메뉴 건너뛰기




Volumn 77, Issue 1-3, 2008, Pages 291-330

Describing visual scenes using transformed objects and parts

Author keywords

Context; Dirichlet process; Graphical models; Hierarchical Dirichlet process; Object recognition; Scene analysis; Transformation

Indexed keywords

GRAPHIC METHODS; HIERARCHICAL SYSTEMS; LEARNING SYSTEMS; MATHEMATICAL MODELS; MONTE CARLO METHODS; VISUAL SERVOING;

EID: 39749186647     PISSN: 09205691     EISSN: 15731405     Source Type: Journal    
DOI: 10.1007/s11263-007-0069-5     Document Type: Article
Times cited : (136)

References (69)
  • 2
    • 84874578903 scopus 로고    scopus 로고
    • Generative models for labeling multi-object configurations in images
    • Springer Berlin
    • Amit, Y., & Trouvé, A. (2007). Generative models for labeling multi-object configurations in images. In J. Ponce, et al. (Ed.), Toward category-level object recognition. Berlin: Springer.
    • (2007) Toward Category-level Object Recognition
    • Amit, Y.1    Trouvé, A.2    Ponce, J.3
  • 10
    • 0002205556 scopus 로고    scopus 로고
    • Rao-Blackwellisation of sampling schemes
    • 1
    • Casella, G., & Robert, C. P. (1996). Rao-Blackwellisation of sampling schemes. Biometrika, 83(1), 81-94.
    • (1996) Biometrika , vol.83 , pp. 81-94
    • Casella, G.1    Robert, C.P.2
  • 13
    • 0023710206 scopus 로고
    • Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach
    • DeLong, E. R., DeLong, D. M., & Clarke-Pearson, D. L. (1988). Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics, 44, 837-845.
    • (1988) Biometrics , vol.44 , pp. 837-845
    • Delong, E.R.1    Delong, D.M.2    Clarke-Pearson, D.L.3
  • 16
    • 84932617705 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
    • Fei-Fei, L., Fergus, R., & Perona, P. (2004). Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories. In CVPR workshop on generative model based vision.
    • (2004) CVPR Workshop on Generative Model Based Vision
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 19
    • 0015567825 scopus 로고
    • The representation and matching of pictorial structures
    • 1
    • Fischler, M. A., & Elschlager, R. A. (1973). The representation and matching of pictorial structures. IEEE Transactions on Computers, 22(1), 67-92.
    • (1973) IEEE Transactions on Computers , vol.22 , pp. 67-92
    • Fischler, M.A.1    Elschlager, R.A.2
  • 28
    • 0036661094 scopus 로고    scopus 로고
    • Dirichlet prior sieves in finite normal mixtures
    • Ishwaran, H., & Zarepour, M. (2002). Dirichlet prior sieves in finite normal mixtures. Statistica Sinica, 12, 941-963.
    • (2002) Statistica Sinica , vol.12 , pp. 941-963
    • Ishwaran, H.1    Zarepour, M.2
  • 31
    • 4043129651 scopus 로고    scopus 로고
    • Graphical models
    • 1
    • Jordan, M. I. (2004). Graphical models. Statistical Science, 19(1), 140-155.
    • (2004) Statistical Science , vol.19 , pp. 140-155
    • Jordan, M.I.1
  • 37
    • 84860624328 scopus 로고    scopus 로고
    • Efficient unsupervised learning for localization and detection in object categories
    • MIT Press Cambridge
    • Loeff, N., Arora, H., Sorokin, A., & Forsyth, D. (2006). Efficient unsupervised learning for localization and detection in object categories. In Neural information processing systems 18 (pp. 811-818). Cambridge: MIT Press.
    • (2006) Neural Information Processing Systems 18 , pp. 811-818
    • Loeff, N.1    Arora, H.2    Sorokin, A.3    Forsyth, D.4
  • 38
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • 2
    • Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91-110.
    • (2004) International Journal of Computer Vision , vol.60 , pp. 91-110
    • Lowe, D.G.1
  • 39
    • 3543023776 scopus 로고    scopus 로고
    • Dependent nonparametric processes
    • American Statistical Association Alexandria
    • MacEachern, S. N. (1999). Dependent nonparametric processes. In Proceedings section on Bayesian statistical science (pp. 50-55). Alexandria: American Statistical Association.
    • (1999) Proceedings Section on Bayesian Statistical Science , pp. 50-55
    • MacEachern, S.N.1
  • 40
  • 46
    • 84860603224 scopus 로고    scopus 로고
    • Using the forest to see the trees: A graphical model relating features, objects, and scenes
    • MIT Press Cambridge
    • Murphy, K., Torralba, A., & Freeman, W. T. (2004). Using the forest to see the trees: A graphical model relating features, objects, and scenes. In Neural information processing systems 16. Cambridge: MIT Press.
    • (2004) Neural Information Processing Systems 16
    • Murphy, K.1    Torralba, A.2    Freeman, W.T.3
  • 47
    • 77950032550 scopus 로고    scopus 로고
    • Markov chain sampling methods for Dirichlet process mixture models
    • 2
    • Neal, R. M. (2000). Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9(2), 249-265.
    • (2000) Journal of Computational and Graphical Statistics , vol.9 , pp. 249-265
    • Neal, R.M.1
  • 48
    • 0242641721 scopus 로고    scopus 로고
    • Technical Report 621, U.C. Berkeley Department of Statistics, August 2002
    • Pitman, J. (2002). Combinatorial stochastic processes. Technical Report 621, U.C. Berkeley Department of Statistics, August 2002.
    • (2002) Combinatorial Stochastic Processes
    • Pitman, J.1
  • 52
    • 0042021603 scopus 로고
    • Multidimensional scaling, tree-fitting, and clustering
    • Shepard, R. N. (1980). Multidimensional scaling, tree-fitting, and clustering. Science, 210, 390-398.
    • (1980) Science , vol.210 , pp. 390-398
    • Shepard, R.N.1
  • 62
    • 0017506560 scopus 로고
    • Experiments in interpretation-guided segmentation
    • Tenenbaum, J. M., & Barrow, H. G. (1977). Experiments in interpretation-guided segmentation. Artificial Intelligence, 8, 241-274.
    • (1977) Artificial Intelligence , vol.8 , pp. 241-274
    • Tenenbaum, J.M.1    Barrow, H.G.2
  • 66
    • 0036307392 scopus 로고    scopus 로고
    • Visual features of intermediate complexity and their use in classification
    • 7
    • Ullman, S., Vidal-Naquet, M., & Sali, E. (2002). Visual features of intermediate complexity and their use in classification. Nature Neuroscience, 5(7), 682-687.
    • (2002) Nature Neuroscience , vol.5 , pp. 682-687
    • Ullman, S.1    Vidal-Naquet, M.2    Sali, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.