnall, R.2    Karpov, V.3    Vetter, I.4    Feldmann, H.5
  • 60
    • 0026681291 scopus 로고
    • Alterations in a yeast protein resembling HIV Tat-binding protein relieve requirement for an acidic activation domain in GAL4
    • Swaffield JC, Bromberg JF, Johnston SA. Alterations in a yeast protein resembling HIV Tat-binding protein relieve requirement for an acidic activation domain in GAL4. Nature. 1992;357(6380):698-700.
    • (1992) Nature , vol.357 , Issue.6380 , pp. 698-700
    • Swaffield, J.C.1    Bromberg, J.F.2    Johnston, S.A.3
  • 61
    • 0037134015 scopus 로고    scopus 로고
    • Recruitment of a 19S proteasome subcomplex to an activated promoter
    • Gonzalez F, Delahodde A, Kodadek T, Johnston SA. Recruitment of a 19S proteasome subcomplex to an activated promoter. Science. 2002;296(5567):548-550.
    • (2002) Science , vol.296 , Issue.5567 , pp. 548-550
    • Gonzalez, F.1    Delahodde, A.2    Kodadek, T.3    Johnston, S.A.4
  • 62
    • 12244309062 scopus 로고    scopus 로고
    • Protcolysis of a nucleotide excision repair protein by the 26S proteasome
    • Lommel L, Ortolan T, Chen L, Madura K, Sweder K. Protcolysis of a nucleotide excision repair protein by the 26S proteasome. Curr Genet. 2002;2002.
    • (2002) Curr Genet , pp. 2002
    • Lommel, L.1    Ortolan, T.2    Chen, L.3    Madura, K.4    Sweder, K.5
  • 64
    • 0000516293 scopus 로고    scopus 로고
    • Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair
    • Hwang BJ, Ford JM, Hanawalt PC, Chu G. Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair. Proc Natl Acad Sci USA. 1999;96(2):424-428.
    • (1999) Proc Natl Acad Sci USA , vol.96 , Issue.2 , pp. 424-428
    • Hwang, B.J.1    Ford, J.M.2    Hanawalt, P.C.3    Chu, G.4
  • 65
    • 0033544942 scopus 로고    scopus 로고
    • Cullin 4A associates with the UV-damaged DNA-binding protein DDB
    • Shiyanov P, Nag A, Raychaudhuri P. Cullin 4A associates with the UV-damaged DNA-binding protein DDB. J Biol Chern. 1999;274(50):35309-35312.
    • (1999) J Biol Chern , vol.274 , Issue.50 , pp. 35309-35312
    • Shiyanov, P.1    Nag, A.2    Raychaudhuri, P.3
  • 66
    • 0034813575 scopus 로고    scopus 로고
    • The xeroderma pigmentosum group e gene product DDB2 is a specific target of cullin 4A in mammalian cells
    • Nag A, Bondar T, Shiv S, Raychaudhuri P. The xeroderma pigmentosum group E gene product DDB2 is a specific target of cullin 4A in mammalian cells. Mol Cell Biol. 2001;21(20):6738-6747.
    • (2001) Mol Cell Biol , vol.21 , Issue.20 , pp. 6738-6747
    • Nag, A.1    Bondar, T.2    Shiv, S.3    Raychaudhuri, P.4
  • 67
    • 0035930582 scopus 로고    scopus 로고
    • UV-damaged DNA-binding proteins are targets of CUL-4A-mediated ubiquitination and degradation
    • Chen X, Zhang Y, Douglas L, Zhou P. UV-damaged DNA-binding proteins are targets of CUL-4A-mediated ubiquitination and degradation. J Biol Chem. 2001;276(51):48175-48182.
    • (2001) J Biol Chem , vol.276 , Issue.51 , pp. 48175-48182
    • Chen, X.1    Zhang, Y.2    Douglas, L.3    Zhou, P.4
  • 68
  • 69
    • 0035034417 scopus 로고    scopus 로고
    • UBA domains of DNA damage-inducible proteins interact with ubiquitin
    • Bertolaet BL, Clarke DJ, Wolff M, et al. UBA domains of DNA damage-inducible proteins interact with ubiquitin. Nat Struct Biol. 2001;8(5):417-422.
