메뉴 건너뛰기




Volumn 80, Issue 1, 2008, Pages 45-57

Object class recognition and localization using sparse features with limited receptive fields

Author keywords

Localized features; Object class recognition; Sparsity; Ventral visual pathway

Indexed keywords

ARTIFICIAL INTELLIGENCE; CHLORINE COMPOUNDS; COMPUTER NETWORKS; COMPUTER VISION; IMAGE PROCESSING; TEMPLATE MATCHING;

EID: 51149092609     PISSN: 09205691     EISSN: 15731405     Source Type: Journal    
DOI: 10.1007/s11263-007-0118-0     Document Type: Article
Times cited : (302)

References (35)
  • 2
    • 24644502276 scopus 로고    scopus 로고
    • Shape matching and object recognition using low distortion correspondence
    • June 2005
    • Berg, A. C., Berg, T. L., & Malik, J. (2005). Shape matching and object recognition using low distortion correspondence. In CVPR, June 2005.
    • (2005) CVPR
    • Berg, A.C.1    Berg, T.L.2    Malik, J.3
  • 3
    • 33745132440 scopus 로고    scopus 로고
    • Hierarchical part-based visual object categorization
    • June 2005
    • Bouchard, G., & Triggs, B. (2005). Hierarchical part-based visual object categorization. In CVPR, June 2005.
    • (2005) CVPR
    • Bouchard, G.1    Triggs, B.2
  • 5
    • 34447552444 scopus 로고    scopus 로고
    • Untangling invariant object recognition
    • DiCarlo, J., & Cox, D. (2007). Untangling invariant object recognition. Trends in Cognitive Science, 11, 333-341.
    • (2007) Trends in Cognitive Science , vol.11 , pp. 333-341
    • Dicarlo, J.1    Cox, D.2
  • 6
    • 33745963422 scopus 로고    scopus 로고
    • Feature hierarchies for object classification
    • Beijing
    • Epshtein, B., & Ullman, S. (2005). Feature hierarchies for object classification. In ICCV, Beijing.
    • (2005) ICCV
    • Epshtein, B.1    Ullman, S.2
  • 7
    • 84932617705 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
    • Fei-Fei, L., Fergus, R., & Perona, P. (2004). Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. In CVPR workshop on generative-model based vision.
    • (2004) CVPR Workshop on Generative-model Based Vision
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 8
    • 0041940256 scopus 로고    scopus 로고
    • Object class recognition by unsupervised scale-invariant learning
    • Fergus, R., Perona, P., & Zisserman, A. (2003). Object class recognition by unsupervised scale-invariant learning. In CVPR.
    • (2003) CVPR
    • Fergus, R.1    Perona, P.2    Zisserman, A.3
  • 11
    • 33745911319 scopus 로고    scopus 로고
    • Integrating representative and discriminative models for object category detection
    • Beijing, China, October 2005
    • Fritz, M., Leibe, B., Caputo, B., & Schiele, B. (2005). Integrating representative and discriminative models for object category detection. In ICCV (pp. 1363-1370), Beijing, China, October 2005.
    • (2005) ICCV , pp. 1363-1370
    • Fritz, M.1    Leibe, B.2    Caputo, B.3    Schiele, B.R.4
  • 12
    • 0019152630 scopus 로고
    • Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • 4
    • Fukushima, K. (1980). Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4), 193-202.
    • (1980) Biological Cybernetics , vol.36 , pp. 193-202
    • Fukushima, K.1
  • 14
    • 78049529088 scopus 로고    scopus 로고
    • Exploiting unlabeled data for hybrid object classification
    • Whistler, BC, December 2005
    • Holub, A., Welling, M., & Perona, P. (2005). Exploiting unlabeled data for hybrid object classification. In NIPS workshop on inter-class transfer, Whistler, BC, December 2005.
    • (2005) NIPS Workshop on Inter-class Transfer
    • Holub, A.1    Welling, M.2    Perona, P.3
  • 15
    • 70449311374 scopus 로고
    • Receptive fields of single neurones in the cat's striate cortex
    • Hubel, D., & Wiesel, T. (1959). Receptive fields of single neurones in the cat's striate cortex. Journal of Physiology, 148, 574-591.
    • (1959) Journal of Physiology , vol.148 , pp. 574-591
    • Hubel, D.1    Wiesel, T.2
  • 18
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid. matching for recognizing natural scene categories
    • June
    • Lazebnik, S., Schmid, C., & Ponce, J. (2006) Beyond bags of features: Spatial pyramid. matching for recognizing natural scene categories. In CVPR, June 2006.
    • (2006) CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 19
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • 11
    • LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
    • (1998) Proceedings of the IEEE , vol.86 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 20
    • 33646014576 scopus 로고    scopus 로고
    • Combined object categorization and segmentation with an implicit shape model
    • Prague, Czech Republic, May
    • Leibe, B., Leonardis, A., & Schiele, B. (2004). Combined object categorization and segmentation with an implicit shape model. In ECCV workshop on statistical learning in computer vision (pp. 17-32), Prague, Czech Republic, May 2004.
    • (2004) ECCV Workshop on Statistical Learning in Computer Vision , pp. 17-32
    • Leibe, B.1    Leonardis, A.2    Schiele, B.3
  • 21
    • 0029294644 scopus 로고
    • Shape representation in the inferior temporal cortex of monkeys
    • Logothetis, N., Pauls, J., & Poggio, T. (1995). Shape representation in the inferior temporal cortex of monkeys. Current Biology, 5, 552-563.
    • (1995) Current Biology , vol.5 , pp. 552-563
    • Logothetis, N.1    Pauls, J.2    Poggio, T.3
  • 23
    • 34948911156 scopus 로고    scopus 로고
    • Randomized clustering forests for building fast and discriminative visual vocabularies
    • November
    • Moosmann, F., Triggs, B., & Jurie, F. (2006). Randomized clustering forests for building fast and discriminative visual vocabularies. In Neural information processing systems (NIPS), November 2006.
    • (2006) Neural Information Processing Systems (NIPS)
    • Moosmann, F.1    Triggs, B.2    Jurie, F.3
  • 24
    • 33845569574 scopus 로고    scopus 로고
    • Multiclass object recognition with sparse, localized features
    • New York, June
    • Mutch, J., & Lowe, D. G. (2006). Multiclass object recognition with sparse, localized features. In CVPR (pp. 11-18), New York, June 2006.
    • (2006) CVPR , pp. 11-18
    • Mutch, J.1    Lowe, D.G.2
  • 25
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • Olshausen, B., & Field, D. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381, 607-609.
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.1    Field, D.2
  • 27
    • 0025037991 scopus 로고
    • A network that learns to recognize three-dimensional objects
    • Poggio, T., & Edelman, S. (1990). A network that learns to recognize three-dimensional objects. Nature, 343, 263-266.
    • (1990) Nature , vol.343 , pp. 263-266
    • Poggio, T.1    Edelman, S.2
  • 28
    • 0016661211 scopus 로고
    • Meaning in visual search
    • Potter, M. (1975). Meaning in visual search. Science, 187, 965-966.
    • (1975) Science , vol.187 , pp. 965-966
    • Potter, M.1
  • 29
    • 0033316361 scopus 로고    scopus 로고
    • Hierarchical models of object recognition in cortex
    • 11
    • Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in cortex. Nature Neuroscience, 2(11), 1019-1025.
    • (1999) Nature Neuroscience , vol.2 , pp. 1019-1025
    • Riesenhuber, M.1    Poggio, T.2
  • 32
    • 24644511277 scopus 로고    scopus 로고
    • Object recognition with features inspired by visual cortex
    • San Diego, June
    • Serre, T., Wolf, L., & Poggio, T. Object recognition with features inspired by visual cortex. In CVPR, San Diego, June 2005.
    • (2005) CVPR
    • Serre, T.1    Wolf, L.2    Poggio, T.3
  • 33
    • 0029895137 scopus 로고    scopus 로고
    • Speed of processing in the human visual system
    • Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381, 520-522.
    • (1996) Nature , vol.381 , pp. 520-522
    • Thorpe, S.1    Fize, D.2    Marlot, C.3
  • 34
    • 0036307392 scopus 로고    scopus 로고
    • Visual features of intermediate complexity and their use in classification
    • 7
    • Ullman, S., Vidal-Naquet, M., & Sali, E. (2002). Visual features of intermediate complexity and their use in classification. Nature Neuroscience, 5(7), 682-687.
    • (2002) Nature Neuroscience , vol.5 , pp. 682-687
    • Ullman, S.1    Vidal-Naquet, M.2    Sali, E.3
  • 35
    • 33845566162 scopus 로고    scopus 로고
    • Svm-knn: Discriminative nearest neighbor classification for visual category recognition
    • June
    • Zhang, H., Berg, A., Maire, M., & Malik, J. (2006). Svm-knn: discriminative nearest neighbor classification for visual category recognition. In CVPR, June 2006.
    • (2006) CVPR
    • Zhang, H.1    Berg, A.2    Maire, M.3    Malik, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.