메뉴 건너뛰기




Volumn 4, Issue 7-8, 2004, Pages 1235-1260

Energy-based models for sparse overcomplete representations

Author keywords

Density Estimation; Independent Components Analysis; Overcomplete Representations; Sparse Representations

Indexed keywords

ALGORITHMS; BLIND SOURCE SEPARATION; ESTIMATION; FUNCTIONS; MATHEMATICAL MODELS; PROBABILITY DISTRIBUTIONS; PROBLEM SOLVING;

EID: 8344290493     PISSN: 15324435     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (173)

References (33)
  • 3
    • 0033561886 scopus 로고    scopus 로고
    • Independent factor analysis
    • H. Attias. Independent Factor Analysis. Neural Computation, 11:803-851, 1999.
    • (1999) Neural Computation , vol.11 , pp. 803-851
    • Attias, H.1
  • 5
    • 0029411030 scopus 로고
    • An information maximisation approach to blind separation and blind deconvolution
    • A. J. Bell and T. J. Sejnowski. An information maximisation approach to blind separation and blind deconvolution. Neural Computation, 7:1129-1159, 1995.
    • (1995) Neural Computation , vol.7 , pp. 1129-1159
    • Bell, A.J.1    Sejnowski, T.J.2
  • 6
    • 0031122399 scopus 로고    scopus 로고
    • Infomax and maximum likelihood for blind source separation
    • J. F. Cardoso. Infomax and maximum likelihood for blind source separation. IEEE Signal Processing Letters, 4(4):112-114, 1997.
    • (1997) IEEE Signal Processing Letters , vol.4 , Issue.4 , pp. 112-114
    • Cardoso, J.F.1
  • 8
    • 0028416938 scopus 로고
    • Independent component analysis: A new concept?
    • P. Comon. Independent component analysis: A new concept? Signal Processing, 36:287-314, 1994.
    • (1994) Signal Processing , vol.36 , pp. 287-314
    • Comon, P.1
  • 10
    • 0038132749 scopus 로고    scopus 로고
    • A variational method for learning overcomplete representations
    • M. Girolami. A variational method for learning overcomplete representations. Neural Computation, 13:2517-2532, 2001.
    • (2001) Neural Computation , vol.13 , pp. 2517-2532
    • Girolami, M.1
  • 11
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8): 1771-1800, 2002.
    • (2002) Neural Computation , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 14
  • 15
    • 0034920427 scopus 로고    scopus 로고
    • A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images
    • A. Hyvrinen and P. O. Hoyer. A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images. Vision Research, 41(18):2413-2423, 2001.
    • (2001) Vision Research , vol.41 , Issue.18 , pp. 2413-2423
    • Hyvrinen, A.1    Hoyer, P.O.2
  • 17
    • 0034133184 scopus 로고    scopus 로고
    • Learning overcomplete representations
    • M. S. Lewicki and T. J. Sejnowski. Learning overcomplete representations. Neural Computation, 12:337-365, 2000.
    • (2000) Neural Computation , vol.12 , pp. 337-365
    • Lewicki, M.S.1    Sejnowski, T.J.2
  • 20
    • 0027842081 scopus 로고
    • Matching pursuits with time-frequency dictionaries
    • S. G. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEE Transactions in Signal Processing, 41(12):3397-3414, 1993.
    • (1993) IEEE Transactions in Signal Processing , vol.41 , Issue.12 , pp. 3397-3414
    • Mallat, S.G.1    Zhang, Z.2
  • 21
    • 0004087397 scopus 로고
    • Probabilistic inference using Markov chain Monte Carlo methods
    • University of Toronto, Department of Computer Science
    • R. M. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Technical Report CRG-TR-93-1, University of Toronto, Department of Computer Science, 1993.
    • (1993) Technical Report , vol.CRG-TR-93-1
    • Neal, R.M.1
  • 22
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381:607-609, 1996.
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 23
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by VI
    • B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy employed by VI. Vision Research, 37:3311-3325, 1997.
    • (1997) Vision Research , vol.37 , pp. 3311-3325
    • Olshausen, B.A.1    Field, D.J.2
  • 29
    • 0032492432 scopus 로고    scopus 로고
    • Independent component filters of natural images compared with simple cells in primary visual cortex
    • J. H. van Hateren and A. van der Schaaf. Independent component filters of natural images compared with simple cells in primary visual cortex. Proceedings of the Royal Society of London B, 265: 359-366, 1998.
    • (1998) Proceedings of the Royal Society of London B , vol.265 , pp. 359-366
    • Van Hateren, J.H.1    Van Der Schaaf, A.2
  • 31
    • 0025503558 scopus 로고
    • Backpropagation through time: What it does and how to do it
    • P. J. Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the IEEE,78(10):1550-1560, 1990.
    • (1990) Proceedings of the IEEE , vol.78 , Issue.10 , pp. 1550-1560
    • Werbos, P.J.1
  • 32
    • 8344277051 scopus 로고    scopus 로고
    • An analysis of contrastive divergence learning in gaussian boltzmann machines
    • Institute for Adaptive and Neural Computation, University of Edinburgh
    • C. K. I. Williams and F. V. Agakov. An analysis of contrastive divergence learning in gaussian boltzmann machines. Technical Report EDI-INF-RR-0120, Institute for Adaptive and Neural Computation, University of Edinburgh, 2002.
    • (2002) Technical Report , vol.EDI-INF-RR-0120
    • Williams, C.K.I.1    Agakov, F.V.2
  • 33
    • 0000806445 scopus 로고    scopus 로고
    • Minimax entropy principle and its application to texture modelling
    • S. C. Zhu, Y. N. Wu, and D. Mumford. Minimax entropy principle and its application to texture modelling. Neural Computation, 9(8), 1997.
    • (1997) Neural Computation , vol.9 , Issue.8
    • Zhu, S.C.1    Wu, Y.N.2    Mumford, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.