    • (2001) Nat Struct Biol , vol.8 , Issue.5 , pp. 417-422
    • Bertolaet, B.L.1    Clarke, D.J.2    Wolff, M.3
  • 70
    • 0034798985 scopus 로고    scopus 로고
    • Proteins containing the UBA domain are able to bind to multi-ubiquitin chains
    • Wilkinson CR, Seeger M, Hartmann-Petersen R, et al. Proteins containing the UBA domain are able to bind to multi-ubiquitin chains. Nat Cell Biol. 2001;3(10):939-943.
    • (2001) Nat Cell Biol , vol.3 , Issue.10 , pp. 939-943
    • Wilkinson, C.R.1    Seeger, M.2    Hartmann-Petersen, R.3
  • 71
    • 0035421637 scopus 로고    scopus 로고
    • Peptide-N-glycanases and DNA repair proteins, Xp-C/Rad4, are, respectively, active and inactivated enzymes sharing a common transglutaminase fold
    • Anantharaman V, Koonin EV, Aravind L. Peptide-N-glycanases and DNA repair proteins, Xp-C/Rad4, are, respectively, active and inactivated enzymes sharing a common transglutaminase fold. Hum Mol Genet. 2001;10(16):1627-1630.
    • (2001) Hum Mol Genet , vol.10 , Issue.16 , pp. 1627-1630
    • Anantharaman, V.1    Koonin, E.V.2    Aravind, L.3
  • 72
    • 0028607143 scopus 로고
    • Regulated degradation of the transcription factor Gcn4,"
    • Kornitzer D, Raboy B, Kulka RG, Fink GR. Regulated degradation of the transcription factor Gcn4," EMBO J. 1994;13(24):6021-6030.
    • (1994) EMBO J , vol.13 , Issue.24 , pp. 6021-6030
    • Kornitzer, D.1    Raboy, B.2    Kulka, R.G.3    Fink, G.R.4
  • 73
    • 0034017609 scopus 로고    scopus 로고
    • Degradation of the transcription factor Gcn4 requires the kinase Pho85 and the SCF(CDC4) ubiquitin-ligase complex
    • Meimoun A, Holtzman T, Weissman Z, et al. Degradation of the transcription factor Gcn4 requires the kinase Pho85 and the SCF(CDC4) ubiquitin-ligase complex. Mol Biol Cell. 2000;11(3):915-927.
    • (2000) Mol Biol Cell , vol.11 , Issue.3 , pp. 915-927
    • Meimoun, A.1    Holtzman, T.2    Weissman, Z.3
  • 74
    • 0035907243 scopus 로고    scopus 로고
    • Gcn2 mediates Gcn4 activation in response to glucose stimulation or UV radiation not via GCN4 translation
    • Marbach I, Licht R, Frohnmeyer H, Engelberg D. Gcn2 mediates Gcn4 activation in response to glucose stimulation or UV radiation not via GCN4 translation. J Biol Chem. 2001;276(20):16944-16951.
    • (2001) J Biol Chem , vol.276 , Issue.20 , pp. 16944-16951
    • Marbach, I.1    Licht, R.2    Frohnmeyer, H.3    Engelberg, D.4
  • 75
    • 0035862974 scopus 로고    scopus 로고
    • The proteasome regulates the UV-induced activation of the AP-1-like transcription factor Gcn4
    • Stitzel ML, Durso R, Reese JC. The proteasome regulates the UV-induced activation of the AP-1-like transcription factor Gcn4. Genes Dev. 2001;15(2):128-133.
    • (2001) Genes Dev , vol.15 , Issue.2 , pp. 128-133
    • Stitzel, M.L.1    Durso, R.2    Reese, J.C.3
  • 76
    • 0034641753 scopus 로고    scopus 로고
    • UV-induced inhibition of transcription involves repression of transcription initiation and phosphorylation of RNA polymerase II
    • Rockx DA, Mason R, van Hoffen A, et al. UV-induced inhibition of transcription involves repression of transcription initiation and phosphorylation of RNA polymerase II. Proc Natl Acad Sci USA. 2000;97(19):10503-10508.
    • (2000) Proc Natl Acad Sci USA , vol.97 , Issue.19 , pp. 10503-10508
    • Rockx, D.A.1    Mason, R.2    Van Hoffen, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.