-
1
-
-
32344441237
-
Model based overlapping clustering
-
A. Banerjee, C. Krumpelman, S. Basu, R. Mooney, and J. Ghosh. Model based overlapping clustering. In KDD, 2005.
-
(2005)
KDD
-
-
Banerjee, A.1
Krumpelman, C.2
Basu, S.3
Mooney, R.4
Ghosh, J.5
-
2
-
-
25644457598
-
Probabilistic discovery of overlapping cellular processes and their regulation
-
A. Battle, E. Segal, and D. Koller. Probabilistic discovery of overlapping cellular processes and their regulation. Journal of Computational Biology, 12(7):909-927, 2005.
-
(2005)
Journal of Computational Biology
, vol.12
, Issue.7
, pp. 909-927
-
-
Battle, A.1
Segal, E.2
Koller, D.3
-
5
-
-
0000258816
-
Factorial learning and the em algorithm
-
Z. Ghahramani. Factorial learning and the EM algorithm. In NIPS, 1995.
-
(1995)
NIPS
-
-
Ghahramani, Z.1
-
6
-
-
33749260354
-
A choice model with inifinitely many latent features
-
D. Görür, Jäkel, and C. Rasmussen. A choice model with inifinitely many latent features. In ICML, 2006.
-
(2006)
ICML
-
-
Görür, D.1
Jäkel2
Rasmussen, C.3
-
8
-
-
34548625798
-
Infinite latent feature models and the indian buffet process
-
T. Griffiths and Z. Ghahramani. Infinite latent feature models and the indian buffet process. In NIPS, 2006.
-
(2006)
NIPS
-
-
Griffiths, T.1
Ghahramani, Z.2
-
9
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
G. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation, 14, 2002.
-
(2002)
Neural Computation
, vol.14
-
-
Hinton, G.1
-
10
-
-
0002834189
-
Autoencoders, minimum description length, and helmholtz free energy
-
G. E. Hinton and R. Zemel. Autoencoders, minimum description length, and helmholtz free energy. In NIPS, 1994.
-
(1994)
NIPS
-
-
Hinton, G.E.1
Zemel, R.2
-
11
-
-
2442700632
-
Modeling cellular processes with variational bayesian cooperative vector quantizer
-
X. Lu, M. Hauskrecht, and R. Day. Modeling cellular processes with variational bayesian cooperative vector quantizer. In PSB, 2004.
-
(2004)
PSB
-
-
Lu, X.1
Hauskrecht, M.2
Day, R.3
-
13
-
-
0012287167
-
Learning segmentation by random walks
-
M. Meila and J. Shi. Learning segmentation by random walks. In NIPS, 2000.
-
(2000)
NIPS
-
-
Meila, M.1
Shi, J.2
-
14
-
-
77950032550
-
Markov chain sampling methods for Dirichlet process mixture models
-
R. Neal. Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9, 2000.
-
(2000)
Journal of Computational and Graphical Statistics
, vol.9
-
-
Neal, R.1
-
15
-
-
32344446698
-
Applying the multiple cause mixture model to text categorization
-
M. Sahami, M. A. Hearst, and E. Saund. Applying the multiple cause mixture model to text categorization. In ICML, 1996.
-
(1996)
ICML
-
-
Sahami, M.1
Hearst, M.A.2
Saund, E.3
-
16
-
-
0039830273
-
Unsupervised learning of mixtures of multiple causes in binary data
-
E. Saund. Unsupervised learning of mixtures of multiple causes in binary data. In NIPS, 1994.
-
(1994)
NIPS
-
-
Saund, E.1
-
17
-
-
0043130664
-
Decomposing gene expression into cellular processes
-
E. Segal, A. Battle, and D. Koller. Decomposing gene expression into cellular processes. In PSB, 2003.
-
(2003)
PSB
-
-
Segal, E.1
Battle, A.2
Koller, D.3
|